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1 Introduction
Content:
Short historical overview of LEP/Tevatron/early LHC.

1.1 Electroweak pseudo-observables at LEP
Authors: Fulvio, Elzbieta

The concept of electroweak pseudo-observables (EWPO) was essential in the final analysis of LEP1 data of [1].
The EWPO’s at LEP were quantities like Z mass and width; the various 2→ 2 Z peak cross-sections, most of the
2→ 2 charge and spin asymmetries at the Z peak, plus the equivalent effective weak mixing angle, which is the
main SM parameter under study in this article. They were derived directly from the experimental data in such a way
that QED contributions and the kinematic cut-off effects were removed. The art of the Z line-shape and asymmetry
analyses at LEP relied on the ability to reduce the many degrees of freedom from the experimental measurements to
a sufficiently small set of intermediate variables, which could be precisely described by theory. With full one-loop
accuracy in QED/EW theory (and even a bit beyond) this was prepared in the ZFITTER package [2, 3].

A theoretically sound separation of the QED/EW effects between the QED emissions and genuine virtual weak
effects was essential for the phenomenology of LEP precision physics [1]. It was motivated by the structure of the
amplitudes for single Z-boson production or (to a lesser degree) WW -pair production in e+e− collisions, as well as
by the fact that QED bremsstrahlung occurs at a different energy scale than the electroweak processes. Even more
importantly, with this approach, multi-loop calculations for the complete electroweak sector could be avoided. The
QED terms were thus resummed in an exclusive exponentiation scheme implemented in Monte Carlo [4]. Note
that these QED corrections modify the cross-section at the peak by as much as 40%. The details of this paradigm
are explained for example in Ref. [5]. It was obtained as the result of a massive effort by the theory community,
which will not be recalled in any detail here. From the practical phenomenology perspective, spin amplitudes are
semi-factorised into a Born-like term(s) and functional factors responsible for bremsstrahlung [6].

A similar separation can also be achieved for dynamics of production process in pp collisions, which can
be isolated from QED/EW corrections. It was explored recently in the case of configurations with high-pT jets
associated with the Drell-Yan production of Z [7] or W bosons [8] at the LHC. The potentially large electroweak
Sudakov logarithmic corrections discussed in [9] represent yet another class of weak effects, separable from those
discussed above and throughout this paper, and they are not discussed here because they are mainly relevant for
dilepton masses beyond the range considered for the weak mixing angle measurement.

To assess precisely the size and impact of the so-called genuine weak corrections to the Born-like cross sec-
tion for lepton pair production with a virtuality well below the threshold for WW pair production, the precision
calculations and programs prepared for the LEP era: KKMC Monte Carlo [10] and Dizet electroweak (EW) library,
were adapted to provide pre-tabulated EW corrections which could be used by LHC-specific programs like the
TauSpinner package [11]. Currently, the KKMC Monte Carlo used is Dizet version 6.21 [12, 2]. Since the LEP
times, the version of the Dizet library has been updated eg. [13, 14]. For the sake of compatibility, results from
this version are shown as well, however the final numbers will be evaluated with the most recent versions of the
program, the Dizet version 6.45 [15].

1.2 The weak mixing angle and effective weak mixing angle
Drafting some text here only

There are multiple approaches and conventions used to define the effective weak mixing angle(s), as illustrated
e.g. in the Particle Data Group 2018 review [16]. This naming is therefore overloaded and may lead to confusion.

The fundamental quantity is the weak mixing angle, sin2
θW . In the on-shell convention and α(0) EW scheme,

as discussed in more detail in Appendix ??, the weak mixing angle is defined uniquely through the gauge-boson
masses at tree level:

sin2
θW = s2

W = 1− m2
W

m2
Z
. (1)

and this relation holds to all orders. If mW is a derived input parameter calculated using higher-order corrections,
the corresponding sin2

θW gets updated. For example, in the α(0) v0 scheme at EW LO, the value of sin2
θW =
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Table 1: The theory predictions for on-shell and effective leptonic weak angle. Number from Particle Data Group
2018 review [16].

Weak angle Notation Value Parametric uncertainty
On-shell weak angle s2

W 0.22343 ± 0.00007
Effective weak angle sin2

θ`e f f 0.23154 ± 0.00003

0.21215 (see Table 13). With EW NLO+HO corrections applied to calculate mW , the value of sin2
θW = 0.22352

(see Table 19).
In the same EW α(0) v0 scheme there is also a clear definition of the observable sin2

θ
f
e f f (MZ), which is

called the effective weak mixing angle at the Z-pole, which is related to the ratio of the effective axial and vector
couplings, g f

Z (here we use “f” for quark or lepton):

g f
Z =

v f
Z

a f
Z

= 1−4|q f |(K f
Z s2

W + I2
f ), (2)

with
I2

f = α
2(s)

35
18

[1− 8
3

Re(K f
Z )s

2
W ], (3)

and the flavour-dependent effective weak mixing angles as

sin2
θ

f
e f f = Re(K f

Z )s2
W + I2

f (4)

While the sin2
θW generic for all flavours, and energy-scale not dependent, the sin2

θ
f
e f f is not. It is speciffically

for a given flavour, and only at the Z-pole. In the name already is suggested as effective theory quantity, not
necessarily the Standard Model gauge theory one. In Table 1 we quote the most updated numbers from Particle
Data Group 2018 review [16].

Estimates for the total theoretical error from leading unknown higher order corrections on sin2
θ`e f f has been

recently updated in [17]. The leading missing orders are three- and four-loop corrections, O(α3), O(αα2
s ) and

O(αα3
s ). The final estimate is 4.3 ·10−5, compatible with number quoted by final LEP publications [1] of 5.0 ·10−5.

This is precision fully adequate for measurement at LHC.
While the measurement at LEP were done at different energies and then corrected with theoretical predictions

to the values at Z-pole, at LHC it will be done differently. The measurements will be done in different mass and
rapidity ranges, and then combined. At least it is present strategy. It is therefore of interest to extend the definition
of sin2

θ
f
e f f outside the Z-pole region. This could be done in straightforward way

g f
e f f (s, t) =

v f
e f f (s, t)

a f
e f f (s, t)

= 1−4|q f |(K f (s, t)s2
W + I2

f (s, t)) (5)

where s,t stand for Mandelstam variables. and correspondingly

sin2
θ

f
e f f (s, t) = Re(K f (s, t))s2

W + I2
f (s, t) (6)

The flavour dependent effective weak mixing angles, calculated using: Eq. (6), EW form-factors of Dizet
library, and α(0)v0 scheme, with on-shell s2

W = 0.22352 are shown on Fig. 1 as a function of the invariant mass of
outgoing lepton pair and for cosθ = 0.5. In Table 2 we display value of effective weak missing angles averaged
over specified mass windows.

Prepare in the sin2
θe f f schemes, similar figure and table. Ask Fulvio et al.
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Table 2: The effective weak mixing angles sin2
θ

f
e f f , for different mass windows and with/without box corrections.

The form-factor corrections are averaged with realistic line-shape and cosθ distribution.
Results from Dizet 6.21, should be updated to Dizet 6.45.

Parameter sin2
θ`e f f sin2

θ
up−quark
e f f sin2

θ
down−quark
e f f

EW loops without box corrections
80 < mee < 100 GeV 0.23171 0.23171 0.23146
78 < mee < 82 GeV 0.23179 0.23172 0.23159
89 < mee < 93 GeV 0.23170 0.23169 0.23147
108 < mee < 112 GeV 0.23168 0.23175 0.23137

EW loops with box corrections
80 < mee < 100 GeV 0.23171 0.23171 0.23146
78 < mee < 82 GeV 0.23136 0.23167 0.23158
89 < mee < 93 GeV 0.23168 0.23169 0.23147
108 < mee < 112 GeV 0.23246 0.23174 0.23130
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Figure 1: Effective weak mixing angles sin2
θ

f
e f f with EW corrections calculated using Dizet library and on-shell

s2
W = 0.22352 as a function of mee and cosθ = 0, without (left) and with (right) box corrections are shown.

Results from Dizet 6.21, should be updated to Dizet 6.45.
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1.3 Observables sensitive to the weak mixing angle at hadron colliders

1.4 Interpretation of early hadron collider measurements in terms of the effective weak
mixing angle

6



2 Virtual EW corrections
Authors: Elzbieta (Dizet), Fulvio (Powheg_ew), Serge/Lida (MCSANC), Doreen?(ZGRAD2)

Content:

• Loops and box corrections with different EW schemes.

• Treatment of α(MZ) with different EW schemes. Show numerical results.

• Treatment of sin2
θW with different schemes. Show numerical results.

• Genuine EW and line-shape corrections to dσ/dmll , AFB. Comparisons of Powheg_ew, MCSANC and PowhegZj+wtEW

• Improved Born Approximation vs Effective Born. Comparisons from PowhegZj+wtEW .

2.1 Introduction

2.2 Overview of calculations/tools and input schemes

2.3 Numerical results for virtual EW corrections
2.3.1 Loops and box corrections with different EW schemes

In this Section we show comparison between Dizet and MCSANC EW libraries. For details on the calculations see
respectively [12, 2] and [18, 19]. The input parameters, which could be set consistently in both programs, are
collected in Table ??.

The definition of the effective quark masses used in both initialisation and shown in Table ?? is such that they
are some fitted values which allows to reproduce in the one-loop order the quantity of ∆α

(5)
h (M2

Z).

Comments:
For Dizet 6.21 parametrisation of α not updated, used the one of published version. For measurements at LEP
used probably updates of [20]. The comparison between MCSANC and Dizet should be updated to Dizet 6.XX
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2.3.2 αQED with different EW schemes
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2.3.3 sin2
θW with different EW schemes
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Table 4: The EW parameters used for: (i) the EW LO α(0) v0 scheme, (ii) effective Born spin amplitude around
the Z-pole and (iii) effective Born with improved normalisation. In each case parameters are chosen that the SM
relation, formula (8), is obeyed. The Gµ = 1.1663887 ·10−5 GeV−2, MZ = 91.1876 GeV and K f ,Ke,K` f = 1.

EW LO Effective Born Effective Born
α(0) scheme LEP LEP with improved norm.
α = 1/137.3599 α = 1/128.8667 α = 1/128.8667
s2
W = 0.21215 s2

W = 0.23152 s2
W = 0.23152

ρ` f = 1.0 ρ` f = 1.0 ρ` f = 1.005

2.3.4 Improved Born Approximation and Effective Born

Comment: Content of this subsection was published in [21].

The Improved Born Approximation (IBA) is discussed in more details in Appendix B. In IBA, the complete
O(α) EW corrections, supplemented by selected higher order terms, are handled with form-factor corrections,
dependent on (s,t), multiplying couplings and propagators of the usual Born expressions.

At this point we would like to introduce two options for the Born spin amplitudes parametrisation, which we
will refer to as Effective Born, which work as very good approximations of the EW corrections near the Z-pole.
We denote them respectively as LEP and LEP with improved norm.. The Effective Born absorbs bulk of EW
corrections into redefinition of few fixed parameters (couplings) instead.

• The LEP parametrisation is using formula (26) for spin amplitude but with α(s) = α(MZ) = 1./128.8667,
s2
W = sin2

θ
e f f
W (MZ) = 0.23152 and all form factors equal to 1.0. The values are as measured at the Z-pole

and reported in [22].

• The LEP with improved norm. parametrisation is using formula (26) for spin amplitude, parameters are set
as for LEP parametrisation, and all form-factors equal 1, except ρ` f = 1.005. This again correspond to the
measured value ρ(MZ) = 1.005 also reported in [22].

Table 4 shows (i) effective Born (LEP) parametrisation and (ii) effective Born (LEP with improved norm.). In
each case parameters are chosen that the SM relation, formula (8), is obeyed.

In the following, we will systematically compare predictions of EW corrections and those calculated with LEP
or LEP with improved norm. approximations. As we will see later, effective Born with LEP with improved norm.
works well around Z-pole both for predicting the lineshape and forward-backward asymmetry.

2.3.5 The Z-boson lineshape

In the EW LO, the Z-boson lineshape, assuming that the constraint (38) holds, depends only on two parameters
(MZ ,Γz). The effect on the lineshape from EW loop corrections are due to corrections to the propagators: vacuum
polarisation corrections (running α) and ρ form-factor, causing change in relative contributions of the Z and γ,
and change of the Z-boson vector to axial coupling ratio (sin2

θe f f ). The above affect not only shape but also
normalisation of the cross-section.

In Fig. 2 (top-left) distributions of generated and EW corrected lineshape are shown. On the logarithmic scale
difference is barely visible. In the following plots of the same Figure we study it in more details. The ratios of the
lineshape distributions with gradually introduced EW corrections are shown. For reference ones (denominator) the
following: (i) EW LO α(0), (ii) effective Born (LEP) and (iii) effective Born (LEP with improved norm.) are used.
At the Z-pole, complete EW corrections are at about 0.1% for the one with effective Born (LEP with improved
norm.). It shows that using for events generation EW LO matrix element but with different parametrisations will
significantly reduce the size of missing EW corrections.
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Table 5: EW corrections to cross-sections in the specified mass windows. The EW weight is calculated with cosθ∗

definition for scattering angle.

Corrections to cross-section 89 < mee < 93 GeV 80 < mee < 100 GeV
σ(EW corr. to mW )/σ(EW LO α(0)) 0.97114 0.97162
σ(EW corr. to χ(Z),χ(γ))/σ(EW LO α(0)) 0.98246 0.98346
σ(EW/QCD FF no boxes)/σ(EW LO α(0)) 0.96469 0.96602
σ(EW/QCD FF with boxes)/σ(EW LO α(0)) 0.96473 0.96607
σ(LEP)/σ(EW/QCD FF with boxes) 1.01102 1.01093
σ(LEP with improved norm.)/σ(EW/QCD FF with boxes) 1.00100 1.00098

Table 6: The difference in forward-backward asymmetry, ∆AFB, in the specified mass windows. The difference
is calculated using cosθCS to define forward and backward hemisphere. The EW weight is calculated with cosθ∗

definition for scattering angle.
Numbers should be updated with Dizet 6.XX form factors.

Corrections to AFB 89 < mee < 93 GeV 80 < mee < 100 GeV
AFB(EW corr. mW ) - AFB(EW LO α(0)) -0.02097 -0.02103
AFB(EW corr. prop. χ(Z),χ(γ)) - AFB(EW LO α(0)) -0.02066 -0.02098
AFB(EW/QCD FF no boxes) - AFB(EW LO α(0)) -0.03535 -0.03569
AFB(EW/QCD FF with boxes) - AFB(EW LO α(0)) -0.03534 -0.03567
AFB(LEP) - AFB(EW/QCD FF with boxes) -0.00006 -0.00001
AFB(LEP with improved norm.) - AFB(EW/QCD FF with boxes) -0.00005 -0.00002

Table 5 details numerical values for EW corrections to the normalisation (ratios of the cross-section), integrated
in the range 80 < mee < 100 GeV and 89 < mee < 93 GeV. Results from calculating EW weight using cosθ∗

definition of the scattering angle are shown. Total EW correction to normalisation at EW LO Gµ is 1.010. Total
EW correction to normalisation at EW LO α(0) is about 0.965, while total corrections to the effective Born (LEP
with improved norm.) is of about 1.001.

2.3.6 The AFB distribution

The forward-backward asymmetry defined for pp collisions in a standard way reads

AFB =
σ(cosθ > 0)−σ(cosθ < 0)
σ(cosθ > 0)+σ(cosθ < 0)

, (7)

where cosθ is taken in the Collins-Soper frame.
The EW corrections change overall normalisation and the shape of AFB, particularly around the Z-pole. In

Fig. 3 (top-left), the AFB distribution as generated (EW LO) and EW corrected are shown. In the following plots
of this Figure, we study it in more details. The difference ∆AFB = AFB−Are f

FB with gradually introduced EW
corrections are shown. For reference the following ones: (i) EW LO α(0), (ii) effective Born (LEP) and (iii)
effective Born (LEP with improved norm.) are used.

Complete EW corrections to AFB integrated around Z-pole, are about ∆AFB = -0.00075 with respect to EW LO
Gµ predictions and about ∆AFB = -0.03534 with respect to EW LO with α(0) predictions. The total corrections
to AFB of effective Born (LEP with improved norm.) is ∆AFB = -0.00005. Using effective Born (LEP improved
norm.) configuration reproduces EW loop corrections predictions with precision better than ∆AFB = -0.0001 in the
full mass range shown, but the remaining box corrections are at ∆AFB = -0.002 around mee = 150 GeV.
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Figure 2: Top-left: lineshape distribution as generated with Powheg+MiNLO (blue triangles) and after reweighting
introducing all EW corrections discussed (red triangles). The points are barely distinguishable. Ratios of the
lineshapes with gradually introduced EW corrections. In consecutive plots as a reference (black dashed line):
(i) reweighted to EW LO α(0) scheme (top-right), (ii) reweighted to effective Born (LEP) (bottom-left) and (iii)
reweighted to effective Born (LEP with improved norm.) (bottom-right) was used.
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Figure 3: Top-left: the AFB distribution as generated in Powheg+MiNLO sample (blue triangles) and after reweight-
ing introducing all EW corrections (red triangles). The two choices are barely distinguishable.The differences
∆AFB = AFB−Are f

FB , due to gradually introduced EW corrections. In consecutive plots as a reference (black dashed
line): (i) reweighted to EW LO α(0) scheme (top-right), (ii) reweighted to effective Born (LEP) (bottom-left) and
(iii) reweighted to effective Born (LEP with improved norm.) (bottom-right) was used.
Plots should be updated with Dizet 6.XX form factors.
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Table 7: Shown availability for QCD corrections and EW schemes with different codes.

Program QCD EW EW scheme Comments
Powheg_ew LO LO α(0) v0 pole mass, fixed ΓZ

LO, NLO, NLO+HO α(0) v1
LO, NLO, NLO+HO Gµ
LO, NLO, NLO+HO sin2

θe f f v1
LO, NLO, NLO+HO sin2

θe f f v2
NLO NLO+HO Gµ pole mass, fixed ΓZ

MCSANC LO LO, NLO, NLO+HO α(0) v1 pole mass, fixed ΓZ
LO, NLO, NLO+HO Gµ

Dizet FF+wtEW MC event LO, NLO+HO α(0) v0 on-shell mass, running ΓZ
1

2.4 Benchmark results from Powheg_ew, MCSANC, PowhegZj+wtEW

In this section we collect results for Powheg_ew, MCSANC and PowhegZj+wtEW , for benchmark EW schemes defined
as in Table 13. Not all EW schemes where implemented in all programs. Table 7 specify the order of QCD and
EW corrections which were used for the comparisons presented in this Section.

Comparisons between different programs and EW calculations are performed for the ratios of differential
cross-sections and the differences of forward-backward asymmetries, between EW LO and NLO or NLO+HO
predictions, always calculated with the same program. Those ratios or differences are then compared between
different calculations. This approach to large extend minimises impact from not tuned QCD component of the
predictions: structure functions, QCD scale, matrix element order, etc. Also, as pointed in Table 7, two out of three
programs are using pole mass and fixed ΓZ , while the third one is using on-shell mass and running ΓZ .

The PowhegZj+wtEW which is using form-factors from Dizet library, also provides predictions for the (NLO+HO
- LO) corrections in other schemes. The wtEW , as exlained in Appendix E is used to are reweighted at EW
LO to different schemes. Then it is assumed that absolute predictions in different EW schemes should agree at
NLO+HO, which indeed is the case for Powheg_ew estimates, see Tables 26 and 27. With this assumptions, the
ratios NLO+HO/LO or differences NLO+HO - LO can be calculated with PowhegZj+wtEW , using predictions of
EW NLO+HO with α(0) v0 scheme and EW LO with either of three schemes.
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Figure 4: The EW LO predictions for radio of cross-sections and ∆AFB between different EW schemes: α(0) v0
and Gµ. Shown results with PowhegZj + wtEW and MCSANC.
Make better quality plot

2.4.1 Benchmarks at EW LO

Comparison of the cross-sections ratios for different EW schemes, predicted by Powheg_ew and PowhegZj+wtEW

are shown in Table 8. Similar comparison for forward-backward asymmetry is shown in Table 9. The ratio of line-
shapes and difference for forward-backward asymmetry are shown in Fig. 4. comparison between MCSANC and
PowhegZj+wtEW . Similar agreement was obtained when comparing with Powheg_ew. They confirm very good
tuning at EW LO and also that comparisons between programs with different implementation of QCD components
can be done quite precisely, ones comparing ratios or differences of ratios. For Powheg_ew shown are also absolute
predictions, while for PowhegZj+wtEW are not2. Note for example that as at EW LO, schemes α(0) v1 and Gµ
were tuned to share the same value of s2

W , the difference AFB(Gµ) - AFB(α(0) v1) is equal to zero,

2The reason is that PowhegZj events were generated with somewhat arbitrary setting for QCD and EW parts (e.g. sin2θW =0.23113, fixed
ΓZ in the propagator, on-shell Z mass), so obtained results should not be quoted as the reference ones. They are however reweighted to EW
α(0) v0 scheme before any benchmarks are evaluated.
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Table 8: Cross-sections and cross-section ratios estimated at EW LO with Powheg_ew and PowhegZj+wtEW , for
three mass windows.

mee = 89 - 93 GeV mee = 80 - 100 GeV mee = 70 - 120 GeV
Cross-section [pb]
Powheg_ew
α(0) v0 630.848722 906.156051 959.658977
α(0) v1 571.411296 821.363274 870.729908
Gµ 612.514433 880.446121 933.363827
Cross-section ratios
α(0) v1/ α(0) v0
Powheg_ew 0.905782 0.906426 0.907333
PowhegZj+wtEW 0.905596 0.906462 0.907347
Gµ / α(0) v0
Powheg_ew 0.970937 0.971627 0.972600
PowhegZj+wtEW 0.972622 0.973550 0.974501
Gµ / α(0) v1
Powheg_ew 1.071933 1.071933 1.071933
PowhegZj+wtEW 1.074010 1.074010 1.074010

Table 9: Cross-sections difference in forward and backward hemispheres and forward-backward asymmetry as
estimated at EW LO with Powheg_ew and PowhegZj+wtEW , for three mass windows. The pole definition is used
for input parameters as in Table 14.

mee = 89 - 93 GeV mee = 80 - 100 GeV mee = 70 - 120 GeV
Forward-backward asymmetry AFB

Powheg_ew
α(0) v0 0.06691361 0.06392369 0.06253754
α(0) v1 0.04653886 0.04343789 0.04212883
Gµ 0.04653886 0.04343789 0.04212883
∆AFB

α(0) v1 - α(0) v0
Powheg_ew 0.020375 0.020486 0.020487
PowhegZj+wtEW 0.019800 0.020040 0.019978
Gµ - α(0) v0
Powheg_ew 0.020375 0.020486 0.020487
PowhegZj+wtEW 0.019800 0.020040 0.019978
Gµ - α(0) v1
Powheg_ew 0.0 0.0 0.0
PowhegZj+wtEW 0.0 0.0 0.0
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2.4.2 Benchmarks at EW NLO, NLO+HO

The following tables and figures contain comparisons between ratio of cross-sections or differences of forward-
backward asymmetries between different EW schemes or same EW scheme but different level of corrections.

Tables:

• Table 10: Cross-sections ratios estimated with Powheg_ew and PowhegZj+wtEW , different EW schemes,
comparison at EW LO and NLO+HO.

• Table 11: Forward-backward asymmetry differences as estimated by PowhegZj+wtEW and Powheg_ew, dif-
ferent EW schemes, comparison at EW LO and NLO+HO.

Figures:

• Figure 5: The lineshape predictions with Powheg_ew and MCSANC. Comparison of ratios EW NLO/LO and
NLO+HO/LO.

• Figure 6: The lineshape predictions with Powheg_ew, MCSANC and PowhegZj+wtEW . Comparison of EW
NLO+HO/LO, different EW schemes.

• Figure 7: The ∆AFB predictions with Powheg_ew and MCSANC. Comparison at EW LO, NLO, NLO+HO,
different EW schemes.

• Figure 8: The ∆AFB predictions with Powheg_ew and MCSANC and PowhegZj+wtEW . Comparisons of EW
LO, NLO, NLO+HO, different EW schemes.

Observations:

• Tables 10 and 11 shows very good agreement between Powheg_ew and PowhegZj+wtEW predictions for
cross-section NLO+HO/LO and AFB NLO+HO -HO corrections in α(0) v1 and Gµ schemes.

• Figure 5:
Top plots: Very good agreement between MCSANC and Powheg_ew for σNLO/σLO. Both EW schemes: α(0)
v1 and Gµ.
Bottom plots: Apparent shift in σNLO+HO/∆σLO for α(0) v1 scheme. Almost OK for Gµ scheme.

• Figure 6:
Top plots: same observation as above about disagreement on HO corrections between MCSANC and Powheg_ew
for α(0) v1 scheme.
Bottom plot: PowhegZj+wtEW and Powheg_ew in good agreement for NLO+HO at Z-pole, but discrepant at
the level on 0.005 in relative corrections below and above Z peak.

• Figure 7:
Top plots: Very good agreement between MCSANC and Powheg_ew for ∆AFB(NLO−LO). Both EW schemes:
α(0) v1 and Gµ.
Bottom plots: Apparent shift in ∆AFB(NLO+HO−LO) for α(0) v1 scheme. Almost OK for Gµ scheme.

• Figure 8:
Top plots: same observation as above about disagreement on HO corrections between MCSANC and Powheg_ew
for α(0) v1 scheme.
Bottom plot: PowhegZj+wtEW and Powheg_ew in good agreement for NLO+HO at Z-pole and below, but
discrepant at the level up to 0.005 in absolute corrections above Z peak.

2.5 Theoretical uncertainties and conclusions
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Table 10: Cross-sections ratios estimated with Powheg_ew and PowhegZj+wtEW for three mass windows.

EW order mee = 89 - 93 GeV mee = 80 - 100 GeV mee = 70 - 120 GeV
Powheg_ew NLO+HO/LO
α(0) v1 1.06325 1.06374 1.06435
Gµ 0.99104 0.99229 0.99284
MCSANC NLO+HO/LO
α(0) v1 1.051194 1.066182 1.066778
Gµ 0.992299 0.992740 0.993295
PowhegZj+wtEW NLO+HO/LO
α(0) v0 0.96452 0.96611 0.96757
α(0) v1 1.06506 1.06580 1.06640
Gµ 0.99167 0.99223 0.99289

Table 11: Forward-backward asymmetry differences as estimated by PowhegZj+wtEW and Powheg_ew, for three
mass windows.

∆AFB EW order mee = 89 - 93 GeV mee = 80 - 100 GeV mee = 70 - 120 GeV
Powheg_ew NLO+HO - LO
α(0) v1 -0.015706 -0.015733 -0.015632
Gµ -0.015636 -0.015660 -0.015560
MCSANC NLO+HO - LO
α(0) v1 -0.001444 -0.001444 -0.001436
Gµ -0.001523 -0.001525 -0.001516
PowhegZj+wtEW NLO+HO - LO
α(0) v1 -0.015838 -0.015792 -0.015688
Gµ) -0.015838 -0.015792 -0.015688
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Figure 5: The lineshape predictions with Powheg_ew, MCSANC. Comparison of EW NLO/LO and NLO+HO/NLO.
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Figure 6: The lineshape predictions with Powheg_ew, MCSANC and PowhegZj+wtEW . Comparisons of EW
NLO+HO/LO, different EW schemes.
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Figure 7: The ∆AFB predictions with Powheg_ew and MCSANC. Comparisons of EW LO, NLO, NLO+HO, different
EW schemes.
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Figure 8: The ∆AFB predictions with Powheg_ew, MCSANC and PowhegZj+wtEW . Comparisons of EW LO,
NLO+HO, different EW schemes.
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3 QED emissions
Authors: Alessandro (HORACE), Fulvio (Powheg_ew), Serge/Lida (MCSANC), Scott (KKMC-hh), Doreen?(ZGRAD2)

Content:

• Separation of contributions from ISR and IFI.

• Photon-induced processes and use of LUXQED PDFs

• Short description of calculations and tools used and of their configuration

• Numerical results and comparisons

• Theoretical uncertainties and conclusions

3.1 Introduction

3.2 Overview of calculations and tools

3.3 Numerical results for QED ISR and IFI

3.4 Photon-induced processes

3.5 Theoretical uncertainties and conclusions
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4 A possible strategy for run-2 measurements and combinations at the
LHC
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A EW schemes
There are several ingredients that goes into definition of EW schemes

• Choice of the input parameters

• Renormalisation scheme

• Treatment of other corrections: treatment of self-energy corrections in the propagator (running or fixed
width), on-mass-shell or pole mass in the propagator.

• Something more?

Formally, at the lowest EW order, only three parameters can be set, others are calculated using Standard Model
constraints, following structure of SU(2)×U(1) group. One of such constraint is given in formula (38). The
most common choices at hadron colliders, following report [23], are Gµ scheme (Gµ,MZ ,MW ) and α(0) scheme
(α(0),MZ ,MW ). There exists by now family of different modifications of Gµ scheme, see discussion in [23], and
they are considered as preferred schemes for hadron collider physics.

The Monte Carlo generators usually allow user to define set of input parameters (α,MZ ,MW ), (α,MZ ,Gµ) or
(α,MZ ,s2

W ). However within this flexibility, formally multiplicative factor in the Z-boson propagator χZ(s), see
formula (20), is always kept to be equal to 1. The

Gµ ·M2
z ·16 · c2

W · s2
W√

2 ·8π ·α
= 1; (8)

where s2
W = 1−m2

W/m2
Z and c2

W = 1− s2
W . This term is quite often absent in the programs code. Whichever the

choice of parameters set is used as primary ones, the others are adjusted to match the constraint (8), regardless if
they fall outside their measurement uncertainties or not.

Let us recall, that the calculations of EW corrections available in Dizet library work with somewhat different
convention of the α(0) scheme, defined by the set of input parameters (α(0),Gµ,MZ), then MW is calculated
iterating formula (35), which formally brings it beyond EW LO scheme. The value of s2

W is calculated from (39)
and the EW LO relation (38) does not hold anymore.

For the comparisons performed here we consider following schemes:

A.1 EW scheme: α(0),Gµ,MZ

This choice will be denoted as α(0) v0 scheme.
Here are formulas to recalculate remaining EW parameters:

d2 =

√
2 ·8π ·α

Gµ ·M2
z

(9)

s2
W = (−1+

√
1−d2/4)/2 (10)

m2
W = (1− s2

W ) ·M2
Z (11)

A.2 EW scheme: α(0),MW ,MZ

This choice will be denoted as α(0) v1 scheme.
Here are formulas to recalculate remaining EW parameters:

s2
W = 1−M2

W/M2
Z

g2 = 4 ·π ·α/s2
W (12)

Gµ =
√

2 ·g2/8/M2
W

28



A.3 EW scheme: Gµ,MZ,MW

This choice will be denoted as Gµ scheme.
A convenient set of parameters that describes EW processes at hadron colliders is (Gµ,MW ,MZ), the so called

Gµ scheme. The Fermi constant Gµ measured in muon decay naturally parametrize the CC interaction, while the
W and Z masses fix the scale of EW phenomena and the mixing with hyper-charge field. A drawback of this choice
is the fact that the coupling of real photons to charge particles is computed from the inputs and in lowest order is
equal to

α = Gµ
√

2M2
W (1−M2

W/M2
Z)/π∼ 1/132 (13)

much larger that the fine structure constant α(0) = 1/137, which is a natural value for an on-shell photons.
This drawback can be circumvented by a use of modified Gµ scheme when only LO couplings are re-expressed

in terms of α

αQED = α(0)→ α(1−∆r) (14)

and the Sirlin’s parameter ∆r [24], representing the complete NLO EW radiative corrections of O(α) to the muon
decay amplitude. Both real and virtual relative corrections are calculated at the scale O(α), therefore such an
approach may be referred as NLO at O(αG2

µ). In this scheme leading universal corrections due to the running of α

and connected to the ρ parameter are absorbed in the LO couplings.
Further modifications maybe considered. For the NC DY the gauge invariant separation of complete EW ra-

diative corrections into pure weak and QED corrections (involving virtual and real photons) is possible. Therefore,
these two contributions may be considered at different scales, pure weak at O(G3

µ), and QED still at O(αG2
µ).

More refined modifications may be considered, for instance based on defining gauge invariant subsets by using the
Yennie-Frautschi-Suura approach [25].

Here are formulas to calculate remaining EW parameters:

s2
W = 1−M2

W/M2
Z

g2 = 8 ·Gµ ·M2
W/
√

2 (15)

α = g2 · s2
W/4/π

A.4 EW scheme: α(0),s2
W ,MZ

This choice will be denoted as sin2
e f f v1 scheme.

Text to be written, based on recent publication [26]

A.5 EW scheme: Gµ,s2
W ,MZ

This choice will be denoted as sin2
e f f v2 scheme.

Text to be written, based on recent publication [26]

A.6 Benchmark initialisation
Benchmark initialisation of the different EW schemes are chosen such that they share value of one or more input
parameters which facilitate comparison of the cross-sections or asymmetries at the EW LO. The α(0) v0 and v1
share same value of α, the α(0) v1 and Gµ schemes same value of MW (and therefore s2

W ). In all three cases the MZ
and ΓZ are the same. Common is also choice for the fermion masses, quarks and leptons and for the Higgs boson
mass, as shown in Table 12.

29



Table 12: Values of fermions and Higgs boson massed used for calculating EW corrections.

Parameter Mass (GeV) Description

me 5.1099907e-4 mass of electron
mµ 0.1056583 mass of muon
mτ 1.7770500 mass of tau
mu 0.0620000 mass of up-quark
md 0.0830000 mass of down-quark
mc 1.5000000 mass of charm-quark
ms 0.2150000 mass of strange-quark
mb 4.7000000 mass of bottom-quark
mt 173.0 mass of top quark
mH 125.0 mass of Higgs boson
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B Improved Born Approximation
Comment: Content of this section is taken from [21].

At LEP times, to match higher order QED effects with the loop corrections of electroweak sector, concept of
electroweak form factors was introduced [5]. This arrangement was very beneficial and enabled common treatment
of one loop electroweak effects with not only higher order QED corrections including bremsstrahlung, but also to
incorporate higher order loops into Z and photon propagators, see eg. documentation of KKMC Monte Carlo [4] or
Dizet [2]. Such description has its limitations for the LHC applications, but for the processes of the Drell-Yan
type with a moderate virtuality of produced lepton pairs is expected to be useful, even in case when high pT jets are
present. For the LEP applications [1], the EW form factors were used together with multiphoton bremsstrahlung
amplitudes. For the purpose of this Section we discuss use for parton level Born processes only, no QED ISR/FSR.

The approximation which is discussed here is called Improved Born Approximation (IBA) [2]. It absorbs some
or all of higher order EW corrections by redefinition of couplings and propagators in the Born spin amplitude, and
allows to calculate doubly deconvoluted observables, like various cross-sections and asymmetries.

The initial/final QCD and QED corrections, form separately gauge invariant subsets of diagrams [2]. The QED
subset consists of QED-vertices, γγ and γZ boxes, bremsstrahlung diagrams. Fermionic self-energies have to be
also taken into account. Corresponding subset can be constructed also for the initial/final QCD corrections. All the
remaining corrections contribute to the IBA: purely EW loop and boxes and internal QCD corrections (lineshape
corrections). They can be split into two more gauge-invariant subsets, giving rise to two improved (or dressed)
amplitudes: (i) improved γ exchange amplitude with running QED coupling where only fermion loops contribute
and (ii) improved Z-boson exchange amplitude with four, in general complex, EW form factors: ρ` f , K`, K f , K` f .
Components of those corrections are as following:

• Corrections to photon propagator, where only fermion loops contribute, so called vacuum-polarisation cor-
rections.

• Corrections to Z-boson propagator and couplings, called EW form-factors.

• Contribution from the purely weak boxes, the WW and ZZ diagrams. They are negligible at the Z-peak
(suppressed by the factor (s−M2

Z)/s), but very important at higher energies. They enter as corrections to
form-factors and introduce dependence on cosθ of scattering angle.

• Mixed O(ααs) corrections which originate from gluon insertions to the fermionic components of bosonic
self-energies. They also enter as corrections to all form-factors.

Below, to define notation we present formula of the Born spin amplitude A Born. We recall here conventions
from [2]. Let us start with defining the lowest order coupling constants (without EW corrections) of the Z boson
to fermions: s2

W = 1−m2
W/m2

Z defines weak angle sinθ2
W in the on-shell scheme and T `, f

3 third component of the
isospin. The vector v`,v f and axial a`,a f couplings for leptons and quarks are defined with the formulae below3

v` = (2 ·T `
3 −4 ·q` · s2

W )/∆,

v f = (2 ·T f
3 −4 ·q f · s2

W )/∆, (16)

a` = (2 ·T `
3 )/∆,

a f = (2 ·T f
3 )/∆.

where
∆ =

√
16 · s2

W · (1− s2
W ). (17)

With this notation, spin amplitude for the qq̄→ Z/γ∗→ `+`−, denoted as A Born, can be written as:

A Born =
α

s
{ [ūγ

µvgµνv̄γ
νu] · (q` ·q f ) ·χγ(s)+ [ūγ

µvgµνν̄γ
νu · (v` · v f ) (18)

+ūγ
µvgµνν̄γ

ν
γ

5u · (v` ·a f )+ ūγ
µ
γ

5vgµνν̄γ
νu · (a` · v f )+ ūγ

µ
γ

5vgµνν̄γ
ν
γ

5u · (a` ·a f )] ·χZ(s) },
3We will use “`” for lepton, and “f” for quarks.

32



where u,v denote fermion spinors, Z-boson and photon propagators are defined respectively as:

χγ(s) = 1, (19)

χZ(s) =
Gµ ·M2

z ·∆2
√

2 ·8π ·α
· s

s−M2
Z + i ·ΓZ · s/MZ

. (20)

Then, we redefine vector and axial couplings introducing EW form-factor corrections ρ` f ,K`(s, t), K f (s, t),K` f
as the following:

v` = (2 ·T `
3 −4 ·q` · s2

W ·K`(s, t))/∆,

v f = (2 ·T f
3 −4 ·q f · s2

W ·K f (s, t))/∆, (21)

a` = (2 ·T `
3 )/∆,

a f = (2 ·T f
3 )/∆.

Normalisation correction ZVΠ
to Z-boson propagator is defined as

ZVΠ
= ρ` f (s, t) . (22)

Vacuum polarisation corrections ΓVΠ
to γ propagator are expressed as

ΓVΠ
=

1
2− (1+Πγγ(s))

, (23)

where Πγγ(s) denotes vacuum polarisation corrections to photon propagator. Both ΓVΠ
and ZVΠ

are multiplicative
correction factors. The ρ` f (s, t) can be also absorbed as multiplicative factor into definition of vector and axial
couplings.

The EW form-factors ρ` f ,K`(s, t), K f (s, t),K` f are functions of two Mandelstam invariants (s, t) due to the
WW and ZZ box contributions. The Mandelstam variables are defined such that they satisfy the identity

s+ t +u = 0 where t =− s
2
(1− cosθ) (24)

and cosθ is the cosinus of the scattering angle, i.e. angle between incoming and outgoing fermion directions.
Note, that in this approach the mixed EW and QCD loop corrections, originating from gluon insertions to

fermionic components of bosonic self-energies, are included in ΓVΠ
,ZVΠ

factors.
One has to take also into account the angle dependent double-vector coupling corrections which break factori-

sation of the couplings shown in (18), into ones associated with either Z boson production or decay. This requires
introducing mixed term:

vv` f =
1

v` · v f
[(2 ·T `

3 )(2 ·T
f

3 )−4 ·q` · s2
W ·K f (s, t)(2 ·T `

3 )−4 ·q f · s2
W ·K`(s, t)(2 ·T f

3 ) (25)

+(4 ·q` · s2
W )(4 ·q f · s2

W )K` f (s, t)]
1

∆2 .

Finally, we can write the spin amplitude for Born with EW corrections, A Born+EW , as:

A Born+EW =
α

s
{[ūγ

µvgµνv̄γ
νu] · (q` ·q f )] ·ΓVΠ

·χγ(s)+ [ūγ
µvgµνν̄γ

νu · (v` · v f · vv` f ) (26)

+ūγ
µvgµνν̄γ

ν
γ

5u · (v` ·a f )+ ūγ
µ
γ

5vgµνν̄γ
νu · (a` · v f )+ ūγ

µ
γ

5vgµνν̄γ
ν
γ

5u · (a` ·a f )] ·ZVΠ
·χZ(s)}.

The EW form factor corrections: ρ` f ,K`,K f ,K` f can be calculated using Dizet library. This library is also
used to calculate vacuum polarisation corrections to photon propagator Πγγ. For the case of pp collisions we do
not introduce QCD corrections to vector and axial coupling in initial fermion vertex, as they will be included later
as a part of the QCD NLO calculations of the initial state convolution with proton structure functions.

The Improved Born Approximation uses spin amplitude A Born+EW of Eq. (26) and 2→ 2 body kinematics to
define differential cross-section with EW corrections for qq̄→ Z/γ∗→ ll process. Presented above formulae very
closely follow the approach taken for implementation4 of EW corrections to KKMC Monte Carlo [4].

4Compatibility with this program is also part of the motivation, why we leave updates for the Dizet library to the forthcoming work. Dizet
6.21 is also well documented.
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For completeness let us note that above discussion was presented for scattering process, however one may
be interested in the decay process only. For this, effective couplings of Z-decay are often introduced; there are
complex-valued constants as well.

The ratio of effective vector and axial couplings defines g f
Z (here we use “f” for quark or lepton)

g f
Z =

v f
Z

a f
Z

= 1−4|q f |(K f
Z s2

W + I2
f ) (27)

with
I2

f = α
2(s)

35
18

[1− 8
3

Re(K f
Z )s

2
W ]. (28)

and the flavour dependent effective weak mixing angles as

sin2
θ

f
e f f = Re(K f

Z )s2
W + I2

f (29)
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C The s dependent Z-boson width
Comments:
This material is a placeholder for more advanced studies, for now it is just quantifying a problem.

• Using MZ , ΓZ values as measured at LEP with fixed width propagator χZ(s) leads to an effect on the level of
5 ·10−4 on A f b integrated in the mass range 80−100 GeV, with respect to nominal predictions of propagator
with running width. See Fig. 10 and Table 17.

• The “pole mass” convention is introducing shifted masses, see Table 14, which are then used with fixed width
propagator. However it is just mathematical transformation as detailed in Eq.(??). This to be equivalent “to
on-shell” convention, should also take into account normalisation factor NZ which usually is not done.

• The question is however, how in the “pole mass” convention, resummation of the fermionic loop corrections
to the propagator, which are otherwise modeled by running width in the propagator are accounted for.

• More material available from slides by F. Piccinini
https://indico.cern.ch/event/829225/contributions/3481094/attachments/1871705/3080271/piccinini.pdf

In formula (20) for the definition of Z propagator running width is used:

χ
′
Z(s) =

1
s−M2

Z + i ·ΓZ · s/MZ
(30)

is often in use.
The form-factors are calculated for the nominal value of MZ . The so-called s-dependent width is equivalent to

further (still partial) resummation of loop corrections, the boson self-energy which is s dependent. This formula
was used in many analyses of LEP era.

In many Monte Carlos of LHC era, the definition of Z propagator constant width is used:

χZ(s) =
1

s−M2
Z + i ·ΓZ ·MZ

. (31)

One can ask the simple question, how analytic forms of (??) and (31) translate to each other. Let us start from
(??)

χ
′
Z(s) =

1
s(1+ i ·ΓZ/MZ)−M2

Z

=
(1− i ·ΓZ/MZ)

s(1+Γ2
Z/M2

Z)−M2
Z(1− i ·ΓZ/MZ)

=
(1− i ·ΓZ/MZ)

(1+Γ2
Z/M2

Z)

1

s− M2
Z

1+Γ2
Z/M2

Z
+ i · ΓZMZ

1+Γ2
Z/M2

Z

= NZ
1

s−M′
Z

2
+ iΓ′ZM′

Z

M
′
Z =

MZ√
1+Γ2

Z/M2
Z

Γ
′
Z =

ΓZ√
1+Γ2

Z/M2
Z

NZ =
(1− i ·ΓZ/MZ)

(1+Γ2
Z/M2

Z)
=

(1− i ·Γ′Z/M
′
Z)

(1+Γ
′
Z

2
/M′

Z
2
)

(32)

The s-dependent width in Z propagator translates into shift in Z propagator mass and width and introduction
of the overall complex factor with respect to constant width definition. This last point is possibly least trivial as it
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Figure 9: The line shape distribution after changing fixed to running ΓZ in the Z-boson propagator χ(Z). I.e. using
either Eq.(30) or Eq.(??) for the propagator, without redefining MZ or other parameters.

effectively mean redefinition of Z coupling. That is why it can not be understood as parameter re-scaling. It points
to present in higher order relations between vacuum polarization and vertex. Most of the changes are due to the term
Γ2

Z/M2
Z except of the overall phase which result from 1− i ·ΓZ/MZ factor and which change the γZ interference.

The shift in MZ is by about 34 MeV downwards, and the shift in ΓZ by 1 MeV, due the reparametrisation of the
Z-boson propagator.

In Figure 9 shown is effect of changing from fixed ΓZ to running ΓZ scheme without shift in the MZ value. The
relative S-shape corrections are due to shift in the peak position of the line-shape and are on the level of ±1%. In
Figure 10 shown is effect on forward-backward asymmetry AFB. In Table ?? shown are total, forward and backward
cross-sections in a mass window, normalised to total generated sample, and forward-backward asymmetry. Results
are shown for wtEW applied to generated sample to reweight to different EW LO schemes, using Z-boson propaga-
tor χ(Z) with fixed or running width. The last column shows difference ∆AFB = AFB( f ixedΓZ)−AFB(runningΓZ).
Table 17 shows results for predictions including EW NLO+HO form-factors corrections calculated with Dizet li-
brary.
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Figure 10: The difference in forward-backward asymmetry after changing fixed to running ΓZ in the Z-boson
propagator χ(Z). I.e. using either Eq.(30) or Eq.(??) for the propagator, without redefining MZ or other parameters.
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Table 15: The cross-sections and AFB evaluated with fixed or running Z width in propagator χ(Z). Cross-section
in mass window is given in fractions of total generated cross-section with PowhegZj. Predictions for EW LO α(0)
v0 scheme with s2

W =0.2121517.

ΓZ in χ(Z) mll (GeV) σ σF σB ∆σFB AFB ∆AFB

fixed 90.9876 - 91.3876 0.25193 0.13396 0.11797 0.01599 0.06346
running 0.25356 0.13482 0.11874 0.01608 0.06343 0.00003
fixed 90.8876 - 91.4876 0.25193 0.13396 0.11797 0.01599 0.06346
running 0.25356 0.13482 0.11874 0.01608 0.06343 0.00003
fixed 90.6876 - 91.6876 0.36371 0.19390 0.16981 0.02409 0.06623
running 0.36317 0.19360 0.16957 0.02403 0.06616 0.00008
fixed 80 - 100 0.99486 0.52925 0.46561 0.06365 0.06398
running 0.99507 0.52915 0.46592 0.06323 0.06354 0.00044

Table 16: The cross-sections and AFB evaluated with fixed or running Z width in propagator χ(Z). Cross-section
in mass window is given in fractions of total generated events. Predictions for EW LO α(0) v1 scheme with s2

W
=0.222838.

ΓZ in χ(Z) mll (GeV) σ σF σB ∆σFB AFB ∆AFB

fixed 90.9876 - 91.3876 0.22822 0.11906 0.10916 0.00991 0.04341
running 0.22970 0.11983 0.10987 0.00996 0.04336 0.00005
fixed 90.8876 - 91.4876 0.22822 0.11906 0.10916 0.00991 0.04341
running 0.22970 0.11983 0.10987 0.00996 0.04336 0.00005
fixed 90.6876 - 91.6876 0.32942 0.17235 0.15707 0.01528 0.04640
running 0.32893 0.17208 0.15685 0.01523 0.04631 0.00009
fixed 80 - 100 0.90181 0.47077 0.43104 0.03974 0.04406
running 0.90202 0.47067 0.43135 0.03932 0.04359 0.00047

Table 17: The cross-sections and AFB evaluated with fixed or running Z width in propagator χ(Z). Cross-section
in mass window is given in fractions of total generated events. Predictions for α(0) v0 scheme corrected with EW
NLO+HO form-factors calculated with Dizet library.

ΓZ in χ(Z) mll (GeV) σ σF σB ∆σFB AFB ∆AFB

fixed 90.9876 - 91.3876 0.24313 0.12492 0.11821 0.00672 0.02764
running 0.24470 0.12574 0.11897 0.00677 0.02768 0.00004
fixed 90.8876 - 91.4876 0.24313 0.12492 0.11821 0.00672 0.02764
running 0.24470 0.12574 0.11897 0.00677 0.02768 0.00004
fixed 90.6876 - 91.6876 0.35087 0.18082 0.17005 0.01077 0.03070
running 0.35035 0.18056 0.16979 0.01077 0.03073 0.00003
fixed 80 - 100 0.96108 0.49418 0.46690 0.02727 0.02838
running 0.96133 0.49413 0.46720 0.02694 0.02802 0.00036
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D Genuine weak and line-shape corrections from Dizet 6.XX library
Proposed content:

• Short introduction to Dizet package. Description of Improved Born Approximation and introduction of
form-factors here if not done in main Sections.

• Evolution since version 6.21.

• Theoretical predictions with emphasize on latest updates. Detailed tables + illustrative plots of form-factors.

• Theoretical and parametric uncertainties.

D.1 Input parameters and initialisation flags
The Dizet package relies on the so called on-mass-shell (OMS) normalisation scheme [27, 28] but modifications
are present. The OMS uses the masses of all fundamental particles, both fermions and bosons, electromagnetic
coupling constant α(0) and strong coupling αs(MZ). The dependence on the ill-defined masses of the light quarks
u, d,c, s and b is solved by dispersion relation, for details see [2]. Another exception is W -boson mass MW , which
still can be predicted with better theoretical error than experimentally measured values, exploiting the very precise
knowledge of the Fermi constant in µ-decay Gµ. For this reasons, MW is usually replaced by Gµ.

The knowledge about the hadronic vacuum polarisation is contained in the quantity denoted as ∆α
(5)
h (MZ),

which is treated as one of the input parameters. It can be either computed from quark masses or, preferably, fitted
to experimental low energy e+e−→ hadrons data.

The two important constants used are therefore: α(0) - electromagnetic coupling α in Thomson limit and Gµ-
Fermi constant in µ-decay. The following parameters are also passed to main Dizet subroutine:

MW , MZ , mt , ∆α
(5)
h (MZ), αs(MZ). (33)

Note that the above list is over-complete, only two out of three parameters

Gµ, MW , MZ (34)

are independent. They can be selected with appropriate flags setting. The only meaningful choice implemented in
Dizet library, for calculating EW corrections at the Z-resonance, is to use Gµ and MZ as input parameters, then
calculate MW .

The MW is calculated iteratively from the following equation

MW =
MZ√

2

√√√√1+

√
1−

4A2
0

M2
Z(1−∆r)

, (35)

where

A0 =

√
πα(0)√

2Gµ
. (36)

The Sirlin’s parameter ∆r [29]
∆r = ∆α(MZ)+∆rEW (37)

is also calculated iteratively, and the definition of ∆rEW involves re-summation and higher order corrections. Since
this term implicitly depends on MW and MZ iterative procedure is needed. The resummation term in formula (37)
is not formally justified by renormalisation group arguments, correct generalization is to compute higher order
corrections, see more discussion in [2].

Note that once the MW is recalculated with formula (35), the Standard Model relationship between the weak
and electromagnetic couplings

Gµ =
πα√

2M2
W sin2

θW
(38)
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Table 18: The Dizet initialisation flags: defaults in different versions.

Input NPAR() Internal flag Dizet 6.21 Dizet v6.42 Dizet v6.45 Comments
Defaults in [12] Defaults in [3]

NPAR(1) IHVP 1 1 5 ∆α
(5)
had param. from [30] in v6.45

NPAR(2) IAMT4 4 4 8 New devellopment in v6.45
NPAR(3) IQCD 3 3 3
NPAR(4) IMOMS 1 1 1
NPAR(5) IMASS 0 0 0
NPAR(6) ISCRE 0 0 0
NPAR(7) IALEM 3 3 3
NPAR(8) IMASK 0 0 0 Not used since v6.21
NPAR(9) ISCAL 0 0 0
NPAR(10) IBARB 2 2 2
NPAR(11) IFTJR 1 1 1
NPAR(12) IFACR 0 0 0
NPAR(13) IFACT 0 0 0
NPAR(14) IHIGS 0 0 0
NPAR(15) IAMFT 1 3 3
NPAR(16) IEWLC 1 1 1
NPAR(17) ICZAK 1 1 1
NPAR(18) IHIG2 1 1 1
NPAR(19) IALE2 3 3 3
NPAR(20) IGREF 2 2 2
NPAR(21) IDDZZ 1 1 1
NPAR(22) IAMW2 0 0 0
NPAR(23) ISFSR 1 1 1
NPAR(24) IDMWW 0 0 0
NPAR(25) IDSWW 0 0 0

is not fulfilled anymore, unless the Gµ is redefined and not taken at the measured value. This is an approach of some
EW LO schemes, but not the one used by Dizet and it requires keeping complete expression for χZ(s) propagator
in formula for spin amplitude (26), as defined by formula (20).

In the OMS renormalisation scheme the weak mixing angle is defined uniquely through the gauge-boson
masses:

sin2
θW = s2

W = 1− M2
W

M2
Z
. (39)

With this scheme, measuring sin2
θW will be equivalent to indirect measurement of M2

W through the relation (39).
Let us return to Dizet scheme. After MW is computed, the list of input parameters of main subroutine is fully

specified.
In Table 12 and 13 collected are numerical values for all parameters used in the number presented below (folow

collumn with EW scheme α(0) v0 in Table 13).
Default configurations of the initialisation flags, corresponding to each major version of Dizet library, are col-

lected in Table 18. Evolution of flags IAMT4 and IAMFT corresponds to improved calculations for fermionic loop
corections became gradually available. Evolution of IHVP corresponds to including much improved parametrisa-
tion of the ∆α

(5)
had corrections.
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Table 19: The Dizet v6.45 recalculated parameters: masses, couplings, etc.., with initialisation as in Tables 18,
12 and 13.

Parameter Value Description

αQED(M2
Z) 0.0077549256 calculated using ∆α

(5)
h (m2

Z) from [30]
1/αQED(M2

Z) 128.950302056
MW (GeV) 80.3589356 W mass
ZPAR(1) = δr 0.03640338 the loop corrections to Gµ
ZPAR(2) = δrrem 0.01167960 the remainder contribution O(α)
ZPAR(3) = s2

W 0.22340108 weak mixing angle defined by weak masses
ZPAR(4) = Gµ (GeV−2) 1.16614173 ·10−5 Gµ with loop correct.
ZPAR(6) = sin2

θ`e f f (M
2
Z) 0.231499 effective weak mixing angle

ZPAR(9) = sin2
θ

up
e f f (M

2
Z) 0.231392 effective weak mixing angle

ZPAR(10) = sin2
θdown

e f f (M2
Z) 0.231265 effective weak mixing angle

ZPAR(14) = sin2
θbottom

e f f (M2
Z) 0.232733 effective weak mixing angle

D.2 Predictions: masses, couplings, EW form-factors
Table 19 collects few benchmark numbers for masses and couplings as calculated by Dizet 6.45, with initialisa-
tion as in Tables 18, 12 and 13.

Figure 11 shows real parts of the EW form-factors: ρ` f (s, t), K f (s, t), K`(s, t), K` f (s, t), for a few values of
cosθ, representing scattering angle between incoming quark and outgoing lepton directions in the centre-of-mass
frame of outgoing lepton pairs. The Mandelstam variables (s, t) relate to invariant mass and scattering angle of
outgoing leptons as defined in Eq. (24). The cosθ dependence of the form-factors is due to box corrections and is
more sizeable for the up-quarks.

Note, that at the peak of Z-boson, Born like couplings are not sizeably modified, form-factors are close to 1
and no numerically significant angular dependence is visible. At lower virtualities corrections seem to be larger
because Z-boson contributions is non resonant and virtual corrections are by comparison larger. In this region of the
phase-space Z-boson is anyway dominated by the contribution from virtual photon. Above the peak, contribution
of WW boxes and later also ZZ boxes become gradually sizable and the dependence on cosθ angle also appears.
Those contributions become double resonant.

D.3 Theoretical and parametric uncertainties
D.3.1 Running α(s)

Fermionic loop insertion to the photon propagator, i.e. vacuum polarisation corrections, are summed together as
multiplicative factor of formula (23) to the photonic Born term in formula (26). It can be also interpreted as running
QED coupling α(s) and expressed as

α(s) =
α(0)

1−∆α
(5)
h (s)−∆α`(s)−∆αt(s)−∆αααs(s)

. (40)

Following [12], the hadronic contribution at MZ is a significant correction: ∆α
(5)
h (M2

Z) = 0.0280398 and is
calculated in 5-th flavour scheme making use of dispersion relation and experimental input from low energy ex-
periments. This value has been significantly changed over years with new low-energy experiments. Recent esti-
mates [30], which comes also with parametrised formula in very large range of s gives ∆α

(5)
h (M2

Z) = 0.0275762.
The leptonic loop contribution ∆α`(s) is calculated analytically with up to the 3-loops, and is a comparably
significant correction, ∆α`(MZ) = 0.0314976. The other contributions are very small. The top contribution
depends on the mass of the top quark, and for mt = 173.8 GeV is ∆αt(s) = −0.585844 · 10−4. The mixed
two-loop O(ααs) corrections arising from tt̄ loops with gluon, for the same top-quark mass and αs = 0.119 is
∆αααs(MZ) =−0.103962 ·10−4.
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Figure 11: Real part of EW form factors for qq̄→ Z→ ee process: ρe,up, Ke, Kup and Ke,up as a function of
√

s
for few values of cosθ. For u-type quark flavour left side plots are prepared and for the down-type right side plots.
Note that Ke depend on the flavour of incoming quarks.
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Figure 12: The vacuum polarisation correction to γ propagator, α(s)/α(0) of formula (40), as a function of
√

s.
Plot should be updated with Jegerlehner 2017 parametrisation [30].

Table 20 summarizes impact from changing predictions on the central value of ∆α
(5)
h (M2

Z), on the EW correc-
tions to different quantities calculated with �Dizet library. Figure 12 shows α(s)/α(0) as a function of

√
s.

Uncertainties on the hadronic contributions to the effective fine structure constant α(s) are a problem for
electroweak precision physics. Because of the large 6% relative corrections between α(0) and α(MZ), where 50%
of the shift is due to non-perturbative hadronic effects, one is loosing about a factor of five orders of magnitude in
precision. Present estimates of the uncertainties of SM input parameters are ( from F. Jegerlehner contribution in
[31]):

δα(0)
α(0)

∼ 3.6 ·10−9;
δGµ

Gµ
∼ 8.6 ·10−6;

δMZ

MZ
∼ 2.4 ·10−5;

δα(0)
α(0)

∼ 0.9−1.6 ·10−4(lost 105 in precision); (41)

δMW

MW
∼ 1.5 ·10−4;

δmt

mt
∼ 2.3 ·10−3;

δMH

MH
∼ 1.3 ·10−3;

(42)

The α(MZ) is the least precise among the basic input parameters: α(MZ), Gµ, MZ . The present uncertainties on
hadronic corrections δα(MZ) = 0.00020 results in the error on predictions δsin2

θe f f = 0.00007 and δMW/MW ∼
4.3 ·10−5. For comparison, the uncertainties on mt contributes δsin2

θe f f /= 0.000002 and δMW/MW ∼ 3.0 ·10−5.
The effect of uncertainties on ∆α

(5)
h (M2

Z), taken as ±0.0001 on the corrections and quantities calculated by
Dizet are summarized in Table 21.

D.3.2 Fermionic two-loop corrections

D.3.3 Top quark mass
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Table 20: The Dizet v6.45 predictions for two different parametrisations of ∆α
(5)
h (M2

Z). Other flags as in Ta-
bles 18.

Parameter ∆α
(5)
h (M2

Z) = 0.0280398 ∆α
(5)
h (M2

Z) = 0.0275762 ∆

(param. Jegerlehner 1995) (param. Jegerlehner 2017)
α(M2

Z) 0.0077587482 0.0077549256
1/α(M2

Z) 128.8867699646 128.95030224
s2
W 0.22356339 0.22340108 - 0.00016

sin2θe f f (M2
Z) (lepton) 0.23166087 0.23149900 - 0.00023

sin2θe f f (M2
Z) (up-quark) 0.23155425 0.23139248 - 0.00016

sin2θe f f (M2
Z) (down-quark) 0.23142705 0.23126543 - 0.00016

MW (GeV) 80.3505378 80.358936 +8.4 MeV
∆r 0.03690873 0.03640338
∆rrem 0.01168001 0.01167960

Table 21: The Dizet v6.45 predictions: uncertainty from ∆α
(5)
h (M2

Z = 0.0275762) (param. Jegerlehner
2017)[30], varied by ± 0.0001.

Parameter ∆α
(5)
h (M2

Z) - 0.0001 ∆α
(5)
h (M2

Z) = 0.0275762 ∆α
(5)
h (M2

Z) + 0.0001 ∆/2
α(M2

Z) 0.0077541016 0.0077549256 0.0077557498
1/α(M2

Z) 128.9640056546 128.95030224 128.9365984574
s2
W 0.22336607 0.22340108 0.22343610 0.000035

sin2θe f f (M2
Z) (lepton) 0.23146409 0.23149900 0.23153392 0.000035

sin2θe f f (M2
Z) (up-quark) 0.23135758 0.23139248 0.23142737 0.000035

sin2θe f f (M2
Z) (down-quark) 0.23123057 0.23126543 0.23130029 0.000035

MW (GeV) 80.3607471 80.358936 80.357124 1.8 MeV
∆r 0.03629414 0.03640338 0.03651261
∆rrem 0.01167983 0.01167960 0.01167938

Table 22: The Dizet v6.45 predictions with improved treatment of two-loop corrections. Other flags as in Ta-
bles 18.

Parameter AMT4= 4 AMT4 = 8 ∆

α(M2
Z) 0.0077549256 0.0077549256

1/α(M2
Z) 128.9503020560 128.95030224

s2
W 0.22333971 0.22340108 + 0.00006

sin2θe f f (M2
Z) (lepton) 0.23157938 0.23149900 -0.00008

sin2θe f f (M2
Z) (up-quark) 0.23147290 0.23139248 -0.00008

sin2θe f f (M2
Z) (down-quark) 0.23134590 0.23126543 -0.00008

MW (GeV) 80.361846 80.358936 - 2.9 MeV
∆r 0.03640338 0.03640338
∆rrem 0.01167960 0.01167960
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Table 23: The Dizet v6.45 predictions: uncertainty from changing top-quark mass by ±0.5 GeV. Other flags as
in Tables 18.

Parameter mt - 0.5 GeV mt = 173.0 GeV mt + 0.5 GeV ∆/2
α(M2

Z) 0.0077549221 0.0077549256 0.0077549291
1/α(M2

Z) 128.9503600286 128.95030224 128.9502446106
s2
W 0.22345908 0.22340108 0.22334300 0.000058

sin2θe f f (M2
Z) (lepton) 0.23151389 0.23149900 0.23148410 0.000016

sin2θe f f (M2
Z) (up-quark) 0.23140736 0.23139248 0.23137758 0.000016

sin2θe f f (M2
Z) (down-quark) 0.23128031 0.23126543 0.23125053 0.000016

MW (GeV) 80.355935 80.358936 80.361941 3 MeV
∆r 0.03658500 0.03640338 0.03622132
∆rrem 0.01167011 0.01167960 0.01168907
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E TauSpinner with EW weights
Comment: Content of this Section was published in [21].

The TauSpinner package was initially created as a tool to correct with per-event weight longitudinal spin
effects in the generated event samples including τ decays. Implemented there algorithms turned out to be of more
general usage. They provide effective approach using reweighting technique to modify matrix elements of the
hard processes used in Monte Carlo programs for event production and decay. The most recent summary on its
algorithms and their applications is given in [?]. The possibility to introduce one-loop electroweak corrections
from SANC library [13] in case of Drell-Yan production of the Z-boson became available in TauSpinner since [32].
This implementation allowed to introduce per-event weight calculated using pre-tabulated EW corrections for each
individual spin configurations of outgoing leptons.

The implementation of EW corrections which is discussed in [21] and summarised here is enhanced. The
TauSpinner package and algorithms are adapted to allow EW corrections from Dizet library directly into spin
amplitudes and weight calculations for the Drell-Yan Z-boson production process. In [7, 8] we have shown that
separating EW and QCD higher order corrections is possible and the Born-level spin amplitudes, if calculated in
the adapted Mustraal frame [6], provide very good approximation of the EW LO sector even in case of NLO QCD
description of the Drell-Yan processes. The EW corrections are introduced as form-factor corrections to Standard
Model couplings and propagators entering Born-level spin amplitudes. This approach was very successful in
analyses of LEP precision physics and we use the same strategy for the LHC precision physics around the Z-boson
pole.

E.1 Born kinematic approximation and pp scattering
The solution for how to define Born-like kinematics in case of pp scattering is available in the algorithms of
TauSpinner package [?]. The strategy assumes that hard-process history generated event is not known, in particu-
lar flavour and kinematics of incoming partons is therefore reconstructed, entirely from the kinematics of outgoing
final states, reaction center of mass energy and with probabilities obtained from parton level cross-sections and
PDFs. We briefly recall principles here and explain further optimisations.

E.2 Average over incoming partons flavour
Parton level Born cross-section σ

qq̄
Born(ŝ,cosθ) is convoluted with the structure functions, and averaged over all

possible flavours of incoming partons and all possible helicity states of outgoing leptons. The lowest order formula
is given below

dσBorn(x1,x2, ŝ,cosθ) = ∑
q f ,q̄ f

[ f q f (x1, ...) f q̄ f (x2, ...)dσ
q f q̄ f
Born(ŝ,cosθ) (43)

+ f q f (x2, ...) f q̄ f (x1, ...)dσ
q̄ f q f
Born(ŝ,−cosθ)],

where x1, x2 denote fractions of incoming parton momenta calculated from kinematics of outgoing leptons, ŝ =
x1 x2 s and f denotes parton density functions. We assume that kinematics is reconstructed from four-momenta
of the outgoing leptons. The sign in front of cosθ, the cosine of the scattering angle, follows choice of the z-axis
orientation being the one of the parton carrying x1. The two possibilities are taken into account by the two terms
of (43). The formula is used for calculating differential cross-section dσBorn(x1,x2, ŝ,cosθ) of each analysed event,
regardless its initial state kinematics and flavours of incoming partons which may be available in the event history
entries. The formula can be used to a good approximation in case of NLO QCD spin amplitudes. The kinematics of
outgoing leptons is used to construct effective kinematics of the Drell-Yan production process and decay, without
need for information on the history of the hard-process itself. It can be constructed for events where initial state of
Feynman diagrams were quark-gluon or gluon-gluon partons (as stored in the history event entries).

46



E.3 Effective beams kinematics
The x1,x2 are calculated from kinematics of outgoing leptons, following formulae of [33]

x1,2 =
1
2

(
±

pll
z

4E
+

√
(

pll
z

4E
)2 +4 (

m2
ll

4E2 )
2
)
, (44)

where E denotes energy of the proton beam and p``z denotes z-axis momenta of outgoing lepton pairs in the
laboratory frame.

E.4 Definition of the polar angle
The cosθ, in case of qq̄→ Z → `` process, can be defined as a weighted average of the angles of the outgoing
leptons with respect to the beams directions [34]. It will be denoted as cosθ∗. Extending this definition to pp
collisions, requires choice which direction along z-axis is of the quark and of the anti-quark, and then boosting
their four-momenta into rest frame of the lepton pair system. The cosθ∗ distribution is calculated as follows:

cosθ1 =
τ
(1)
x b(1)x + τ

(1)
y b(1)y + τ

(1)
z b(1)z

|~τ(1)||~b(1)|
, cosθ2 =

τ
(2)
x b(2)x + τ

(2)
y b(2)y + τ

(2)
z b(2)z

|~τ(2)||~b(2)|
, (45)

finally

cosθ
∗ =

cosθ1 sinθ2 + cosθ2 sinθ1

sinθ1 + sinθ2
(46)

where~τ(1),~τ(2) denote 3-vectors of outgoing leptons and~b(1),~b(2) denote 3-vectors of incoming beams with sign
of the z-axis accordingly which term of (43) is considered. All 3-vectors are of lepton pair centre-of-mass system.

The definition of cosine polar angle (46) is a default of TauSpinner algorithms. Alternatively, one can use
also polar angle from Mustraal [6] or Collins-Soper [35] frames. We will come later to the choice with the
discussion on the preferred frame used in case of NLO QCD corrections included in the production process of
generated events.

E.5 Concept of the EW weight
The EW corrections enter expression for the σBorn(ŝ,cosθ) through the definition of the vector and axial couplings
and propagators of photon and Z-boson. They modify normalisation of the cross-sections, the line-shape of the
Z-boson, polarisation of the outgoing leptons and asymmetries.

Given that to a good approximation we were able to factorise QCD and EW components of the cross-section
we can now define per-event weight which specifically corrects for EW effects. Applying such weight allows to
modify events generated with EW LO to the one including the EW corrections. This is very much the same idea as
already implemented in TauSpinner for introducing corrections for different effects: spin correlations, production
process, etc.

The per-event weight wtEW is defined as ratio of the Born-level cross-sections with and without EW corrections

wtEW =
dσBorn+EW (s,cosθ)

dσBorn(s,cosθ)
, (47)

where cosθ can be taken according to cosθ∗, cosθMustraal or cosθCS definition. Introducing weight wtEW allows
for flexible and straightforward implementation of the higher order EW corrections using TauSpinner framework
and form-factors calculated eg. with Dizet library.

The formula for wtEW can be used to reweight from one to another EW LO scheme. In that case both the
numerator and denominator of Eq. (47) will use lowest order dσBorn, but calculated in different EW schemes.

E.6 EW corrections to doubly-deconvoluted observables
Having defined all components needed for calculating wtEW , we will show now selected examples of numerical
results for doubly-deconvoluted observables around the Z-pole.
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The Powheg+MiNLO Monte Carlo, with NLO QCD and LO EW matrix elements, was used to generate Z + j
events with Z→ e+e− decays in pp collisions at 8 TeV. No selection is applied to generated events, except requiring
invariant mass of outgoing electrons in the range 70<mee < 150 GeV. For events generation, the EW parameters as
shown in left-most column of Table 4, were used. The values for α and s2

W are close to the ones of MSbar discussed
in [22]. Note that they are not at the values of precise measurements by LEP experiments at the Z-pole [1]. The
initialisation with Gµ scheme of Table 4 is often used as a default for phenomenological studies at LHC and we
will show later the estimated size of EW corrections for this setup.

To quantify the effect of the EW corrections, we reweight generated MC events to EW LO in the scheme used
by the Dizet library and then introduce gradually EW corrections and form-factors calculated with that library.
For each step appropriate numerator of the wtEW is calculated, while for the denominator the EW LO A Born matrix
element is used, parameterised as in the left-most column of Table 4. The sequential steps, in which we illustrate
effects of EW corrections are given below:

1. Reweight with wtEW , from EW LO scheme with s2
W = 0.23113 to EW LO scheme with s2

W = 0.21215, see
Table 4. The A Born matrix element, Eq. (18), is used for calculating numerator of wtEW .

2. As in step (1), but include EW corrections to mW , effectively changing value of s2
W to s2

W = 0.22352 in
calculation of wtEW . Relation of formula (38) is not obeyed anymore.

3. As in step (2), but include EW loop corrections to the normalisation of Z-boson and γ propagators, i.e.
QCD/EW corrections to α(0) and ρ` f (s) form-factor calculated without box corrections. The A Born+EW is
used for calculating numerator of wtEW .

4. As in step (3), but include EW corrections to Z-boson vector couplings: K f ,Ke,K` f , calculated without
box corrections. The A Born+EW is used for calculating numerator of wtEW .

5. Replace ρ` f ,K f ,Ke,K` f form-factors by the ones including box corrections. The A Born+EW is used for
calculating numerator of wtEW .

After step (1) the predictions are according to EW LO and QCD NLO, but with different EW scheme than used
originally for events generation. Then steps (2)-(5) introduce EW corrections. Step (3) effectively changes back α

to be close to initial α(MZ), while steps (4)-(5) effectively shift back value of s2
W to be close to the one used for

events generation. Given the fact that EW LO scheme used for generating events has parameters already close to
measured at the Z-pole, we expect the total EW corrections to the generated sample to be roughly at percent level.

In the following, we will also estimate how precise it would be to use effective Born approximation with LEP
or LEP with improved norm. parametrisations instead of complete EW corrections. To obtain those predictions
similar to step (1) listed above reweight is needed, but in the numerator of wtEW the A Born parametrisations as
specified in the right two columns of Table 4 are used. For LEP with improved norm. the ρ`, f = 1.005 has to be
included.

The important flexibility of proposed approach is that wtEW can be calculated using dσBorn in different frames:
cosθ∗, Mustraal or Collins-Soper. For some observables, frame choice used for wtEW calculation is not relevant
at all and the simplest cosθ∗ frame can be used. We show later an example, where only using Mustraal frame for
the wtEW calculation leads to correct results of the reweighting procedure.

Table 6 details numerical values for EW corrections, integrated in the range 80 < mee < 100 GeV and 89 <
mee < 93 GeV. Numbers for calculating EW weight using cosθ∗ definition of the scattering angle are shown. In
Table 25 results obtained with wtEW calculated in different frames are compared. When using Mustraal frame or
Collins-Soper frame instead of cosθ∗ one, the differences are at most at the 5-th digit.

In Table 24 compared are results with wtEW calculated in different frames. When using Mustraal frame or
Collins-Soper frame instead of cosθ∗, the differences are at most at the 5-th digit.
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Table 24: EW corrections to cross-sections around Z-pole, 89 < mee < 93 GeV. The EW weight is calculated with
cosθ∗, cosθMustraal or cosθCS definitions for scattering angle.

Corrections to cross-section ( 89 < mee < 93 GeV) wtEW (cosθ∗) wtEW (cosθMustraal) wtEW (cosθCS)

σ(EW corr. to mW )/σ(EW LO α(0)) 0.97114 0.97115 0.97114
σ(EW corr. to χ(Z),χ(γ))/σ(EW LO α(0)) 0.98246 0.98247 0.98246
σ(EW/QCD FF no boxes)/σ(EW LO α(0)) 0.96469 0.96471 0.96470
σ(EW/QCD FF with boxes)/σ(EW LO α(0)) 0.96473 0.96475 0.96474
σ(LEP)/σ(EW/QCD FF with boxes) 1.01102 1.01103 1.01102
σ(LEP with improved norm.)/σ(EW/QCD FF with boxes) 1.00100 1.00102 1.00100

Table 25: The difference in forward-backward asymmetry, ∆AFB around Z-pole, mee = 89 - 93 GeV. The difference
is calculated using cosθCS to define forward and backward hemisphere. The EW weight is calculated with cosθ∗,
cosθMustraal or cosCS.
Numbers should be updated with Dizet 6.XX form factors.

Corrections to AFB ( 89 < mee < 93 GeV) wtEW (cosθ∗) wtEW (cosθML) wtEW (cosθCS)

AFB(EW/QCD corr. to mW ) - AFB(EW LO α(0)) -0.02097 -0.02112 -0.02101
AFB(EW/QCD corr. to χ(Z),χ(γ)) - AFB(EW LO α(0)) -0.02066 -0.02081 -0.02070
AFB(EW/QCD FF no boxes) - AFB(EW LO α(0)) -0.03535 -0.03560 -0.03542
AFB(EW/QCD FF with boxes) - AFB(EW LO α(0)) -0.03534 -0.03559 -0.03541
AFB(LEP) - AFB(EW/QCD FF with boxes) -0.00006 -0.00005 -0.00006
AFB(LEP with improved norm.) - AFB(EW/QCD FF with boxes) -0.00005 -0.00005 -0.00005
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F Powheg_ew
Comments:
This text should be completed by the authors, for now as placeholders some tables from past meetings.
Recently presented materials:
https://indico.cern.ch/event/829225/contributions/3481094/attachments/1871705/3080271/piccinini.pdf

F.1 Benchmark results for different EW schemes
Comments:
Those tables should be completed by the authors, for now as placeholders.
Recently presented materials:
https://indico.cern.ch/event/829225/contributions/3481094/attachments/1871705/3080271/piccinini.pdf

Tables:

• Table 26: Cross-section and cross-section ratios at EW LO, NLO, NLO+HO, different EW schemes, Powheg_ew
Monte Carlo. Status of December 2018.

• Table 27: Cross-sections, cross-sections difference in forward and backward hemispheres and forward-
backward asymmetry, Powheg_ew Monte Carlo, EW LO, NLO, NLO+HO, different schemes.Status of De-
cember 2018.

• Table 28: Forward-backward asymmetry differences between different EW schemes, as estimated by Powheg_ew,
different EW schemes at LO, NLO, NLO+HO.Status of December 2018.
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Table 26: Cross-sections and cross-sections ratios estimated with Powheg_ew for three mass windows. The pole
definition is used for input parameters as in Table 14.

EW order mee = 89 - 93 GeV mee = 80 - 100 GeV mee = 70 - 120 GeV
α(0) v0 LO 630.848722 906.156051 959.658977
α(0) v1 LO 571.411296 821.363274 870.729908
Gµ LO 612.514433 880.446121 933.363827
α(0) v1 NLO 600.185042 863.142557 915.580114
Gµ NLO 607.142292 873.173294 926.253246
α(0) v1 NLO+HO 607.551746 873.717147 926.761229
Gµ NLO+HO 607.515354 873.655348 926.681425

α(0) v1 NLO/LO 1.050350 1.05087 1.05151
Gµ NLO/LO 0.991230 0.99174 0.99238
α(0) v1 NLO+HO/LO 1.063247 1.063740 1.064349
Gµ NLO+HO/LO 0.991038 0.992287 0.992840

α(0) v1 / α(0) v0 LO 0.90578 0.906426 0.90733
Gµ / α(0) v1 LO 1.07193 1.07193 1.07193
Gµ / α(0) v1 NLO 1.01159 1.01162 1.01166
Gµ / α(0) v1 NLO+HO 0.99994 0.99993 0.99991
Gµ / α(0) v0 LO 0.97094 0.97163 0.97260
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Table 27: Cross-sections, cross-sections difference in forward and backward hemispheres and forward-backward
asymmetry as estimated by Powheg_ew, for three mass windows. The pole definition is used for input parameters
as in Table 14.

EW order mee = 89 - 93 GeV mee = 80 - 100 GeV mee = 70 - 120 GeV
σ α(0) v0 LO 630.848722 906.156051 959.658977
σ α(0) v1 LO 571.411296 821.363274 870.729908
σ Gµ LO 612.514433 880.446121 933.363827
∆FB σ α(0) v0 LO 42.2123628 57.9248406 60.0147094
∆FB σ α(0) v1 LO 26.5928310 35.6782853 36.6828324
∆FB σ Gµ LO 42.2123628 57.9248406 60.0147094
AFB α(0) v0 LO 0.06691361 0.06392369 0.06253754
AFB α(0) v1 LO 0.04653886 0.04343789 0.04212883
AFB Gµ LO 0.04653886 0.04343789 0.04212883
σ α(0) v1 NLO 600.185042 863.142557 915.580114
σ Gµ NLO 607.142292 873.173294 926.253246
∆FB σ α(0) v1 NLO 18.0312902 23.2253069 23.5291169
∆FB σ Gµ NLO 17.6425904 22.6341188 22.8962216
AFB α(0) v1 NLO 0.03004289 0.02690785 0.02569858
AFB Gµ NLO 0.02905841 0.02592168 0.02471918
∆AFB α(0) v1 NLO-LO -0.0164959 -0.0165300 -0.0164302
∆AFB Gµ NLO-LO -0.0174805 -0.0175162 -0.0174096
σ α(0) v1 NLO+HO 607.551746 873.717147 926.761229
σ Gµ NLO+HO 607.515356 873.655348 926.681425
∆FB σ α(0) v1 NLO+HO 18.7322427 24.2066243 24.5563891
∆FB σ Gµ NLO+HO 18.7739638 24.2682506 24.6205407
AFB α(0) v1 NLO+HO 0.03083234 0.02770533 0.02649700
AFB Gµ NLO+HO 0.03090286 0.02777783 0.02656851
∆AFB α(0) v1 NLO+HO-LO -0.0157065 -0.0157326 -0.0156318
∆AFB Gµ NLO+HO-LO -0.0156360 -0.0156596 -0.0155603

Table 28: Forward-backward asymmetry differences between different EW schemes, as estimated by Powheg_ew,
for three mass windows. The pole definition is used for input parameters as in Table 14.

∆AFB EW order mee = 89 - 93 GeV mee = 80 - 100 GeV mee = 70 - 120 GeV

α(0) v1 - α(0) v0 LO -0.020375 -0.020486 -0.020487
Gµ - α(0) v0 LO -0.020375 -0.020486 -0.0204871
Gµ - α(0) v1 LO 0.0 0.0 0.0
Gµ - α(0) v1 NLO -0.00098 -0.00098 -0.00098
Gµ - α(0) v1 NLO + HO -0.00007 -0.00007 -0.00007
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G MCSANC
Comments:
This text should be completed by the authors, for now as placeholders some tables from past meetings.
Recently presented materials:

G.1 Benchmark results for different EW schemes
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Table 29: Cross-sections and cross-sections ratios estimated with MCSANC for three mass windows. The pole mass
definition is used for input parameters as in Table 14.
Numbers updated on 16.10.2019 to configuration of that Table.

σ [pb] EW order mee = 89 - 93 GeV mee = 80 - 100 GeV mee = 70 - 120 GeV
α(0) v1 LO 571.41(1) 821.36(1) 870.72(1)
Gµ LO 612.53(1) 880.47(1) 933.39(1)
α(0) v1 NLO 600.08(1) 863.00(1) 915.42(1)
Gµ NLO 607.41(1) 873.57(1) 926.66(1)
α(0) v1 NLO+HO
Gµ NLO+HO

α(0) v1 NLO/LO 1.05017 1.05070 1.05134
Gµ NLO/LO 0.991641 0.992163 0.992790
α(0) v1 NLO+HO/LO
Gµ NLO+HO/LO

Gµ / α(0) v1 LO 1.071962 1.071966 1.071975
Gµ / α(0) v1 NLO 1.012215 1.012245 1.012278
Gµ / α(0) v1 NLO+HO

Table 30: Forward-backward asymmetry and differences estimated with MCSANC for three mass windows. The pole
mass definition is used for input parameters as in Table 14.
Numbers updated on 16.10.2019 to configuration of that Table.

AFB EW order mee = 89 - 93 GeV mee = 80 - 100 GeV mee = 70 - 120 GeV
α(0) v1 LO 0.004655(1) 0.004347(1) 0.004215(1)
Gµ LO 0.004656(1) 0.004347(1) 0.004215(1)
α(0) v1 NLO 0.003058(1) 0.002746(1) 0.002623(1)
Gµ NLO 0.002964(1) 0.002652(1) 0.002530(1)
α(0) v1 NLO+HO
Gµ NLO+HO

α(0) v1 NLO - LO -0.001597(1) -0.001601(1) -0.001591(1)
Gµ NLO - LO -0.001691(1) -0.001695(1) -0.001685(1)
α(0) v1 NLO+HO - LO
Gµ NLO+HO - LO

Gµ - α(0) v1 LO 0.0 0.0 0.0
Gµ - α(0) v1 NLO 0.000094 0.000094 0.000093
Gµ - α(0) v1 NLO+HO
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H KKMC_hh
Comments:
This text should be completed by the authors
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I HORACE
Comments:
This text should be completed by the authors
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