Studies of the QED/EW corrections to $Z \rightarrow l l$ observables at the LHC

LHC EW working group

ABSTRACT

Contents

1 Introduction 3
1.1 Electroweak pseudo-observables at LEP 3
1.2 The weak mixing angle and effective weak mixing angle 3
1.3 Observables sensitive to the weak mixing angle at hadron colliders 6
1.4 Interpretation of early hadron collider measurements in terms of the effective weak mixing angle 6
2 Virtual EW corrections 7
2.1 Introduction. 7
2.2 Overview of calculations/tools and input schemes 7
2.3 Numerical results for virtual EW corrections 7
2.3.1 Loops and box corrections with different EW schemes 7
2.3.2 $\quad \alpha_{O E D}$ with different EW schemes 9
2.3.3 $\sin ^{2} \theta_{W}$ with different EW schemes 10
2.3.4 Improved Born Approximation and Effective Born 11
2.3.5 The Z-boson lineshape 11
2.3.6 The $A_{F B}$ distribution 12
2.4 Benchmark results from Powheg_ew, MCSANC, PowhegZj+wt ${ }^{E W}$ 15
2.4.1 Benchmarks at EW LO 16
2.4.2 Benchmarks at EW NLO, NLO+HO 18
2.5 Theoretical uncertainties and conclusions 18
3 QED emissions 24
3.1 Introduction 24
3.2 Overview of calculations and tools. 24
3.3 Numerical results for QED ISR and IFI 24
3.4 Photon-induced processes 24
3.5 Theoretical uncertainties and conclusions 24
4 A possible strategy for run-2 measurements and combinations at the LHC 25
4.1 Introduction. 25
4.2 Observables used for comparisons of expectations between experiments 25
4.3 Interpretation tools 25
4.3.1 QCD tools: DYTurbo, NNLOJET 25
4.3.2 QED/EW tools: Dizet, Powheg EW, MC-SANC, ZGRAD2? 25
4.4 Combination tools. 25
4.4.1 Correlations between measurements: PDFs, QCD, QED/EW 25
4.4.2 Profile likelihood fit to all observables and direct extraction of weak mixing angle 25
4.4.3 Compatibility tests between measurements of different experiments 25
4.4.4 Profile likelihood fit to all observables and direct extraction of weak mixing angle 25
4.5 Expected breakdown of uncertainties and conclusions 25
4.5.1 Measurement uncertainties 25
4.5.2 PDF uncertainties 25
4.5.3 QED/EW uncertainties 25
4.5.4 QCD uncertainties 25
4.5.5 Parametric uncertainties 25
4.5.6 Conclusions 25
A EW schemes 28
A. 1 EW scheme: $\alpha(0), G_{\mu}, M_{Z}$ 28
A. 2 EW scheme: $\alpha(0), M_{W}, M_{Z}$ 28
A. 3 EW scheme: G_{μ}, M_{Z}, M_{W} 29
A. 4 EW scheme: $\alpha(0), s_{W}^{2}, M_{Z}$ 29
A. 5 EW scheme: $G_{\mu}, s_{W}^{2}, M_{Z}$ 29
A. 6 Benchmark initialisation 29
B Improved Born Approximation 32
C The s dependent Z-boson width 35
D Genuine weak and line-shape corrections from $\operatorname{Dizet} 6 . \mathrm{XX}$ library 39
D. 1 Input parameters and initialisation flags 39
D. 2 Predictions: masses, couplings, EW form-factors 41
D. 3 Theoretical and parametric uncertainties 41
D.3.1 Running $\alpha(s)$ 41
D.3.2 Fermionic two-loop corrections 43
D.3.3 Top quark mass 43
E TauSpinner with EW weights 46
E. 1 Born kinematic approximation and $p p$ scattering 46
E. 2 Average over incoming partons flavour 46
E. 3 Effective beams kinematics 47
E. 4 Definition of the polar angle 47
E. 5 Concept of the EW weight 47
E. 6 EW corrections to doubly-deconvoluted observables 47
F Powheg_ew 50
F. 1 Benchmark results for different EW schemes 50
G MCSANC 53
G. 1 Benchmark results for different EW schemes 53
H KKMC_hh 55
I HORACE 56

1 Introduction

Content:

Short historical overview of LEP/Tevatron/early LHC.

1.1 Electroweak pseudo-observables at LEP

Authors: Fulvio, Elzbieta
The concept of electroweak pseudo-observables (EWPO) was essential in the final analysis of LEP1 data of [1]. The EWPO's at LEP were quantities like Z mass and width; the various $2 \rightarrow 2 \mathrm{Z}$ peak cross-sections, most of the $2 \rightarrow 2$ charge and spin asymmetries at the Z peak, plus the equivalent effective weak mixing angle, which is the main SM parameter under study in this article. They were derived directly from the experimental data in such a way that QED contributions and the kinematic cut-off effects were removed. The art of the Z line-shape and asymmetry analyses at LEP relied on the ability to reduce the many degrees of freedom from the experimental measurements to a sufficiently small set of intermediate variables, which could be precisely described by theory. With full one-loop accuracy in QED/EW theory (and even a bit beyond) this was prepared in the ZFITTER package [2, 3].

A theoretically sound separation of the QED/EW effects between the QED emissions and genuine virtual weak effects was essential for the phenomenology of LEP precision physics [1]. It was motivated by the structure of the amplitudes for single Z-boson production or (to a lesser degree) $W W$-pair production in $e^{+} e^{-}$collisions, as well as by the fact that QED bremsstrahlung occurs at a different energy scale than the electroweak processes. Even more importantly, with this approach, multi-loop calculations for the complete electroweak sector could be avoided. The QED terms were thus resummed in an exclusive exponentiation scheme implemented in Monte Carlo [4]. Note that these QED corrections modify the cross-section at the peak by as much as 40%. The details of this paradigm are explained for example in Ref. [5]. It was obtained as the result of a massive effort by the theory community, which will not be recalled in any detail here. From the practical phenomenology perspective, spin amplitudes are semi-factorised into a Born-like term(s) and functional factors responsible for bremsstrahlung [6].

A similar separation can also be achieved for dynamics of production process in $p p$ collisions, which can be isolated from QED/EW corrections. It was explored recently in the case of configurations with high- p_{T} jets associated with the Drell-Yan production of Z [7] or W bosons [8] at the LHC. The potentially large electroweak Sudakov logarithmic corrections discussed in [9] represent yet another class of weak effects, separable from those discussed above and throughout this paper, and they are not discussed here because they are mainly relevant for dilepton masses beyond the range considered for the weak mixing angle measurement.

To assess precisely the size and impact of the so-called genuine weak corrections to the Born-like cross section for lepton pair production with a virtuality well below the threshold for $W W$ pair production, the precision calculations and programs prepared for the LEP era: KKMC Monte Carlo [10] and Dizet electroweak (EW) library, were adapted to provide pre-tabulated EW corrections which could be used by LHC-specific programs like the TauSpinner package [11]. Currently, the KKMC Monte Carlo used is Dizet version 6.21 [12, 2]. Since the LEP times, the version of the Dizet library has been updated eg. [13, 14]. For the sake of compatibility, results from this version are shown as well, however the final numbers will be evaluated with the most recent versions of the program, the Dizet version 6.45 [15].

1.2 The weak mixing angle and effective weak mixing angle

Drafting some text here only

There are multiple approaches and conventions used to define the effective weak mixing angle(s), as illustrated e.g. in the Particle Data Group 2018 review [16]. This naming is therefore overloaded and may lead to confusion.

The fundamental quantity is the weak mixing angle, $\sin ^{2} \theta_{W}$. In the on-shell convention and $\alpha(0)$ EW scheme, as discussed in more detail in Appendix ??, the weak mixing angle is defined uniquely through the gauge-boson masses at tree level:

$$
\begin{equation*}
\sin ^{2} \theta_{W}=s_{W}^{2}=1-\frac{m_{W}^{2}}{m_{Z}^{2}} \tag{1}
\end{equation*}
$$

and this relation holds to all orders. If m_{W} is a derived input parameter calculated using higher-order corrections, the corresponding $\sin ^{2} \theta_{W}$ gets updated. For example, in the $\alpha(0) v 0$ scheme at EW LO, the value of $\sin ^{2} \theta_{W}=$

Table 1: The theory predictions for on-shell and effective leptonic weak angle. Number from Particle Data Group 2018 review [16].

Weak angle	Notation	Value	Parametric uncertainty
On-shell weak angle	s_{W}^{2}	0.22343	± 0.00007
Effective weak angle	$\sin ^{2} \theta_{\text {eff }}^{\ell}$	0.23154	± 0.00003

0.21215 (see Table 13). With EW NLO + HO corrections applied to calculate m_{W}, the value of $\sin ^{2} \theta_{W}=0.22352$ (see Table 19).

In the same EW $\alpha(0)$ v0 scheme there is also a clear definition of the observable $\sin ^{2} \theta_{e f f}^{f}\left(M_{Z}\right)$, which is called the effective weak mixing angle at the Z-pole, which is related to the ratio of the effective axial and vector couplings, g_{Z}^{f} (here we use " f " for quark or lepton):

$$
\begin{equation*}
g_{Z}^{f}=\frac{v_{Z}^{f}}{a_{Z}^{f}}=1-4\left|q_{f}\right|\left(K_{Z}^{f} s_{W}^{2}+I_{f}^{2}\right) \tag{2}
\end{equation*}
$$

with

$$
\begin{equation*}
I_{f}^{2}=\alpha^{2}(s) \frac{35}{18}\left[1-\frac{8}{3} \operatorname{Re}\left(K_{Z}^{f}\right) s_{W}^{2}\right] \tag{3}
\end{equation*}
$$

and the flavour-dependent effective weak mixing angles as

$$
\begin{equation*}
\sin ^{2} \theta_{e f f}^{f}=\operatorname{Re}\left(\mathscr{K}_{Z}^{f}\right) s_{W}^{2}+I_{f}^{2} \tag{4}
\end{equation*}
$$

While the $\sin ^{2} \theta_{W}$ generic for all flavours, and energy-scale not dependent, the $\sin ^{2} \theta_{e f f}^{f}$ is not. It is speciffically for a given flavour, and only at the Z-pole. In the name already is suggested as effective theory quantity, not necessarily the Standard Model gauge theory one. In Table 1 we quote the most updated numbers from Particle Data Group 2018 review [16].

Estimates for the total theoretical error from leading unknown higher order corrections on $\sin ^{2} \theta_{\text {eff }}^{\ell}$ has been recently updated in [17]. The leading missing orders are three- and four-loop corrections, $O\left(\alpha^{3}\right), O\left(\alpha \alpha_{s}^{2}\right)$ and $O\left(\alpha \alpha_{s}^{3}\right)$. The final estimate is $4.3 \cdot 10^{-5}$, compatible with number quoted by final LEP publications [1] of 5.0•10-5 . This is precision fully adequate for measurement at LHC.

While the measurement at LEP were done at different energies and then corrected with theoretical predictions to the values at Z-pole, at LHC it will be done differently. The measurements will be done in different mass and rapidity ranges, and then combined. At least it is present strategy. It is therefore of interest to extend the definition of $\sin ^{2} \theta_{\text {eff }}^{f}$ outside the Z-pole region. This could be done in straightforward way

$$
\begin{equation*}
g_{e f f}^{f}(s, t)=\frac{v_{e f f}^{f}(s, t)}{a_{e f f}^{f}(s, t)}=1-4\left|q_{f}\right|\left(K^{f}(s, t) s_{W}^{2}+I_{f}^{2}(s, t)\right) \tag{5}
\end{equation*}
$$

where s, t stand for Mandelstam variables. and correspondingly

$$
\begin{equation*}
\sin ^{2} \theta_{e f f}^{f}(s, t)=\operatorname{Re}\left(\mathscr{K}^{f}(s, t)\right) s_{W}^{2}+I_{f}^{2}(s, t) \tag{6}
\end{equation*}
$$

The flavour dependent effective weak mixing angles, calculated using: Eq. (6), EW form-factors of Dizet library, and $\alpha(0) \nu 0$ scheme, with on-shell $s_{W}^{2}=0.22352$ are shown on Fig. 1 as a function of the invariant mass of outgoing lepton pair and for $\cos \theta=0.5$. In Table 2 we display value of effective weak missing angles averaged over specified mass windows.

Prepare in the $\sin ^{2} \theta_{\text {eff }}$ schemes, similar figure and table. Ask Fulvio et al.

Table 2: The effective weak mixing angles $\sin ^{2} \theta_{\text {eff }}^{f}$, for different mass windows and with/without box corrections. The form-factor corrections are averaged with realistic line-shape and $\cos \theta$ distribution.
Results from Dizet 6.21, should be updated to Dizet 6.45.

Parameter	$\sin ^{2} \theta_{\text {eff }}^{\ell}$	$\sin ^{2} \theta_{\text {eff }}^{\text {up-quark }}$	$\sin ^{2} \theta_{\text {eff }}^{\text {down-quark }}$
	EW loops without box corrections		
$80<m_{e e}<100 \mathrm{GeV}$	0.23171	0.23171	0.23146
$78<m_{e e}<82 \mathrm{GeV}$	0.23179	0.23172	0.23159
$89<m_{e e}<93 \mathrm{GeV}$	0.23170	0.23169	0.23147
$108<m_{e e}<112 \mathrm{GeV}$	0.23168	0.23175	0.23137
	EW loops with box corrections		
$80<m_{e e}<100 \mathrm{GeV}$	0.23171	0.23171	0.23146
$78<m_{e e}<82 \mathrm{GeV}$	0.23136	0.23167	0.23158
$89<m_{e e}<93 \mathrm{GeV}$	0.23168	0.23169	0.23147
$108<m_{e e}<112 \mathrm{GeV}$	0.23246	0.23174	0.23130

Figure 1: Effective weak mixing angles $\sin ^{2} \theta_{\text {eff }}^{f}$ with EW corrections calculated using Dizet library and on-shell $s_{W}^{2}=0.22352$ as a function of $m_{e e}$ and $\cos \theta=0$, without (left) and with (right) box corrections are shown. Results from Dizet 6.21, should be updated to Dizet 6.45.
1.3 Observables sensitive to the weak mixing angle at hadron colliders
1.4 Interpretation of early hadron collider measurements in terms of the effective weak mixing angle

2 Virtual EW corrections

Authors: Elzbieta (Dizet), Fulvio (Powheg_ew), Serge/Lida (MCSANC), Doreen?(ZGRAD2)

Content:

- Loops and box corrections with different EW schemes.
- Treatment of $\alpha\left(M_{Z}\right)$ with different $E W$ schemes. Show numerical results.
- Treatment of $\sin ^{2} \theta_{W}$ with different schemes. Show numerical results.
- Genuine EW and line-shape corrections to $d \sigma / d m_{l l}, A_{F B}$. Comparisons of Powheg_ew, MCSANC and PowhegZ j+wt ${ }^{E W}$
- Improved Born Approximation vs Effective Born. Comparisons from PowhegZj+wt ${ }^{E W}$.

2.1 Introduction

2.2 Overview of calculations/tools and input schemes

2.3 Numerical results for virtual EW corrections

2.3.1 Loops and box corrections with different EW schemes

In this Section we show comparison between Dizet and MCSANC EW libraries. For details on the calculations see respectively [12, 2] and [18, 19]. The input parameters, which could be set consistently in both programs, are collected in Table ??.

The definition of the effective quark masses used in both initialisation and shown in Table ?? is such that they are some fitted values which allows to reproduce in the one-loop order the quantity of $\Delta \alpha_{h}^{(5)}\left(M_{Z}^{2}\right)$.

Comments.

For Dizet 6.21 parametrisation of α not updated, used the one of published version. For measurements at LEP used probably updates of [20]. The comparison between MCSANC and Dizet should be updated to Dizet 6.XX
2.3.2 $\alpha_{Q E D}$ with different EW schemes
2.3.3 $\sin ^{2} \theta_{W}$ with different EW schemes

Table 4: The EW parameters used for: (i) the EW LO $\alpha(0) \mathrm{v} 0$ scheme, (ii) effective Born spin amplitude around the Z-pole and (iii) effective Born with improved normalisation. In each case parameters are chosen that the SM relation, formula (8), is obeyed. The $G_{\mu}=1.1663887 \cdot 10^{-5} \mathrm{GeV}^{-2}, M_{Z}=91.1876 \mathrm{GeV}$ and $\mathscr{K}_{f}, \mathscr{K}_{e}, \mathscr{K}_{\ell f}=1$.

EW LO	Effective Born	Effective Born
$\alpha(0)$ scheme	LEP	LEP with improved norm.
$\alpha=1 / 137.3599$	$\alpha=1 / 128.8667$	$\alpha=1 / 128.8667$
$s_{W}^{2}=0.21215$	$s_{W}^{2}=0.23152$	$s_{W}^{2}=0.23152$
$\rho_{\ell f}=1.0$	$\rho_{\ell f}=1.0$	$\rho_{\ell f}=1.005$

2.3.4 Improved Born Approximation and Effective Born

Comment: Content of this subsection was published in [21].

The Improved Born Approximation (IBA) is discussed in more details in Appendix B In IBA, the complete $O(\alpha)$ EW corrections, supplemented by selected higher order terms, are handled with form-factor corrections, dependent on (s, t), multiplying couplings and propagators of the usual Born expressions.

At this point we would like to introduce two options for the Born spin amplitudes parametrisation, which we will refer to as Effective Born, which work as very good approximations of the EW corrections near the Z-pole. We denote them respectively as LEP and LEP with improved norm.. The Effective Born absorbs bulk of EW corrections into redefinition of few fixed parameters (couplings) instead.

- The LEP parametrisation is using formula (26) for spin amplitude but with $\alpha(s)=\alpha\left(M_{Z}\right)=1 . / 128.8667$, $s_{W}^{2}=\sin ^{2} \theta_{W}^{e f f}\left(M_{Z}\right)=0.23152$ and all form factors equal to 1.0 . The values are as measured at the Z-pole and reported in [22].
- The LEP with improved norm. parametrisation is using formula (26) for spin amplitude, parameters are set as for $L E P$ parametrisation, and all form-factors equal 1, except $\rho_{\ell f}=1.005$. This again correspond to the measured value $\rho\left(M_{Z}\right)=1.005$ also reported in [22].

Table 4 shows (i) effective Born ($L E P$) parametrisation and (ii) effective Born (LEP with improved norm.). In each case parameters are chosen that the SM relation, formula (8), is obeyed.

In the following, we will systematically compare predictions of EW corrections and those calculated with $L E P$ or LEP with improved norm. approximations. As we will see later, effective Born with $L E P$ with improved norm. works well around Z-pole both for predicting the lineshape and forward-backward asymmetry.

2.3.5 The Z-boson lineshape

In the EW LO, the Z-boson lineshape, assuming that the constraint (38) holds, depends only on two parameters $\left(M_{Z}, \Gamma_{z}\right)$. The effect on the lineshape from EW loop corrections are due to corrections to the propagators: vacuum polarisation corrections (running α) and ρ form-factor, causing change in relative contributions of the Z and γ, and change of the Z-boson vector to axial coupling ratio $\left(\sin ^{2} \theta_{e f f}\right)$. The above affect not only shape but also normalisation of the cross-section.

In Fig. 2 (top-left) distributions of generated and EW corrected lineshape are shown. On the logarithmic scale difference is barely visible. In the following plots of the same Figure we study it in more details. The ratios of the lineshape distributions with gradually introduced EW corrections are shown. For reference ones (denominator) the following: (i) EW LO $\alpha(0)$, (ii) effective Born ($L E P$) and (iii) effective Born (LEP with improved norm.) are used. At the Z-pole, complete EW corrections are at about 0.1% for the one with effective Born ($L E P$ with improved norm.). It shows that using for events generation EW LO matrix element but with different parametrisations will significantly reduce the size of missing EW corrections.

Table 5: EW corrections to cross-sections in the specified mass windows. The EW weight is calculated with $\cos \theta^{*}$ definition for scattering angle.

Corrections to cross-section	$89<m_{e e}<93 \mathrm{GeV}$	$80<m_{e e}<100 \mathrm{GeV}$
$\sigma\left(\mathrm{EW}\right.$ corr. to $\left.m_{W}\right) / \sigma(\mathrm{EW} \mathrm{LO} \alpha(0))$	0.97114	0.97162
$\sigma(\mathrm{EW}$ corr. to $\chi(Z), \chi(\gamma)) / \sigma(\mathrm{EW}$ LO $\alpha(0))$	0.98246	0.98346
$\sigma(\mathrm{EW} / \mathrm{QCD}$ FF no boxes $) / \sigma(\mathrm{EW}$ LO $\alpha(0))$	0.96469	0.96602
$\sigma(\mathrm{EW} / \mathrm{QCD}$ FF with boxes $) / \sigma(\mathrm{EW} \mathrm{LO} \alpha(0))$	0.96473	0.96607
$\sigma($ LEP $) / \sigma(\mathrm{EW} / \mathrm{QCD}$ FF with boxes $)$	1.01102	1.01093
$\sigma($ LEP with improved norm. $) / \sigma(\mathrm{EW/QCD} \mathrm{FF} \mathrm{with} \mathrm{boxes})$	1.00100	1.00098

Table 6: The difference in forward-backward asymmetry, $\Delta A_{F B}$, in the specified mass windows. The difference is calculated using $\cos \theta^{C S}$ to define forward and backward hemisphere. The EW weight is calculated with $\cos \theta^{*}$ definition for scattering angle.
Numbers should be updated with Dizet 6.XX form factors.

Corrections to $A_{F B}$	$89<m_{e e}<93 \mathrm{GeV}$	$80<m_{e e}<100 \mathrm{GeV}$
$A_{F B}\left(\right.$ EW corr. $\left.m_{W}\right)-A_{F B}($ EW LO $\alpha(0))$	-0.02097	-0.02103
$A_{F B}($ EW corr. prop. $\chi(Z), \chi(\gamma))-A_{F B}($ EW LO $\alpha(0))$	-0.02066	-0.02098
$A_{F B}($ EW/QCD FF no boxes $)-A_{F B}($ EW LO $\alpha(0))$	-0.03535	-0.03569
$A_{F B}($ EW/QCD FF with boxes $)-A_{F B}($ EW LO $\alpha(0))$	-0.03534	-0.03567
$A_{F B}(L E P)-A_{F B}($ EW/QCD FF with boxes $)$	-0.00006	-0.00001
$A_{F B}($ LEP with improved norm. $)-A_{F B}($ EW/QCD FF with boxes $)$	-0.00005	-0.00002

Table 5 details numerical values for EW corrections to the normalisation (ratios of the cross-section), integrated in the range $80<m_{e e}<100 \mathrm{GeV}$ and $89<m_{e e}<93 \mathrm{GeV}$. Results from calculating EW weight using $\cos \theta^{*}$ definition of the scattering angle are shown. Total EW correction to normalisation at EW LO G_{μ} is 1.010 . Total EW correction to normalisation at EW LO $\alpha(0)$ is about 0.965 , while total corrections to the effective Born ($L E P$ with improved norm.) is of about 1.001 .

2.3.6 The $A_{F B}$ distribution

The forward-backward asymmetry defined for $p p$ collisions in a standard way reads

$$
\begin{equation*}
A_{F B}=\frac{\sigma(\cos \theta>0)-\sigma(\cos \theta<0)}{\sigma(\cos \theta>0)+\sigma(\cos \theta<0)} \tag{7}
\end{equation*}
$$

where $\cos \theta$ is taken in the Collins-Soper frame.
The EW corrections change overall normalisation and the shape of $A_{F B}$, particularly around the Z-pole. In Fig. 3 (top-left), the $A_{F B}$ distribution as generated (EW LO) and EW corrected are shown. In the following plots of this Figure, we study it in more details. The difference $\Delta A_{F B}=A_{F B}-A_{F B}^{r e f}$ with gradually introduced EW corrections are shown. For reference the following ones: (i) EW LO $\alpha(0)$, (ii) effective Born (LEP) and (iii) effective Born ($L E P$ with improved norm.) are used.

Complete EW corrections to $A_{F B}$ integrated around Z-pole, are about $\Delta A_{F B}=-0.00075$ with respect to EW LO G_{μ} predictions and about $\Delta A_{F B}=-0.03534$ with respect to EW LO with $\alpha(0)$ predictions. The total corrections to $A_{F B}$ of effective Born (LEP with improved norm.) is $\Delta A_{F B}=-0.00005$. Using effective Born (LEP improved norm.) configuration reproduces EW loop corrections predictions with precision better than $\Delta A_{F B}=-0.0001$ in the full mass range shown, but the remaining box corrections are at $\Delta A_{F B}=-0.002$ around $m_{e e}=150 \mathrm{GeV}$.

Figure 2: Top-left: lineshape distribution as generated with Powheg+MinLO (blue triangles) and after reweighting introducing all EW corrections discussed (red triangles). The points are barely distinguishable. Ratios of the lineshapes with gradually introduced EW corrections. In consecutive plots as a reference (black dashed line): (i) reweighted to EW LO $\alpha(0)$ scheme (top-right), (ii) reweighted to effective Born ($L E P$) (bottom-left) and (iii) reweighted to effective Born (LEP with improved norm.) (bottom-right) was used.

Figure 3: Top-left: the $A_{F B}$ distribution as generated in Powheg+MiNLO sample (blue triangles) and after reweighting introducing all EW corrections (red triangles). The two choices are barely distinguishable. The differences $\Delta A_{F B}=A_{F B}-A_{F B}^{r e f}$, due to gradually introduced EW corrections. In consecutive plots as a reference (black dashed line): (i) reweighted to EW LO $\alpha(0)$ scheme (top-right), (ii) reweighted to effective Born ($L E P$) (bottom-left) and (iii) reweighted to effective Born (LEP with improved norm.) (bottom-right) was used.

Plots should be updated with Dizet 6.XX form factors.

Table 7: Shown availability for QCD corrections and EW schemes with different codes.

Program	QCD	EW	EW scheme	Comments
Powheg_ew	LO	LO	$\alpha(0) \mathrm{v} 0$	pole mass, fixed Γ_{Z}
		LO, NLO, NLO+HO	$\alpha(0) \mathrm{v} 1$	
		LO, NLO, NLO+HO	G_{μ}	
		LO, NLO, NLO+HO	$\sin ^{2} \theta_{\text {eff }} \mathrm{v} 1$	
		LO, NLO, NLO+HO	$\sin ^{2} \theta_{e f f} \mathrm{v} 2$	
	NLO	NLO+HO	G_{μ}	pole mass, fixed Γ_{Z}
MCSANC	LO	$\begin{aligned} & \text { LO, NLO, NLO+HO } \\ & \text { LO, NLO, NLO+HO } \end{aligned}$	$\begin{aligned} & \hline \alpha(0) \mathrm{v} 1 \\ & G_{\mu} \end{aligned}$	pole mass, fixed Γ_{Z}
Dizet $\mathrm{FF}+w t^{\text {EW }}$	MC event	LO, NLO+HO	$\alpha(0)$ v0	on-shell mass, running $\Gamma_{2}^{1}{ }_{-}^{1}$

2.4 Benchmark results from Powheg_ew, MCSANC, PowhegZj+wt ${ }^{E W}$

In this section we collect results for Powheg_ew, MCSANC and PowhegZ $j+w t^{E W}$, for benchmark EW schemes defined as in Table 13 . Not all EW schemes where implemented in all programs. Table 7 specify the order of QCD and EW corrections which were used for the comparisons presented in this Section.

Comparisons between different programs and EW calculations are performed for the ratios of differential cross-sections and the differences of forward-backward asymmetries, between EW LO and NLO or NLO+HO predictions, always calculated with the same program. Those ratios or differences are then compared between different calculations. This approach to large extend minimises impact from not tuned QCD component of the predictions: structure functions, QCD scale, matrix element order, etc. Also, as pointed in Table 7 , two out of three programs are using pole mass and fixed Γ_{Z}, while the third one is using on-shell mass and running Γ_{Z}.

The PowhegZj+wt ${ }^{E W}$ which is using form-factors from Dizet library, also provides predictions for the (NLO +HO - LO) corrections in other schemes. The $w t^{E W}$, as exlained in Appendix E is used to are reweighted at EW LO to different schemes. Then it is assumed that absolute predictions in different EW schemes should agree at NLO +HO , which indeed is the case for Powheg_ew estimates, see Tables 26 and 27 . With this assumptions, the ratios $\mathrm{NLO}+\mathrm{HO} / \mathrm{LO}$ or differences $\mathrm{NLO}+\mathrm{HO}-\mathrm{LO}$ can be calculated with PowhegZj$+w t^{E W}$, using predictions of EW NLO + HO with $\alpha(0)$ v0 scheme and EW LO with either of three schemes.

Figure 4: The EW LO predictions for radio of cross-sections and $\Delta A_{F B}$ between different EW schemes: $\alpha(0)$ v0 and G_{μ}. Shown results with PowhegZj $+w t^{E W}$ and MCSANC.
Make better quality plot

2.4.1 Benchmarks at EW LO

Comparison of the cross-sections ratios for different EW schemes, predicted by Powheg_ew and PowhegZj+wt ${ }^{E W}$ are shown in Table 8 Similar comparison for forward-backward asymmetry is shown in Table 9 The ratio of lineshapes and difference for forward-backward asymmetry are shown in Fig. 4 comparison between MCSANC and PowhegZj+wt ${ }^{E W}$. Similar agreement was obtained when comparing with Powheg_ew. They confirm very good tuning at EW LO and also that comparisons between programs with different implementation of QCD components can be done quite precisely, ones comparing ratios or differences of ratios. For Powheg_ew shown are also absolute predictions, while for PowhegZj$+w t^{E W}$ are not ${ }^{2}$ Note for example that as at EW LO, schemes $\alpha(0)$ v1 and G_{μ} were tuned to share the same value of s_{W}^{2}, the difference $A_{F B}\left(G_{\mu}\right)-A_{F B}(\alpha(0) v 1)$ is equal to zero,

[^0]Table 8: Cross-sections and cross-section ratios estimated at EW LO with Powheg_ew and PowhegZj+wt ${ }^{E W}$, for three mass windows.

	$m_{e e}=89-93 \mathrm{GeV}$	$m_{e e}=80-100 \mathrm{GeV}$	$m_{e e}=70-120 \mathrm{GeV}$
Cross-section [pb]			
Powheg_ew			
$\alpha(0) \mathrm{v0}$	630.848722	906.156051	959.658977
$\alpha(0) \mathrm{v} 1$	571.411296	821.363274	870.729908
G_{μ}	612.514433	880.446121	933.363827
Cross-section ratios			
$\alpha(0) \mathrm{v} 1 / \alpha(0) \mathrm{v0}$			0.9 .907333
Powheg_ew	0.905782	0.906462	0.907347
PowhegZj+wt $t^{E W}$	0.905596		0.972600
$G_{\mu} / \alpha(0) \mathrm{v0}$		0.971627	0.974501
Powheg_ew	0.970937	0.973550	
PowhegZj+wt $t^{E W}$	0.972622		1.071933
$G_{\mu} / \alpha(0) \mathrm{v} 1$		1.071933	1.074010
Powheg_ew	1.071933		
PowhegZj+wt $t^{E W}$	1.074010		

Table 9: Cross-sections difference in forward and backward hemispheres and forward-backward asymmetry as estimated at EW LO with Powheg_ew and PowhegZj+wt ${ }^{E W}$, for three mass windows. The pole definition is used for input parameters as in Table 14

	$m_{e e}=89-93 \mathrm{GeV}$	$m_{e e}=80-100 \mathrm{GeV}$	$m_{e e}=70-120 \mathrm{GeV}$
Forward-backward asymmetry $A_{F B}$			
Powheg_ew			
$\alpha(0) \mathrm{v0}$	0.06691361	0.06392369	0.06253754
$\alpha(0) \mathrm{v} 1$	0.04653886	0.04343789	0.04212883
G_{μ}	0.04653886	0.04343789	0.04212883
$\Delta A_{F B}$			
$\alpha(0) \mathrm{v1}-\alpha(0) \mathrm{v0}$			
Powheg_ew	0.020375	0.020486	0.020487
PowhegZj+wt ${ }^{E W}$	0.019800	0.020040	0.019978
$G_{\mu}-\alpha(0) \mathrm{v0}$			0.020487
Powheg_ew	0.020375	0.020486	0.019978
PowhegZj+wt ${ }^{E W}$	0.019800	0.020040	
$G_{\mu}-\alpha(0) \mathrm{v} 1$			0.0
Powheg_ew	0.0	0.0	0.0
PowhegZj+wt ${ }^{E W}$		0.0	

2.4.2 Benchmarks at EW NLO, NLO+HO

The following tables and figures contain comparisons between ratio of cross-sections or differences of forwardbackward asymmetries between different EW schemes or same EW scheme but different level of corrections.

Tables:

- Table 10 Cross-sections ratios estimated with Powheg_ew and PowhegZj+wt ${ }^{E W}$, different EW schemes, comparison at EW LO and NLO+HO.
- Table 11. Forward-backward asymmetry differences as estimated by PowhegZj+wt ${ }^{E W}$ and Powheg_ew, different EW schemes, comparison at EW LO and NLO+HO.

Figures:

- Figure 55. The lineshape predictions with Powheg_ew and MCSANC. Comparison of ratios EW NLO/LO and $\mathrm{NLO}+\mathrm{HO} / \mathrm{LO}$.
- Figure 6 The lineshape predictions with Powheg_ew, MCSANC and PowhegZj+wt ${ }^{E W}$. Comparison of EW NLO+HO/LO, different EW schemes.
- Figure 7. The $\Delta A_{F B}$ predictions with Powheg_ew and MCSANC. Comparison at EW LO, NLO, NLO+HO, different EW schemes.
- Figure 8. The $\Delta A_{F B}$ predictions with Powheg_ew and MCSANC and PowhegZj+wt ${ }^{E W}$. Comparisons of EW LO, NLO, NLO+HO, different EW schemes.

Observations:

- Tables 10 and 11 shows very good agreement between Powheg_ew and PowhegZj+wt ${ }^{E W}$ predictions for cross-section NLO $+\mathrm{HO} / \mathrm{LO}$ and $A_{F B} \mathrm{NLO}+\mathrm{HO}-\mathrm{HO}$ corrections in $\alpha(0) \mathrm{v} 1$ and G_{μ} schemes.
- Figure 5

Top plots: Very good agreement between MCSANC and Powheg_ew for $\sigma_{N L O} / \sigma_{L O}$. Both EW schemes: $\alpha(0)$ v1 and G_{μ}.
Bottom plots: Apparent shift in $\sigma_{N L O+H O} / \Delta \sigma_{L O}$ for $\alpha(0) \mathrm{v} 1$ scheme. Almost OK for G_{μ} scheme.

- Figure 6

Top plots: same observation as above about disagreement on HO corrections between MCSANC and Powheg_ew for $\alpha(0)$ v1 scheme.
Bottom plot: PowhegZj+wt ${ }^{E W}$ and Powheg_ew in good agreement for NLO+HO at Z-pole, but discrepant at the level on 0.005 in relative corrections below and above Z peak.

- Figure 7

Top plots: Very good agreement between MCSANC and Powheg_ew for $\Delta A_{F B}(N L O-L O)$. Both EW schemes: $\alpha(0) \mathrm{v} 1$ and G_{μ}.
Bottom plots: Apparent shift in $\Delta A_{F B}(N L O+H O-L O)$ for $\alpha(0) \mathrm{v} 1$ scheme. Almost OK for G_{μ} scheme.

- Figure 8

Top plots: same observation as above about disagreement on HO corrections between MCSANC and Powheg_ew for $\alpha(0)$ v1 scheme.
Bottom plot: PowhegZj+wt $t^{E W}$ and Powheg_ew in good agreement for NLO+HO at Z-pole and below, but discrepant at the level up to 0.005 in absolute corrections above Z peak.

2.5 Theoretical uncertainties and conclusions

Table 10: Cross-sections ratios estimated with Powheg_ew and PowhegZj+wt ${ }^{E W}$ for three mass windows.

	EW order	$m_{e e}=89-93 \mathrm{GeV}$	$m_{e e}=80-100 \mathrm{GeV}$	$m_{e e}=70-120 \mathrm{GeV}$
Powheg_ew	NLO+HO/LO			
$\alpha(0) \mathrm{v} 1$		1.06325	1.06374	1.06435
G_{μ}		0.99104	0.99229	0.99284
MCSANC	NLO+HO/LO			
$\alpha(0) \mathrm{v1}$		1.051194	1.066182	1.066778
G_{μ}		0.992299	0.992740	0.993295
PowhegZj+wt $t^{E W}$	NLO+HO/LO			
$\alpha(0) \mathrm{v0}$		0.96452	0.96611	0.96757
$\alpha(0) \mathrm{v} 1$	1.06506	1.06580	1.06640	
G_{μ}		0.99167	0.99223	0.99289

Table 11: Forward-backward asymmetry differences as estimated by PowhegZj+wt ${ }^{E W}$ and Powheg_ew, for three mass windows.

$\Delta A_{F B}$	EW order	$m_{e e}=89-93 \mathrm{GeV}$	$m_{e e}=80-100 \mathrm{GeV}$	$m_{e e}=70-120 \mathrm{GeV}$
Powheg_ew	NLO+HO - LO			
$\alpha(0) \mathrm{v} 1$		-0.015706	-0.015733	-0.015632
G_{μ}		-0.015636	-0.015660	-0.015560
MCSANC	NLO+HO - LO			
$\alpha(0) \mathrm{v} 1$		-0.001444	-0.001444	-0.001436
G_{μ}	-0.001523	-0.001525	-0.001516	
PowhegZj+wt ${ }^{E W}$	NLO+HO - LO			
$\alpha(0) \mathrm{v} 1$		-0.015838	-0.015792	-0.015688
$\left.G_{\mu}\right)$	-0.015838	-0.015792	-0.015688	

Figure 5: The lineshape predictions with Powheg_ew, MCSANC. Comparison of EW NLO/LO and NLO+HO/NLO.

Figure 6: The lineshape predictions with Powheg_ew, MCSANC and PowhegZj+wt ${ }^{E W}$. Comparisons of EW NLO+HO/LO, different EW schemes.

Figure 7: The $\Delta A_{F B}$ predictions with Powheg_ew and MCSANC. Comparisons of EW LO, NLO, NLO+HO, different EW schemes.

Figure 8: The $\Delta A_{F B}$ predictions with Powheg_ew, MCSANC and PowhegZj+wt ${ }^{E W}$. Comparisons of EW LO, NLO +HO , different EW schemes.

3 QED emissions

Authors: Alessandro (HORACE), Fulvio (Powheg_ew), Serge/Lida (MCSANC), Scott (KKMC-hh), Doreen?(ZGRAD2) Content:

- Separation of contributions from ISR and IFI.
- Photon-induced processes and use of LUXQED PDFs
- Short description of calculations and tools used and of their configuration
- Numerical results and comparisons
- Theoretical uncertainties and conclusions

3.1 Introduction

3.2 Overview of calculations and tools

3.3 Numerical results for QED ISR and IFI

3.4 Photon-induced processes

3.5 Theoretical uncertainties and conclusions

4 A possible strategy for run-2 measurements and combinations at the LHC

Authors: ATLAS/CMS/LHCb/theorists
Content:

- Differential observables and expected measurement uncertainties
- Intepretation tools
- Combination tools
- Expected uncertainties and conclusions

4.1 Introduction

4.2 Observables used for comparisons of expectations between experiments
4.3 Interpretation tools
4.3.1 QCD tools: DYTurbo, NNLOJET
4.3.2 QED/EW tools: Dizet, Powheg EW, MC-SANC, ZGRAD2?

4.4 Combination tools

4.4.1 Correlations between measurements: PDFs, QCD, QED/EW
4.4.2 Profile likelihood fit to all observables and direct extraction of weak mixing angle
4.4.3 Compatibility tests between measurements of different experiments
4.4.4 Profile likelihood fit to all observables and direct extraction of weak mixing angle

4.5 Expected breakdown of uncertainties and conclusions

4.5.1 Measurement uncertainties
4.5.2 PDF uncertainties
4.5.3 QED/EW uncertainties
4.5.4 QCD uncertainties
4.5.5 Parametric uncertainties
4.5.6 Conclusions

Acknowledgments

References

[1] SLD Electroweak Group, DELPHI, ALEPH, SLD, SLD Heavy Flavour Group, OPAL, LEP Electroweak Working Group, L3 Collaboration, S. Schael et al., Phys. Rept. 427 (2006) 257-454, hep-ex/0509008.
[2] D. Yu. Bardin, P. Christova, M. Jack, L. Kalinovskaya, A. Olchevski, S. Riemann, and T. Riemann, Comput. Phys. Commun. 133 (2001) 229-395, hep-ph/9908433.
[3] A. B. Arbuzov, M. Awramik, M. Czakon, A. Freitas, M. W. Grunewald, K. Monig, S. Riemann, and T. Riemann, Comput. Phys. Commun. 174 (2006) 728-758, hep-ph/0507146.
[4] S. Jadach, B. F. L. Ward, and Z. Was, Phys. Rev. D88 (2013), no. 11 114022, 1307.4037.
[5] G. Altarelli, R. Kleiss, and C. Verzegnassi, eds., Z physics at LEP-1. Proceedings, Workshop, Geneva, Switzerland, September 4-5, 1989. vol. 1: Standard Physics, 1989.
[6] F. A. Berends, R. Kleiss, and S. Jadach, Comput. Phys. Commun. 29 (1983) 185-200.
[7] E. Richter-Was and Z. Was, Eur. Phys. J. C76 (2016), no. 8 473, 1605.05450
[8] E. Richter-Was and Z. Was, 1609.02536 .
[9] J. H. Kuhn, A. Kulesza, S. Pozzorini, and M. Schulze, Nucl. Phys. B727 (2005) 368-394, hep-ph/0507178.
[10] S. Jadach, B. Ward, and Z. Was, Comput.Phys.Commun. 130 (2000) 260-325, hep-ph/9912214.
[11] Z. Czyczula, T. Przedzinski, and Z. Was, Eur.Phys.J. C72 (2012) 1988, 1201.0117
[12] D. Yu. Bardin, M. S. Bilenky, T. Riemann, M. Sachwitz, and H. Vogt, Comput. Phys. Commun. 59 (1990) 303-312.
[13] A. Andonov, A. Arbuzov, D. Bardin, S. Bondarenko, P. Christova, L. Kalinovskaya, V. Kolesnikov, and R. Sadykov, Comput. Phys. Commun. 181 (2010) 305-312, 0812.4207.
[14] A. Akhundov, A. Arbuzov, S. Riemann, and T. Riemann, Phys. Part. Nucl. 45 (2014), no. 3 529-549, 1302.1395 ,
[15] Dizet and new version.
[16] M. Tabanashi et al., Phys. Rev. D98 (2018) 030001.
[17] A. Freitas et al., 1906.05379.
[18] S. G. Bondarenko and A. A. Sapronov, Comput. Phys. Commun. 184 (2013) 2343-2350, 1301.3687.
[19] A. Arbuzov, D. Bardin, S. Bondarenko, P. Christova, L. Kalinovskaya, U. Klein, V. Kolesnikov, L. Rumyantsev, R. Sadykov, and A. Sapronov, JETP Lett. 103 (2016), no. 2 131-136, 1509.03052.
[20] H. Burkhardt and B. Pietrzyk, Phys. Lett. B513 (2001) 46-52.
[21] E. Richter-Was and Z. Was, Eur. Phys. J. C79 (2019), no. 6 480, 1808.08616
[22] Particle Data Group Collaboration, C. Patrignani et al., Chin. Phys. C40 (2016), no. 10100001.
[23] S. Alioli et al., Eur. Phys. J. C77 (2017), no. 5 280, 1606.02330.
[24] W. J. Marciano and A. Sirlin, Phys. Rev. D22 (1980) 2695, [Erratum: Phys. Rev.D31,213(1985)].
[25] D. R. Yennie, S. C. Frautschi, and H. Suura, Annals Phys. 13 (1961) 379-452.
[26] M. Chiesa, F. Piccinini, and A. Vicini, 1906.11569 .
[27] D. Yu. Bardin, P. K. Khristova, and O. M. Fedorenko, Nucl. Phys. B175 (1980) 435-461.
[28] D. Yu. Bardin, P. K. Khristova, and O. M. Fedorenko, Nucl. Phys. B197 (1982) 1-44.
[29] A. Sirlin, Phys. Rev. D22 (1980) 971-981.
[30] F. Jegerlehner, 1711.06089 .
[31] A. Blondel, J. Gluza, S. Jadach, P. Janot, and T. Riemann, eds., Theory report on the 11th FCC-ee workshop, 2019.
[32] T. Przedzinski, E. Richter-Was, and Z. Was, Eur. Phys. J. C74 (2014), no. 11 3177, 1406.1647
[33] N. Davidson, G. Nanava, T. Przedzinski, E. Richter-Was, and Z. Was, Comput.Phys.Commun. 183 (2012) 821-843,1002.0543.
[34] Z. Was and S. Jadach, Phys. Rev. D41 (1990) 1425.
[35] J. C. Collins and D. E. Soper, Phys. Rev. D16 (1977) 2219.

A EW schemes

There are several ingredients that goes into definition of EW schemes

- Choice of the input parameters
- Renormalisation scheme
- Treatment of other corrections: treatment of self-energy corrections in the propagator (running or fixed width), on-mass-shell or pole mass in the propagator.
- Something more?

Formally, at the lowest EW order, only three parameters can be set, others are calculated using Standard Model constraints, following structure of $S U(2) \times U(1)$ group. One of such constraint is given in formula (38). The most common choices at hadron colliders, following report [23], are G_{μ} scheme $\left(G_{\mu}, M_{Z}, M_{W}\right)$ and $\alpha(0)$ scheme $\left(\alpha(0), M_{Z}, M_{W}\right)$. There exists by now family of different modifications of G_{μ} scheme, see discussion in [23], and they are considered as preferred schemes for hadron collider physics.

The Monte Carlo generators usually allow user to define set of input parameters (α, M_{Z}, M_{W}), (α, M_{Z}, G_{μ}) or $\left(\alpha, M_{Z}, s_{W}^{2}\right)$. However within this flexibility, formally multiplicative factor in the Z-boson propagator $\chi_{Z}(s)$, see formula 20, is always kept to be equal to 1 . The

$$
\begin{equation*}
\frac{G_{\mu} \cdot M_{z}^{2} \cdot 16 \cdot c_{W}^{2} \cdot s_{W}^{2}}{\sqrt{2} \cdot 8 \pi \cdot \alpha}=1 \tag{8}
\end{equation*}
$$

where $s_{W}^{2}=1-m_{W}^{2} / m_{Z}^{2}$ and $c_{W}^{2}=1-s_{W}^{2}$. This term is quite often absent in the programs code. Whichever the choice of parameters set is used as primary ones, the others are adjusted to match the constraint (8), regardless if they fall outside their measurement uncertainties or not.

Let us recall, that the calculations of EW corrections available in Dizet library work with somewhat different convention of the $\alpha(0)$ scheme, defined by the set of input parameters $\left(\alpha(0), G_{\mu}, M_{Z}\right)$, then M_{W} is calculated iterating formula (35), which formally brings it beyond EW LO scheme. The value of s_{W}^{2} is calculated from 39 , and the EW LO relation (38) does not hold anymore.

For the comparisons performed here we consider following schemes:

A. 1 EW scheme: $\alpha(0), G_{\mu}, M_{Z}$

This choice will be denoted as $\alpha(0)$ v0 scheme.
Here are formulas to recalculate remaining EW parameters:

$$
\begin{align*}
d 2 & =\frac{\sqrt{2} \cdot 8 \pi \cdot \alpha}{G_{\mu} \cdot M_{z}^{2}} \tag{9}\\
s_{W}^{2} & =(-1+\sqrt{1-d 2 / 4}) / 2 \tag{10}\\
m_{W}^{2} & =\left(1-s_{W}^{2}\right) \cdot M_{Z}^{2} \tag{11}
\end{align*}
$$

A. 2 EW scheme: $\alpha(0), M_{W}, M_{Z}$

This choice will be denoted as $\alpha(0)$ v1 scheme.
Here are formulas to recalculate remaining EW parameters:

$$
\begin{align*}
s_{W}^{2} & =1-M_{W}^{2} / M_{Z}^{2} \\
g 2 & =4 \cdot \pi \cdot \alpha / s_{W}^{2} \tag{12}\\
G_{\mu} & =\sqrt{2} \cdot g 2 / 8 / M_{W}^{2}
\end{align*}
$$

A. 3 EW scheme: G_{μ}, M_{Z}, M_{W}

This choice will be denoted as G_{μ} scheme.
A convenient set of parameters that describes EW processes at hadron colliders is $\left(G_{\mu}, M_{W}, M_{Z}\right)$, the so called G_{μ} scheme. The Fermi constant G_{μ} measured in muon decay naturally parametrize the CC interaction, while the W and Z masses fix the scale of EW phenomena and the mixing with hyper-charge field. A drawback of this choice is the fact that the coupling of real photons to charge particles is computed from the inputs and in lowest order is equal to

$$
\begin{equation*}
\alpha=G_{\mu} \sqrt{2} M_{W}^{2}\left(1-M_{W}^{2} / M_{Z}^{2}\right) / \pi \sim 1 / 132 \tag{13}
\end{equation*}
$$

much larger that the fine structure constant $\alpha(0)=1 / 137$, which is a natural value for an on-shell photons.
This drawback can be circumvented by a use of modified G_{μ} scheme when only LO couplings are re-expressed in terms of α

$$
\begin{equation*}
\alpha_{Q E D}=\alpha(0) \rightarrow \alpha(1-\Delta r) \tag{14}
\end{equation*}
$$

and the Sirlin's parameter Δr [24], representing the complete NLO EW radiative corrections of $O(\alpha)$ to the muon decay amplitude. Both real and virtual relative corrections are calculated at the scale $O(\alpha)$, therefore such an approach may be referred as NLO at $O\left(\alpha G_{\mu}^{2}\right)$. In this scheme leading universal corrections due to the running of α and connected to the ρ parameter are absorbed in the LO couplings.

Further modifications maybe considered. For the NC DY the gauge invariant separation of complete EW radiative corrections into pure weak and QED corrections (involving virtual and real photons) is possible. Therefore, these two contributions may be considered at different scales, pure weak at $O\left(G_{\mu}^{3}\right)$, and QED still at $O\left(\alpha G_{\mu}^{2}\right)$. More refined modifications may be considered, for instance based on defining gauge invariant subsets by using the Yennie-Frautschi-Suura approach [25].

Here are formulas to calculate remaining EW parameters:

$$
\begin{align*}
s_{W}^{2} & =1-M_{W}^{2} / M_{Z}^{2} \\
g 2 & =8 \cdot G_{\mu} \cdot M_{W}^{2} / \sqrt{2} \tag{15}\\
\alpha & =g 2 \cdot s_{W}^{2} / 4 / \pi
\end{align*}
$$

A. 4 EW scheme: $\alpha(0), s_{W}^{2}, M_{Z}$

This choice will be denoted as $\sin _{\text {eff }}^{2}$ v1 scheme.
Text to be written, based on recent publication [26]

A. 5 EW scheme: $G_{\mu}, s_{W}^{2}, M_{Z}$

This choice will be denoted as $\sin _{e f f}^{2} \mathrm{v} 2$ scheme.
Text to be written, based on recent publication [26]

A. 6 Benchmark initialisation

Benchmark initialisation of the different EW schemes are chosen such that they share value of one or more input parameters which facilitate comparison of the cross-sections or asymmetries at the EW LO. The $\alpha(0) \mathrm{v} 0$ and v 1 share same value of α, the $\alpha(0)$ v1 and G_{μ} schemes same value of M_{W} (and therefore s_{W}^{2}). In all three cases the M_{Z} and Γ_{Z} are the same. Common is also choice for the fermion masses, quarks and leptons and for the Higgs boson mass, as shown in Table 12.

Table 12: Values of fermions and Higgs boson massed used for calculating EW corrections.

Parameter	Mass (GeV)	Description
m_{e}	$5.1099907 \mathrm{e}-4$	mass of electron
m_{μ}	0.1056583	mass of muon
m_{τ}	1.7770500	mass of tau
m_{u}	0.0620000	mass of up-quark
m_{d}	0.0830000	mass of down-quark
m_{c}	1.5000000	mass of charm-quark
m_{s}	0.2150000	mass of strange-quark
m_{b}	4.7000000	mass of bottom-quark
m_{t}	173.0	mass of top quark
m_{H}	125.0	mass of Higgs boson

Table 13: The EW parameters used at tree-level EW, with on-mass-shell definition (LEP convention).

Parameter	$\left(\alpha(0), G_{\mu}, M_{Z}\right)$	$\left(\alpha(0), M_{W}, M_{Z}\right)$	$\left(G_{\mu}, M_{Z}, M_{W}\right)$	$\left(\alpha(0), s_{W}^{2}, M_{Z}\right)$	$\left(G_{\mu}, s_{W}^{2}, M_{Z}\right)$
	$\alpha(0) \mathrm{v} 0$	$\alpha(0) \mathrm{v} 1$	G_{μ}	$\sin _{\text {eff }}^{2} \mathrm{v} 1$	$\sin _{e f f}^{2} \mathrm{v} 2$
$M_{Z}(\mathrm{GeV})$	91.1876	91.1876	91.1876	91.1876	91.1876
$\Gamma_{Z}(\mathrm{GeV})$	2.4952	2.4952	2.4952	2.4952	2.4952
$\Gamma_{W}(\mathrm{GeV})$	2.085	2.085	2.085	2.085	2.085
$1 / \alpha$	137.035999139	137.035999139	132.23323	137.035999139	128.744939484
α	0.007297353	0.007297353	0.007562396	0.007297353	0.007767296
$G_{\mu}\left(\mathrm{GeV}^{-2}\right)$	$1.1663787 \cdot 10^{-5}$	$1.1254734 \cdot 10^{-5}$	$1.1663787 \cdot 10^{-5}$	$1.09580954 \cdot 10^{-5}$	$1.1663787 \cdot 10^{-5}$
$M_{W}\left(\mathrm{GeV}^{2}\right.$	80.93886	80.385	80.385	79.93886984	79.93886984
s_{W}^{2}	0.2121517	0.2228972	0.2228972	0.231499	0.231499
$\frac{G_{\mu} \cdot M_{Z}^{2} \cdot 16 c_{W}^{2} s_{W}^{2}}{\sqrt{2} \cdot 8 \pi \cdot \alpha}=1.0$	$\rightarrow s_{W}^{2}, M_{W}$	$\rightarrow G_{\mu}, s_{W}^{2}$	$\rightarrow \alpha, s_{W}^{2}$	$\rightarrow G_{\mu}, m_{W}$	$\rightarrow \alpha, m_{W}$
$s_{W}^{2}=1-m_{W}^{2} / m_{Z}^{2}$					
$\alpha_{S}\left(M_{Z}\right)$	0.120178900000	0.120178900000	0.120178900000	0.120178900000	0.120178900000

Parameter	$\left(\alpha(0), G_{\mu}, M_{Z}\right)$	$\left(\alpha(0), M_{W}, M_{Z}\right)$	$\left(G_{\mu}, M_{Z}, M_{W}\right)$	$\left(\alpha(0), s_{W}^{2}, M_{Z}\right)$	$\left(G_{\mu}, s_{W}^{2}, M_{Z}\right)$
	$\alpha(0) \mathrm{v} 0$	$\alpha(0) \mathrm{v} 1$	G_{μ}	$\sin _{e f f}^{2} \mathrm{v} 1$	$\sin _{e f f}^{2} \mathrm{v} 2$
$M_{Z}(\mathrm{GeV})$	91.15348	91.15348	91.15348	91.15348	91.15348
$\Gamma_{Z}(\mathrm{GeV})$	2.494266	2.494266	2.494266	2.494266	2.494266
$\Gamma_{W}(\mathrm{GeV})$	2.085	2.085	2.085	2.085	2.085
$1 / \alpha$	137.035999139	137.035999139	132.3572336357709	137.035999139	128.84133952
α	0.007297353	0.007297353	0.007555311	0.007297353	0.007761484
$G_{\mu}\left(\mathrm{GeV}^{-2}\right)$	$1.1663787 \cdot 10^{-5}$	$1.126555497 \cdot 10^{-5}$	$1.1663787 \cdot 10^{-5}$	$1.09663005 \cdot 10^{-5}$	$1.1663787 \cdot 10^{-5}$
$M_{W}(\mathrm{GeV})$	80.91191	80.35797	80.35797	79.90895881	79.90895881
s_{W}^{2}	0.21208680	0.22283820939	0.22283820939	0.231499	0.231499
$\frac{G_{\mu} \cdot M_{Z}^{2} \cdot 16 c_{W}^{2} s_{W}^{2}}{\sqrt{2} \cdot 8 \pi \cdot \alpha}=1.0$	$\rightarrow s_{W}^{2}, M_{W}$	$\rightarrow G_{\mu}, s_{W}^{2}$	$\rightarrow \alpha, s_{W}^{2}$	$\rightarrow G_{\mu}, m_{W}$	$\rightarrow \alpha, m_{W}$
$s_{W}^{2}=1-m_{W}^{2} / m_{Z}^{2}$					
$\alpha_{s}\left(M_{Z}\right)$	0.120178900000	0.120178900000	0.120178900000	0.120178900000	0.120178900000

B Improved Born Approximation

Comment: Content of this section is taken from [21].

At LEP times, to match higher order QED effects with the loop corrections of electroweak sector, concept of electroweak form factors was introduced [5]. This arrangement was very beneficial and enabled common treatment of one loop electroweak effects with not only higher order QED corrections including bremsstrahlung, but also to incorporate higher order loops into Z and photon propagators, see eg. documentation of KKMC Monte Carlo [4] or Dizet [2]. Such description has its limitations for the LHC applications, but for the processes of the Drell-Yan type with a moderate virtuality of produced lepton pairs is expected to be useful, even in case when high p_{T} jets are present. For the LEP applications [1], the EW form factors were used together with multiphoton bremsstrahlung amplitudes. For the purpose of this Section we discuss use for parton level Born processes only, no QED ISR/FSR.

The approximation which is discussed here is called Improved Born Approximation (IBA) [2]. It absorbs some or all of higher order EW corrections by redefinition of couplings and propagators in the Born spin amplitude, and allows to calculate doubly deconvoluted observables, like various cross-sections and asymmetries.

The initial/final QCD and QED corrections, form separately gauge invariant subsets of diagrams [2]. The QED subset consists of QED-vertices, $\gamma \gamma$ and γZ boxes, bremsstrahlung diagrams. Fermionic self-energies have to be also taken into account. Corresponding subset can be constructed also for the initial/final QCD corrections. All the remaining corrections contribute to the IBA: purely EW loop and boxes and internal QCD corrections (lineshape corrections). They can be split into two more gauge-invariant subsets, giving rise to two improved (or dressed) amplitudes: (i) improved γ exchange amplitude with running QED coupling where only fermion loops contribute and (ii) improved Z-boson exchange amplitude with four, in general complex, $E W$ form factors: $\rho_{\ell f}, \mathscr{K}_{\ell}, \mathscr{K}_{f}, \mathscr{K}_{\ell f}$. Components of those corrections are as following:

- Corrections to photon propagator, where only fermion loops contribute, so called vacuum-polarisation corrections.
- Corrections to Z-boson propagator and couplings, called EW form-factors.
- Contribution from the purely weak boxes, the $W W$ and $Z Z$ diagrams. They are negligible at the Z-peak (suppressed by the factor $\left(s-M_{Z}^{2}\right) / s$), but very important at higher energies. They enter as corrections to form-factors and introduce dependence on $\cos \theta$ of scattering angle.
- Mixed $O\left(\alpha \alpha_{s}\right)$ corrections which originate from gluon insertions to the fermionic components of bosonic self-energies. They also enter as corrections to all form-factors.

Below, to define notation we present formula of the Born spin amplitude $\mathscr{A}^{\text {Born }}$. We recall here conventions from [2]. Let us start with defining the lowest order coupling constants (without EW corrections) of the Z boson to fermions: $s_{W}^{2}=1-m_{W}^{2} / m_{Z}^{2}$ defines weak angle $\sin \theta_{W}^{2}$ in the on-shell scheme and $T_{3}^{\ell, f}$ third component of the isospin. The vector v_{ℓ}, v_{f} and axial a_{ℓ}, a_{f} couplings for leptons and quarks are defined with the formulae below ${ }^{3}$

$$
\begin{align*}
v_{\ell} & =\left(2 \cdot T_{3}^{\ell}-4 \cdot q_{\ell} \cdot s_{W}^{2}\right) / \Delta \\
v_{f} & =\left(2 \cdot T_{3}^{f}-4 \cdot q_{f} \cdot s_{W}^{2}\right) / \Delta, \tag{16}\\
a_{\ell} & =\left(2 \cdot T_{3}^{\ell}\right) / \Delta, \\
a_{f} & =\left(2 \cdot T_{3}^{f}\right) / \Delta .
\end{align*}
$$

where

$$
\begin{equation*}
\Delta=\sqrt{16 \cdot s_{W}^{2} \cdot\left(1-s_{W}^{2}\right)} \tag{17}
\end{equation*}
$$

With this notation, spin amplitude for the $q \bar{q} \rightarrow Z / \gamma^{*} \rightarrow \ell^{+} \ell^{-}$, denoted as $\mathscr{A}^{\text {Born }}$, can be written as:

$$
\begin{align*}
\mathscr{A}^{\text {Born }}=\frac{\alpha}{s}\{\quad & {\left[\bar{u} \gamma^{\mu} v g_{\mu \nu} \bar{v} \gamma^{\nu} u\right] \cdot\left(q_{\ell} \cdot q_{f}\right) \cdot \chi_{\gamma}(s)+\left[\bar{u} \gamma^{\mu} v g_{\mu v} \bar{v} \gamma^{v} u \cdot\left(v_{\ell} \cdot v_{f}\right)\right.} \tag{18}\\
& \left.\left.+\bar{u} \gamma^{\mu} v g_{\mu \nu} \bar{v} \gamma^{v} \gamma^{5} u \cdot\left(v_{\ell} \cdot a_{f}\right)+\bar{u} \gamma^{\mu} \gamma^{5} v g_{\mu v} \bar{v} \gamma^{v} u \cdot\left(a_{\ell} \cdot v_{f}\right)+\bar{u} \gamma^{\mu} \gamma^{5} v g_{\mu \nu} \bar{v} \gamma^{v} \gamma^{5} u \cdot\left(a_{\ell} \cdot a_{f}\right)\right] \cdot \chi_{Z}(s)\right\}
\end{align*}
$$

[^1]where u, v denote fermion spinors, Z-boson and photon propagators are defined respectively as:
\[

$$
\begin{gather*}
\chi_{\gamma}(s)=1 \tag{19}\\
\chi_{Z}(s)=\frac{G_{\mu} \cdot M_{Z}^{2} \cdot \Delta^{2}}{\sqrt{2} \cdot 8 \pi \cdot \alpha} \cdot \frac{s}{s-M_{Z}^{2}+i \cdot \Gamma_{Z} \cdot s / M_{Z}} \tag{20}
\end{gather*}
$$
\]

Then, we redefine vector and axial couplings introducing EW form-factor corrections $\rho_{\ell f}, \mathscr{K}_{\ell}(s, t), \mathscr{K}_{f}(s, t), \mathscr{K}_{\ell f}$ as the following:

$$
\begin{align*}
v_{\ell} & =\left(2 \cdot T_{3}^{\ell}-4 \cdot q_{\ell} \cdot s_{W}^{2} \cdot \mathscr{K}_{\ell}(s, t)\right) / \Delta \\
v_{f} & =\left(2 \cdot T_{3}^{f}-4 \cdot q_{f} \cdot s_{W}^{2} \cdot \mathscr{K}_{f}(s, t)\right) / \Delta \tag{21}\\
a_{\ell} & =\left(2 \cdot T_{3}^{\ell}\right) / \Delta \\
a_{f} & =\left(2 \cdot T_{3}^{f}\right) / \Delta .
\end{align*}
$$

Normalisation correction $Z_{V_{\Pi}}$ to Z-boson propagator is defined as

$$
\begin{equation*}
Z_{V_{\Pi}}=\rho_{\ell f}(s, t) \tag{22}
\end{equation*}
$$

Vacuum polarisation corrections $\Gamma_{V_{\Pi}}$ to γ propagator are expressed as

$$
\begin{equation*}
\Gamma_{V_{\Pi}}=\frac{1}{2-\left(1+\Pi_{\gamma \gamma}(s)\right)} \tag{23}
\end{equation*}
$$

where $\Pi_{\gamma \gamma}(s)$ denotes vacuum polarisation corrections to photon propagator. Both $\Gamma_{V_{\Pi}}$ and $Z_{V_{\Pi}}$ are multiplicative correction factors. The $\rho_{\ell f}(s, t)$ can be also absorbed as multiplicative factor into definition of vector and axial couplings.

The EW form-factors $\rho_{\ell f}, \mathscr{K}_{\ell}(s, t), \mathscr{K}_{f}(s, t), \mathscr{K}_{\ell f}$ are functions of two Mandelstam invariants (s, t) due to the $W W$ and $Z Z$ box contributions. The Mandelstam variables are defined such that they satisfy the identity

$$
\begin{equation*}
s+t+u=0 \quad \text { where } \quad t=-\frac{s}{2}(1-\cos \theta) \tag{24}
\end{equation*}
$$

and $\cos \theta$ is the cosinus of the scattering angle, i.e. angle between incoming and outgoing fermion directions.
Note, that in this approach the mixed EW and QCD loop corrections, originating from gluon insertions to fermionic components of bosonic self-energies, are included in $\Gamma_{V_{\Pi}}, Z_{V_{\Pi}}$ factors.

One has to take also into account the angle dependent double-vector coupling corrections which break factorisation of the couplings shown in (18), into ones associated with either Z boson production or decay. This requires introducing mixed term:

$$
\begin{align*}
v v_{\ell f}= & \frac{1}{v_{\ell} \cdot v_{f}}\left[\left(2 \cdot T_{3}^{\ell}\right)\left(2 \cdot T_{3}^{f}\right)-4 \cdot q_{\ell} \cdot s_{W}^{2} \cdot \mathscr{K}_{f}(s, t)\left(2 \cdot T_{3}^{\ell}\right)-4 \cdot q_{f} \cdot s_{W}^{2} \cdot \mathscr{K}_{\ell}(s, t)\left(2 \cdot T_{3}^{f}\right)\right. \tag{25}\\
& \left.+\left(4 \cdot q_{\ell} \cdot s_{W}^{2}\right)\left(4 \cdot q_{f} \cdot s_{W}^{2}\right) \mathscr{K}_{\ell f}(s, t)\right] \frac{1}{\Delta^{2}}
\end{align*}
$$

Finally, we can write the spin amplitude for Born with EW corrections, $\mathscr{A}^{\text {Born }+E W}$, as:

$$
\begin{align*}
\mathscr{A}^{B o r n+E W}= & \frac{\alpha}{s}\left\{\left[\bar{u} \gamma^{\mu} v g_{\mu \nu} \bar{v} \gamma^{v} u\right] \cdot\left(q_{\ell} \cdot q_{f}\right)\right] \cdot \Gamma_{V_{\Pi}} \cdot \chi_{\gamma}(s)+\left[\bar{u} \gamma^{\mu} v g_{\mu v} \bar{v} \gamma^{v} u \cdot\left(v_{\ell} \cdot v_{f} \cdot v v_{\ell f}\right)\right. \tag{26}\\
& \left.\left.+\bar{u} \gamma^{\mu} v g_{\mu \nu} \bar{v} \gamma^{v} \gamma^{5} u \cdot\left(v_{\ell} \cdot a_{f}\right)+\bar{u} \gamma^{\mu} \gamma^{5} v g_{\mu \nu} \bar{v} \gamma^{v} u \cdot\left(a_{\ell} \cdot v_{f}\right)+\bar{u} \gamma^{\mu} \gamma^{5} v g_{\mu v} \bar{v} \gamma^{v} \gamma^{5} u \cdot\left(a_{\ell} \cdot a_{f}\right)\right] \cdot Z_{V_{\Pi}} \cdot \chi_{Z}(s)\right\} .
\end{align*}
$$

The EW form factor corrections: $\rho_{\ell f}, \mathscr{K}_{\ell}, \mathscr{K}_{f}, \mathscr{K}_{\ell f}$ can be calculated using Dizet library. This library is also used to calculate vacuum polarisation corrections to photon propagator Π_{γ}. For the case of $p p$ collisions we do not introduce QCD corrections to vector and axial coupling in initial fermion vertex, as they will be included later as a part of the QCD NLO calculations of the initial state convolution with proton structure functions.

The Improved Born Approximation uses spin amplitude $\mathscr{A}^{\text {Born }+E W}$ of Eq. 26) and $2 \rightarrow 2$ body kinematics to define differential cross-section with EW corrections for $q \bar{q} \rightarrow Z / \gamma^{*} \rightarrow l l$ process. Presented above formulae very closely follow the approach taken for implementatior ${ }^{4}$ of EW corrections to KKMC Monte Carlo [4].

[^2]For completeness let us note that above discussion was presented for scattering process, however one may be interested in the decay process only. For this, effective couplings of Z-decay are often introduced; there are complex-valued constants as well.

The ratio of effective vector and axial couplings defines g_{Z}^{f} (here we use " f " for quark or lepton)

$$
\begin{equation*}
g_{Z}^{f}=\frac{v_{Z}^{f}}{a_{Z}^{f}}=1-4\left|q_{f}\right|\left(K_{Z}^{f} s_{W}^{2}+I_{f}^{2}\right) \tag{27}
\end{equation*}
$$

with

$$
\begin{equation*}
I_{f}^{2}=\alpha^{2}(s) \frac{35}{18}\left[1-\frac{8}{3} \operatorname{Re}\left(K_{Z}^{f}\right) s_{W}^{2}\right] \tag{28}
\end{equation*}
$$

and the flavour dependent effective weak mixing angles as

$$
\begin{equation*}
\sin ^{2} \theta_{e f f}^{f}=\operatorname{Re}\left(\mathscr{K}_{Z}^{f}\right) s_{W}^{2}+I_{f}^{2} \tag{29}
\end{equation*}
$$

C The s dependent Z-boson width

Comments:

This material is a placeholder for more advanced studies, for now it is just quantifying a problem.

- Using M_{Z}, Γ_{Z} values as measured at LEP with fixed width propagator $\chi_{Z}(s)$ leads to an effect on the level of $5 \cdot 10^{-4}$ on $A_{f b}$ integrated in the mass range $80-100 \mathrm{GeV}$, with respect to nominal predictions of propagator with running width. See Fig. 10 and Table 17.
- The "pole mass" convention is introducing shifted masses, see Table 14 which are then used with fixed width propagator. However it is just mathematical transformation as detailed in Eq.(??). This to be equivalent "to on-shell" convention, should also take into account normalisation factor N_{Z} which usually is not done.
- The question is however, how in the "pole mass" convention, resummation of the fermionic loop corrections to the propagator, which are otherwise modeled by running width in the propagator are accounted for.
- More material available from slides by F. Piccinini
https://indico.cern.ch/event/829225/contributions/3481094/attachments/1871705/3080271/piccinini.pdf

In formula (20) for the definition of Z propagator running width is used:

$$
\begin{equation*}
\chi_{Z}^{\prime}(s)=\frac{1}{s-M_{Z}^{2}+i \cdot \Gamma_{Z} \cdot s / M_{Z}} \tag{30}
\end{equation*}
$$

is often in use.
The form-factors are calculated for the nominal value of M_{Z}. The so-called s-dependent width is equivalent to further (still partial) resummation of loop corrections, the boson self-energy which is s dependent. This formula was used in many analyses of LEP era.

In many Monte Carlos of LHC era, the definition of Z propagator constant width is used:

$$
\begin{equation*}
\chi_{Z}(s)=\frac{1}{s-M_{Z}^{2}+i \cdot \Gamma_{Z} \cdot M_{Z}} . \tag{31}
\end{equation*}
$$

One can ask the simple question, how analytic forms of (??) and 31 translate to each other. Let us start from (??)

$$
\begin{align*}
\chi_{Z}^{\prime}(s) & =\frac{1}{s\left(1+i \cdot \Gamma_{Z} / M_{Z}\right)-M_{Z}^{2}} \\
& =\frac{\left(1-i \cdot \Gamma_{Z} / M_{Z}\right)}{s\left(1+\Gamma_{Z}^{2} / M_{Z}^{2}\right)-M_{Z}^{2}\left(1-i \cdot \Gamma_{Z} / M_{Z}\right)} \\
& =\frac{\left(1-i \cdot \Gamma_{Z} / M_{Z}\right)}{\left(1+\Gamma_{Z}^{2} / M_{Z}^{2}\right)} \frac{1}{s-\frac{M_{Z}^{2}}{1+\Gamma_{Z}^{2} / M_{Z}^{2}}+i \cdot \frac{\Gamma_{Z} M_{Z}}{1+\Gamma_{Z}^{2} / M_{Z}^{2}}} \\
& =N_{Z} \frac{1}{s-M_{Z}^{\prime 2}+i \Gamma_{Z}^{\prime} M_{Z}^{\prime}} \\
M_{Z}^{\prime} & =\frac{M_{Z}}{\sqrt{1+\Gamma_{Z}^{2} / M_{Z}^{2}}} \\
\Gamma_{Z}^{\prime} & =\frac{\Gamma_{Z}}{\sqrt{1+\Gamma_{Z}^{2} / M_{Z}^{2}}} \\
N_{Z} & =\frac{\left(1-i \cdot \Gamma_{Z} / M_{Z}\right)}{\left(1+\Gamma_{Z}^{2} / M_{Z}^{2}\right)}=\frac{\left(1-i \cdot \Gamma_{Z}^{\prime} / M_{Z}^{\prime}\right)}{\left(1+\Gamma_{Z}^{2} / M_{Z}^{\prime 2}\right)} \tag{32}
\end{align*}
$$

The s-dependent width in Z propagator translates into shift in Z propagator mass and width and introduction of the overall complex factor with respect to constant width definition. This last point is possibly least trivial as it

Figure 9: The line shape distribution after changing fixed to running Γ_{Z} in the Z-boson propagator $\chi(Z)$. I.e. using either Eq.(30) or Eq.(??) for the propagator, without redefining M_{Z} or other parameters.
effectively mean redefinition of Z coupling. That is why it can not be understood as parameter re-scaling. It points to present in higher order relations between vacuum polarization and vertex. Most of the changes are due to the term $\Gamma_{Z}^{2} / M_{Z}^{2}$ except of the overall phase which result from $1-i \cdot \Gamma_{Z} / M_{Z}$ factor and which change the γZ interference. The shift in M_{Z} is by about 34 MeV downwards, and the shift in Γ_{Z} by 1 MeV , due the reparametrisation of the Z-boson propagator.

In Figure 9 shown is effect of changing from fixed Γ_{Z} to running Γ_{Z} scheme without shift in the M_{Z} value. The relative S-shape corrections are due to shift in the peak position of the line-shape and are on the level of $\pm 1 \%$. In Figure 10 shown is effect on forward-backward asymmetry $A_{F B}$. In Table ?? shown are total, forward and backward cross-sections in a mass window, normalised to total generated sample, and forward-backward asymmetry. Results are shown for $w t^{E W}$ applied to generated sample to reweight to different EW LO schemes, using Z-boson propagator $\chi(Z)$ with fixed or running width. The last column shows difference $\Delta A_{F B}=A_{F B}\left(\right.$ fixed $\left.\Gamma_{Z}\right)-A_{F B}\left(\right.$ running $\left.\Gamma_{Z}\right)$. Table 17 shows results for predictions including EW NLO+HO form-factors corrections calculated with Dizet library.

Figure 10: The difference in forward-backward asymmetry after changing fixed to running Γ_{Z} in the Z-boson propagator $\chi(Z)$. I.e. using either Eq. 30 or Eq.(??) for the propagator, without redefining M_{Z} or other parameters.

Table 15: The cross-sections and $A_{F B}$ evaluated with fixed or running Z width in propagator $\chi(Z)$. Cross-section in mass window is given in fractions of total generated cross-section with PowhegZj. Predictions for EW LO $\alpha(0)$ v 0 scheme with $s_{W}^{2}=0.2121517$.

Γ_{Z} in $\chi(Z)$	$m_{l l}(\mathrm{GeV})$	σ	σ_{F}	σ_{B}	$\Delta \sigma_{F B}$	$A_{F B}$	$\Delta A_{F B}$
fixed	$90.9876-91.3876$	0.25193	0.13396	0.11797	0.01599	0.06346	
running		0.25356	0.13482	0.11874	0.01608	0.06343	0.00003
fixed	$90.8876-91.4876$	0.25193	0.13396	0.11797	0.01599	0.06346	
running		0.25356	0.13482	0.11874	0.01608	0.06343	0.00003
fixed	$90.6876-91.6876$	0.36371	0.19390	0.16981	0.02409	0.06623	
running		0.36317	0.19360	0.16957	0.02403	0.06616	0.00008
fixed	$80-100$	0.99486	0.52925	0.46561	0.06365	0.06398	
running		0.99507	0.52915	0.46592	0.06323	0.06354	0.00044

Table 16: The cross-sections and $A_{F B}$ evaluated with fixed or running Z width in propagator $\chi(Z)$. Cross-section in mass window is given in fractions of total generated events. Predictions for EW LO $\alpha(0)$ v1 scheme with s_{W}^{2} $=0.222838$.

Γ_{Z} in $\chi(Z)$	$m_{l l}(\mathrm{GeV})$	σ	σ_{F}	σ_{B}	$\Delta \sigma_{F B}$	$A_{F B}$	$\Delta A_{F B}$
fixed	$90.9876-91.3876$	0.22822	0.11906	0.10916	0.00991	0.04341	
running		0.22970	0.11983	0.10987	0.00996	0.04336	0.00005
fixed	$90.8876-91.4876$	0.22822	0.11906	0.10916	0.00991	0.04341	
running		0.22970	0.11983	0.10987	0.00996	0.04336	0.00005
fixed	$90.6876-91.6876$	0.32942	0.17235	0.15707	0.01528	0.04640	
running		0.32893	0.17208	0.15685	0.01523	0.04631	0.00009
fixed	$80-100$	0.90181	0.47077	0.43104	0.03974	0.04406	
running		0.90202	0.47067	0.43135	0.03932	0.04359	0.00047

Table 17: The cross-sections and $A_{F B}$ evaluated with fixed or running Z width in propagator $\chi(Z)$. Cross-section in mass window is given in fractions of total generated events. Predictions for $\alpha(0) \mathrm{v} 0$ scheme corrected with EW $\mathrm{NLO}+\mathrm{HO}$ form-factors calculated with Dizet library.

Γ_{Z} in $\chi(Z)$	$m_{l l}(\mathrm{GeV})$	σ	σ_{F}	σ_{B}	$\Delta \sigma_{F B}$	$A_{F B}$	$\Delta A_{F B}$
fixed	$90.9876-91.3876$	0.24313	0.12492	0.11821	0.00672	0.02764	
running		0.24470	0.12574	0.11897	0.00677	0.02768	0.00004
fixed	$90.8876-91.4876$	0.24313	0.12492	0.11821	0.00672	0.02764	
running		0.24470	0.12574	0.11897	0.00677	0.02768	0.00004
fixed	$90.6876-91.6876$	0.35087	0.18082	0.17005	0.01077	0.03070	
running		0.35035	0.18056	0.16979	0.01077	0.03073	0.00003
fixed	$80-100$	0.96108	0.49418	0.46690	0.02727	0.02838	
running		0.96133	0.49413	0.46720	0.02694	0.02802	0.00036

D Genuine weak and line-shape corrections from dizet 6. xx library

Proposed content:

- Short introduction to Dizet package. Description of Improved Born Approximation and introduction of form-factors here if not done in main Sections.
- Evolution since version 6.21.
- Theoretical predictions with emphasize on latest updates. Detailed tables + illustrative plots ofform-factors.
- Theoretical and parametric uncertainties.

D. 1 Input parameters and initialisation flags

The Dizet package relies on the so called on-mass-shell (OMS) normalisation scheme [27, 28] but modifications are present. The OMS uses the masses of all fundamental particles, both fermions and bosons, electromagnetic coupling constant $\alpha(0)$ and strong coupling $\alpha_{s}\left(M_{Z}\right)$. The dependence on the ill-defined masses of the light quarks u, d, c, s and b is solved by dispersion relation, for details see [2]. Another exception is W-boson mass M_{W}, which still can be predicted with better theoretical error than experimentally measured values, exploiting the very precise knowledge of the Fermi constant in μ-decay G_{μ}. For this reasons, M_{W} is usually replaced by G_{μ}.

The knowledge about the hadronic vacuum polarisation is contained in the quantity denoted as $\Delta \alpha_{h}^{(5)}\left(M_{Z}\right)$, which is treated as one of the input parameters. It can be either computed from quark masses or, preferably, fitted to experimental low energy $e^{+} e^{-} \rightarrow$ hadrons data.

The two important constants used are therefore: $\alpha(0)$ - electromagnetic coupling α in Thomson limit and $G_{\mu^{-}}$ Fermi constant in μ-decay. The following parameters are also passed to main Dizet subroutine:

$$
\begin{equation*}
M_{W}, M_{Z}, m_{t}, \Delta \alpha_{h}^{(5)}\left(M_{Z}\right), \alpha_{s}\left(M_{Z}\right) \tag{33}
\end{equation*}
$$

Note that the above list is over-complete, only two out of three parameters

$$
\begin{equation*}
G_{\mu}, M_{W}, M_{Z} \tag{34}
\end{equation*}
$$

are independent. They can be selected with appropriate flags setting. The only meaningful choice implemented in Dizet library, for calculating EW corrections at the Z-resonance, is to use G_{μ} and M_{Z} as input parameters, then calculate M_{W}.

The M_{W} is calculated iteratively from the following equation

$$
\begin{equation*}
M_{W}=\frac{M_{Z}}{\sqrt{2}} \sqrt{1+\sqrt{1-\frac{4 A_{0}^{2}}{M_{Z}^{2}(1-\Delta r)}}} \tag{35}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{0}=\sqrt{\frac{\pi \alpha(0)}{\sqrt{2} G_{\mu}}} \tag{36}
\end{equation*}
$$

The Sirlin's parameter Δr [29]

$$
\begin{equation*}
\Delta r=\Delta \alpha\left(M_{Z}\right)+\Delta r_{E W} \tag{37}
\end{equation*}
$$

is also calculated iteratively, and the definition of $\Delta r_{E W}$ involves re-summation and higher order corrections. Since this term implicitly depends on M_{W} and M_{Z} iterative procedure is needed. The resummation term in formula 37) is not formally justified by renormalisation group arguments, correct generalization is to compute higher order corrections, see more discussion in [2].

Note that once the M_{W} is recalculated with formula (35), the Standard Model relationship between the weak and electromagnetic couplings

$$
\begin{equation*}
G_{\mu}=\frac{\pi \alpha}{\sqrt{2} M_{W}^{2} \sin ^{2} \theta_{W}} \tag{38}
\end{equation*}
$$

Table 18: The Dizet initialisation flags: defaults in different versions.

Input NPAR()	Internal flag	Dizet 6.21 Defaults in [12]	Dizet v6.42 Defaults in [3]	Dizet v6.45	Comments
NPAR(1)	IHVP	1	1	5	$\Delta \alpha_{\text {had }}^{(5)}$ param. from [30] in v6.45
NPAR(2)	IAMT4	4	4	8	New devellopment in v6.45
NPAR(3)	IQCD	3	3	3	
NPAR(4)	IMOMS	1	1	1	
NPAR(5)	IMASS	0	0	0	
NPAR(6)	ISCRE	0	0	0	
NPAR(7)	IALEM	3	3	3	
NPAR(8)	IMASK	0	0	0	Not used since v6.21
NPAR(9)	ISCAL	0	0	0	
NPAR(10)	IBARB	2	2	2	
NPAR(11)	IFTJR	1	1	1	
NPAR(12)	IFACR	0	0	0	
NPAR(13)	IFACT	0	0	0	
NPAR(14)	IHIGS	0	0	0	
NPAR(15)	IAMFT	1	3	3	
NPAR(16)	IEWLC	1	1	1	
NPAR(17)	ICZAK	1	1	1	
NPAR(18)	IHIG2	1	1	1	
NPAR(19)	IALE2	3	3	3	
NPAR(20)	IGREF	2	2	1	
NPAR(21)	IDDZZ	1	1	0	
NPAR(22)	IAMW2	0	1	0	
NPAR(23)	ISFSR	1	0	0	
NPAR(24)	IDMWW	0	0	0	
NPAR(25)	IDSWW	0		0	

is not fulfilled anymore, unless the G_{μ} is redefined and not taken at the measured value. This is an approach of some EW LO schemes, but not the one used by Dizet and it requires keeping complete expression for $\chi_{Z}(s)$ propagator in formula for spin amplitude (26), as defined by formula (20).

In the OMS renormalisation scheme the weak mixing angle is defined uniquely through the gauge-boson masses:

$$
\begin{equation*}
\sin ^{2} \theta_{W}=s_{W}^{2}=1-\frac{M_{W}^{2}}{M_{Z}^{2}} \tag{39}
\end{equation*}
$$

With this scheme, measuring $\sin ^{2} \theta_{W}$ will be equivalent to indirect measurement of M_{W}^{2} through the relation 39,
Let us return to Dizet scheme. After M_{W} is computed, the list of input parameters of main subroutine is fully specified.

In Table 12 and 13 collected are numerical values for all parameters used in the number presented below (folow collumn with EW scheme $\alpha(0)$ v0 in Table 13.)

Default configurations of the initialisation flags, corresponding to each major version of Dizet library, are collected in Table 18. Evolution of flags IAMT4 and IAMFT corresponds to improved calculations for fermionic loop corections became gradually available. Evolution of IHVP corresponds to including much improved parametrisation of the $\Delta \alpha_{\text {had }}^{(5)}$ corrections.

Table 19: The Dizet v6.45 recalculated parameters: masses, couplings, etc.., with initialisation as in Tables 18 , 12 and 13

Parameter	Value	Description
$\alpha_{Q E D}\left(M_{Z}^{2}\right)$	0.0077549256	calculated using $\Delta \alpha_{h}^{(5)}\left(m_{Z}^{2}\right)$ from [30]
$1 / \alpha_{Q E D}\left(M_{Z}^{2}\right)$	128.950302056	W mass
$M_{W}(\mathrm{GeV})$	80.3589356	the loop corrections to G_{μ}
$Z P A R(1)=\delta r$	0.03640338	the remainder contribution $O(\alpha)$
$Z P A R(2)=\delta r_{\text {rem }}$	0.01167960	0.22340108
$Z P A R(3)=s_{W}^{2}$	weak mixing angle defined by weak masses	
$Z P A R(4)=G_{\mu}\left(\mathrm{GeV}^{-2}\right)$	$1.16614173 \cdot 10^{-5}$	G_{μ} with loop correct.
$Z P A R(6)=\sin ^{2} \theta_{\text {eff }}^{\ell}\left(M_{Z}^{2}\right)$	0.231499	effective weak mixing angle
$Z P A R(9)=\sin ^{2} \theta_{\text {eff }}^{\text {ep }}\left(M_{Z}^{2}\right)$	0.231392	effective weak mixing angle
$Z P A R(10)=\sin ^{2} \theta_{\text {eff }}^{\text {down }}\left(M_{Z}^{2}\right)$	0.231265	effective weak mixing angle
$Z P A R(14)=\sin ^{2} \theta_{\text {eff }}^{\text {botom }}\left(M_{Z}^{2}\right)$	0.232733	effective weak mixing angle

D. 2 Predictions: masses, couplings, EW form-factors

Table 19 collects few benchmark numbers for masses and couplings as calculated by Dizet 6.45 , with initialisation as in Tables 18, 12 and 13

Figure 11 shows real parts of the EW form-factors: $\rho_{\ell f}(s, t), \mathscr{K}_{f}(s, t), \mathscr{K}_{\ell}(s, t), \mathscr{K}_{\ell f}(s, t)$, for a few values of $\cos \theta$, representing scattering angle between incoming quark and outgoing lepton directions in the centre-of-mass frame of outgoing lepton pairs. The Mandelstam variables (s, t) relate to invariant mass and scattering angle of outgoing leptons as defined in Eq. 24. The $\cos \theta$ dependence of the form-factors is due to box corrections and is more sizeable for the up-quarks.

Note, that at the peak of Z-boson, Born like couplings are not sizeably modified, form-factors are close to 1 and no numerically significant angular dependence is visible. At lower virtualities corrections seem to be larger because Z-boson contributions is non resonant and virtual corrections are by comparison larger. In this region of the phase-space Z-boson is anyway dominated by the contribution from virtual photon. Above the peak, contribution of $W W$ boxes and later also $Z Z$ boxes become gradually sizable and the dependence on $\cos \theta$ angle also appears. Those contributions become double resonant.

D. 3 Theoretical and parametric uncertainties

D.3.1 Running $\alpha(s)$

Fermionic loop insertion to the photon propagator, i.e. vacuum polarisation corrections, are summed together as multiplicative factor of formula $\sqrt{23}$) to the photonic Born term in formula 26 . It can be also interpreted as running $Q E D$ coupling $\alpha(s)$ and expressed as

$$
\begin{equation*}
\alpha(s)=\frac{\alpha(0)}{1-\Delta \alpha_{h}^{(5)}(s)-\Delta \alpha_{\ell}(s)-\Delta \alpha_{t}(s)-\Delta \alpha^{\alpha \alpha_{s}}(s)} . \tag{40}
\end{equation*}
$$

Following [12], the hadronic contribution at M_{Z} is a significant correction: $\Delta \alpha_{h}^{(5)}\left(M_{Z}^{2}\right)=0.0280398$ and is calculated in 5-th flavour scheme making use of dispersion relation and experimental input from low energy experiments. This value has been significantly changed over years with new low-energy experiments. Recent estimates [30], which comes also with parametrised formula in very large range of s gives $\Delta \alpha_{h}^{(5)}\left(M_{Z}^{2}\right)=0.0275762$. The leptonic loop contribution $\Delta \alpha_{\ell}(s)$ is calculated analytically with up to the 3-loops, and is a comparably significant correction, $\Delta \alpha_{\ell}\left(M_{Z}\right)=0.0314976$. The other contributions are very small. The top contribution depends on the mass of the top quark, and for $m_{t}=173.8 \mathrm{GeV}$ is $\Delta \alpha_{t}(s)=-0.585844 \cdot 10^{-4}$. The mixed two-loop $O\left(\alpha \alpha_{s}\right)$ corrections arising from $t \bar{t}$ loops with gluon, for the same top-quark mass and $\alpha_{s}=0.119$ is $\Delta \alpha^{\alpha \alpha_{s}}\left(M_{Z}\right)=-0.103962 \cdot 10^{-4}$.

Figure 11: Real part of EW form factors for $q \bar{q} \rightarrow Z \rightarrow e e$ process: $\rho_{e, u p}, \mathscr{K}_{e}, \mathscr{K}_{u p}$ and $\mathscr{K}_{e, u p}$ as a function of \sqrt{s} for few values of $\cos \theta$. For u-type quark flavour left side plots are prepared and for the down-type right side plots. Note that \mathscr{K}_{e} depend on the flavour of incoming quarks.

Figure 12: The vacuum polarisation correction to γ propagator, $\alpha(s) / \alpha(0)$ of formula 40 , as a function of \sqrt{s}. Plot should be updated with Jegerlehner 2017 parametrisation [30].

Table 20 summarizes impact from changing predictions on the central value of $\Delta \alpha_{h}^{(5)}\left(M_{Z}^{2}\right)$, on the EW corrections to different quantities calculated with Dizet library. Figure 12 shows $\alpha(s) / \alpha(0)$ as a function of \sqrt{s}.

Uncertainties on the hadronic contributions to the effective fine structure constant $\alpha(s)$ are a problem for electroweak precision physics. Because of the large 6% relative corrections between $\alpha(0)$ and $\alpha\left(M_{Z}\right)$, where 50% of the shift is due to non-perturbative hadronic effects, one is loosing about a factor of five orders of magnitude in precision. Present estimates of the uncertainties of SM input parameters are (from F. Jegerlehner contribution in [31]):

$$
\begin{align*}
\frac{\delta \alpha(0)}{\alpha(0)} & \sim 3.6 \cdot 10^{-9} ; \frac{\delta G_{\mu}}{G_{\mu}} \sim 8.6 \cdot 10^{-6} ; \frac{\delta M_{Z}}{M_{Z}} \sim 2.4 \cdot 10^{-5} \\
\frac{\delta \alpha(0)}{\alpha(0)} & \sim 0.9-1.6 \cdot 10^{-4}\left(\text { lost } 10^{5} \text { in precision }\right) \tag{41}\\
\frac{\delta M_{W}}{M_{W}} & \sim 1.5 \cdot 10^{-4} ; \frac{\delta m_{t}}{m_{t}} \sim 2.3 \cdot 10^{-3} ; \frac{\delta M_{H}}{M_{H}} \sim 1.3 \cdot 10^{-3} \tag{42}
\end{align*}
$$

The $\alpha\left(M_{Z}\right)$ is the least precise among the basic input parameters: $\alpha\left(M_{Z}\right), G_{\mu}, M_{Z}$. The present uncertainties on hadronic corrections $\delta \alpha\left(M_{Z}\right)=0.00020$ results in the error on predictions $\delta \sin ^{2} \theta_{\text {eff }}=0.00007$ and $\delta M_{W} / M_{W} \sim$ $4.3 \cdot 10^{-5}$. For comparison, the uncertainties on m_{t} contributes $\delta \sin ^{2} \theta_{\text {eff }} /=0.000002$ and $\delta M_{W} / M_{W} \sim 3.0 \cdot 10^{-5}$.

The effect of uncertainties on $\Delta \alpha_{h}^{(5)}\left(M_{Z}^{2}\right)$, taken as ± 0.0001 on the corrections and quantities calculated by Dizet are summarized in Table 21

D.3.2 Fermionic two-loop corrections

D.3.3 Top quark mass

Table 20: The Dizet v6. 45 predictions for two different parametrisations of $\Delta \alpha_{h}^{(5)}\left(M_{Z}^{2}\right)$. Other flags as in Tables 18 .

Parameter	$\Delta \alpha_{h}^{(5)}\left(M_{Z}^{2}\right)=0.0280398$ (param. Jegerlehner 1995)	$\Delta \alpha_{h}^{(5)}\left(M_{Z}^{2}\right)=0.0275762$ (param. Jegerlehner 2017)	Δ
$\alpha\left(M_{Z}^{2}\right)$	0.0077587482	0.0077549256	
$1 / \alpha\left(M_{Z}^{2}\right)$	128.8867699646	128.95030224	
s_{W}^{2}	0.22356339	0.22340108	-0.00016
$\sin ^{2} \theta_{\text {eff }}\left(M_{Z}^{2}\right)$ (lepton)	0.23166087	0.23149900	-0.00023
$\sin ^{2} \theta_{\text {eff }}\left(M_{Z}^{2}\right)$ (up-quark)	0.23155425	0.23139248	-0.00016
$\sin ^{2} \theta_{\text {eff }}\left(M_{Z}^{2}\right)$ (down-quark)	0.23142705	0.23126543	-0.00016
$M_{W}(\mathrm{GeV})$	80.3505378	80.358936	+8.4 MeV
Δr	0.03690873	0.03640338	
$\Delta r_{\text {rem }}$	0.01168001	0.01167960	

Table 21: The Dizet v6. 45 predictions: uncertainty from $\Delta \alpha_{h}^{(5)}\left(M_{Z}^{2}=0.0275762\right)$ (param. Jegerlehner 2017)[30], varied by ± 0.0001.

Parameter	$\Delta \alpha_{h}^{(5)}\left(M_{Z}^{2}\right)-0.0001$	$\Delta \alpha_{h}^{(5)}\left(M_{Z}^{2}\right)=0.0275762$	$\Delta \alpha_{h}^{(5)}\left(M_{Z}^{2}\right)+0.0001$	$\Delta / 2$
$\alpha\left(M_{Z}^{2}\right)$	0.0077541016	0.0077549256	0.0077557498	
$1 / \alpha\left(M_{Z}^{2}\right)$	128.9640056546	128.95030224	128.9365984574	
s_{W}^{2}	0.22336607	0.22340108	0.22343610	0.000035
$\sin ^{2} \theta_{\text {eff }}\left(M_{Z}^{2}\right)$ (lepton)	0.23146409	0.23149900	0.23153392	0.000035
$\sin ^{2} \theta_{\text {eff }}\left(M_{Z}^{2}\right)$ (up-quark)	0.23135758	0.23139248	0.23142737	0.000035
$\sin ^{2} \theta_{\text {eff }}\left(M_{Z}^{2}\right)$ (down-quark)	0.23123057	0.23126543	0.23130029	0.000035
$M_{W}(\mathrm{GeV})$	80.3607471	80.358936	80.357124	1.8 MeV
Δr	0.03629414	0.03640338	0.03651261	
$\Delta r_{\text {rem }}$	0.01167983	0.01167960	0.01167938	

Table 22: The Dizet v6. 45 predictions with improved treatment of two-loop corrections. Other flags as in Tables 18 .

Parameter	AMT4=4	AMT4 $=8$	Δ
$\alpha\left(M_{Z}^{2}\right)$	0.0077549256	0.0077549256	
$1 / \alpha\left(M_{Z}^{2}\right)$	128.9503020560	128.95030224	
s_{W}^{2}	0.22333971	0.22340108	+0.00006
$\sin ^{2} \theta_{\text {eff }}\left(M_{Z}^{2}\right)$ (lepton)	0.23157938	0.23149900	-0.00008
$\sin ^{2} \theta_{\text {eff }}\left(M_{Z}^{2}\right)$ (up-quark)	0.23147290	0.23139248	-0.00008
$\sin ^{2} \theta_{\text {eff }}\left(M_{Z}^{2}\right)$ (down-quark)	0.23134590	0.23126543	-0.00008
$M_{W}(\mathrm{GeV})$	80.361846	80.358936	-2.9 MeV
Δr	0.03640338	0.03640338	
$\Delta r_{\text {rem }}$	0.01167960	0.01167960	

Table 23: The Dizet v6. 45 predictions: uncertainty from changing top-quark mass by $\pm 0.5 \mathrm{GeV}$. Other flags as in Tables 18

Parameter	$m_{t}-0.5 \mathrm{GeV}$	$m_{t}=173.0 \mathrm{GeV}$	$m_{t}+0.5 \mathrm{GeV}$	$\Delta / 2$
$\alpha\left(M_{Z}^{2}\right)$	0.0077549221	0.0077549256	0.0077549291	
$1 / \alpha\left(M_{Z}^{2}\right)$	128.9503600286	128.95030224	128.9502446106	
s_{W}^{2}	0.22345908	0.22340108	0.22334300	0.000058
$\sin ^{2} \theta_{\text {eff }}\left(M_{Z}^{2}\right)$ (lepton)	0.23151389	0.23149900	0.23148410	0.000016
$\sin ^{2} \theta_{\text {eff }}\left(M_{Z}^{2}\right)$ (up-quark)	0.23140736	0.23139248	0.23137758	0.000016
$\sin ^{2} \theta_{\text {eff }}\left(M_{Z}^{2}\right)$ (down-quark)	0.23128031	0.23126543	0.23125053	0.000016
$M_{W}(\mathrm{GeV})$	80.355935	80.358936	80.361941	3 MeV
Δr	0.03658500	0.03640338	0.03622132	
$\Delta r_{\text {rem }}$	0.01167011	0.01167960	0.01168907	

E TauSpinner with EW weights

Comment: Content of this Section was published in [21].
The TauSpinner package was initially created as a tool to correct with per-event weight longitudinal spin effects in the generated event samples including τ decays. Implemented there algorithms turned out to be of more general usage. They provide effective approach using reweighting technique to modify matrix elements of the hard processes used in Monte Carlo programs for event production and decay. The most recent summary on its algorithms and their applications is given in [?]. The possibility to introduce one-loop electroweak corrections from SANC library [13] in case of Drell-Yan production of the Z-boson became available in TauSpinner since [32]. This implementation allowed to introduce per-event weight calculated using pre-tabulated EW corrections for each individual spin configurations of outgoing leptons.

The implementation of EW corrections which is discussed in [21] and summarised here is enhanced. The TauSpinner package and algorithms are adapted to allow EW corrections from Dizet library directly into spin amplitudes and weight calculations for the Drell-Yan Z-boson production process. In [7, 8] we have shown that separating EW and QCD higher order corrections is possible and the Born-level spin amplitudes, if calculated in the adapted Mustraal frame [6], provide very good approximation of the EW LO sector even in case of NLO QCD description of the Drell-Yan processes. The EW corrections are introduced as form-factor corrections to Standard Model couplings and propagators entering Born-level spin amplitudes. This approach was very successful in analyses of LEP precision physics and we use the same strategy for the LHC precision physics around the Z-boson pole.

E. 1 Born kinematic approximation and $p p$ scattering

The solution for how to define Born-like kinematics in case of $p p$ scattering is available in the algorithms of TauSpinner package [?]. The strategy assumes that hard-process history generated event is not known, in particular flavour and kinematics of incoming partons is therefore reconstructed, entirely from the kinematics of outgoing final states, reaction center of mass energy and with probabilities obtained from parton level cross-sections and PDFs. We briefly recall principles here and explain further optimisations.

E. 2 Average over incoming partons flavour

Parton level Born cross-section $\sigma_{\text {Born }}^{q \bar{q}}(\hat{s}, \cos \theta)$ is convoluted with the structure functions, and averaged over all possible flavours of incoming partons and all possible helicity states of outgoing leptons. The lowest order formula is given below

$$
\begin{align*}
& d \sigma_{\text {Born }}\left(x_{1}, x_{2}, \hat{s}, \cos \theta\right)=\quad \sum_{q_{f}, \bar{q}_{f}}\left[f^{q_{f}}\left(x_{1}, \ldots\right) f^{\bar{q}_{f}}\left(x_{2}, \ldots\right) d \sigma_{\text {Born }}^{q_{f} \bar{q}_{f}}(\hat{s}, \cos \theta)\right. \tag{43}\\
& \left.+f^{q_{f}}\left(x_{2}, \ldots\right) f^{\bar{q}_{f}}\left(x_{1}, \ldots\right) d \sigma_{\text {Born }}^{\bar{q}_{f} q_{f}}(\hat{s},-\cos \theta)\right],
\end{align*}
$$

where x_{1}, x_{2} denote fractions of incoming parton momenta calculated from kinematics of outgoing leptons, $\hat{s}=$ $x_{1} x_{2} s$ and f denotes parton density functions. We assume that kinematics is reconstructed from four-momenta of the outgoing leptons. The sign in front of $\cos \theta$, the cosine of the scattering angle, follows choice of the z-axis orientation being the one of the parton carrying x_{1}. The two possibilities are taken into account by the two terms of (43). The formula is used for calculating differential cross-section $d \sigma_{B o r n}\left(x_{1}, x_{2}, \hat{s}, \cos \theta\right)$ of each analysed event, regardless its initial state kinematics and flavours of incoming partons which may be available in the event history entries. The formula can be used to a good approximation in case of NLO QCD spin amplitudes. The kinematics of outgoing leptons is used to construct effective kinematics of the Drell-Yan production process and decay, without need for information on the history of the hard-process itself. It can be constructed for events where initial state of Feynman diagrams were quark-gluon or gluon-gluon partons (as stored in the history event entries).

E. 3 Effective beams kinematics

The x_{1}, x_{2} are calculated from kinematics of outgoing leptons, following formulae of [33]

$$
\begin{equation*}
x_{1,2}=\frac{1}{2}\left(\pm \frac{p_{z}^{l l}}{4 E}+\sqrt{\left(\frac{p_{z}^{l l}}{4 E}\right)^{2}+4\left(\frac{m_{l l}^{2}}{4 E^{2}}\right)^{2}}\right), \tag{44}
\end{equation*}
$$

where E denotes energy of the proton beam and $p_{z}^{\ell \ell}$ denotes z-axis momenta of outgoing lepton pairs in the laboratory frame.

E. 4 Definition of the polar angle

The $\cos \theta$, in case of $q \bar{q} \rightarrow Z \rightarrow \ell \ell$ process, can be defined as a weighted average of the angles of the outgoing leptons with respect to the beams directions [34]. It will be denoted as $\cos \theta^{*}$. Extending this definition to $p p$ collisions, requires choice which direction along z-axis is of the quark and of the anti-quark, and then boosting their four-momenta into rest frame of the lepton pair system. The $\cos \theta^{*}$ distribution is calculated as follows:

$$
\begin{equation*}
\cos \theta_{1}=\frac{\tau_{x}^{(1)} b_{x}^{(1)}+\tau_{y}^{(1)} b_{y}^{(1)}+\tau_{z}^{(1)} b_{z}^{(1)}}{\left|\vec{\tau}^{(1)}\right|\left|\vec{b}^{(1)}\right|}, \quad \cos \theta_{2}=\frac{\tau_{x}^{(2)} b_{x}^{(2)}+\tau_{y}^{(2)} b_{y}^{(2)}+\tau_{z}^{(2)} b_{z}^{(2)}}{\left|\vec{\tau}^{(2)}\right|\left|\vec{b}^{(2)}\right|}, \tag{45}
\end{equation*}
$$

finally

$$
\begin{equation*}
\cos \theta^{*}=\frac{\cos \theta_{1} \sin \theta_{2}+\cos \theta_{2} \sin \theta_{1}}{\sin \theta_{1}+\sin \theta_{2}} \tag{46}
\end{equation*}
$$

where $\vec{\tau}^{(1)}, \vec{\tau}^{(2)}$ denote 3-vectors of outgoing leptons and $\vec{b}^{(1)}, \vec{b}^{(2)}$ denote 3-vectors of incoming beams with sign of the z-axis accordingly which term of (43) is considered. All 3-vectors are of lepton pair centre-of-mass system.

The definition of cosine polar angle (46) is a default of TauSpinner algorithms. Alternatively, one can use also polar angle from Mustraal [6] or Collins-Soper [35] frames. We will come later to the choice with the discussion on the preferred frame used in case of NLO QCD corrections included in the production process of generated events.

E. 5 Concept of the EW weight

The EW corrections enter expression for the $\sigma_{B o r n}(\hat{s}, \cos \theta)$ through the definition of the vector and axial couplings and propagators of photon and Z-boson. They modify normalisation of the cross-sections, the line-shape of the Z-boson, polarisation of the outgoing leptons and asymmetries.

Given that to a good approximation we were able to factorise QCD and EW components of the cross-section we can now define per-event weight which specifically corrects for EW effects. Applying such weight allows to modify events generated with EW LO to the one including the EW corrections. This is very much the same idea as already implemented in TauSpinner for introducing corrections for different effects: spin correlations, production process, etc.

The per-event weight $w t^{E W}$ is defined as ratio of the Born-level cross-sections with and without EW corrections

$$
\begin{equation*}
w t^{E W}=\frac{d \sigma_{\text {Born }+E W}(s, \cos \theta)}{d \sigma_{B o r n}(s, \cos \theta)} \tag{47}
\end{equation*}
$$

where $\cos \theta$ can be taken according to $\cos \theta^{*}, \cos \theta^{M u s t r a a l}$ or $\cos \theta^{C S}$ definition. Introducing weight $w t^{E W}$ allows for flexible and straightforward implementation of the higher order EW corrections using TauSpinner framework and form-factors calculated eg. with Dizet library.

The formula for $w t^{E W}$ can be used to reweight from one to another EW LO scheme. In that case both the numerator and denominator of Eq. 47) will use lowest order $d \sigma_{B o r n}$, but calculated in different EW schemes.

E. 6 EW corrections to doubly-deconvoluted observables

Having defined all components needed for calculating $w t^{E W}$, we will show now selected examples of numerical results for doubly-deconvoluted observables around the Z-pole.

The Powheg+MinLO Monte Carlo, with NLO QCD and LO EW matrix elements, was used to generate $Z+j$ events with $Z \rightarrow e^{+} e^{-}$decays in $p p$ collisions at 8 TeV . No selection is applied to generated events, except requiring invariant mass of outgoing electrons in the range $70<m_{e e}<150 \mathrm{GeV}$. For events generation, the EW parameters as shown in left-most column of Table 4 , were used. The values for α and s_{W}^{2} are close to the ones of MSbar discussed in [22]. Note that they are not at the values of precise measurements by LEP experiments at the Z-pole [1]. The initialisation with G_{μ} scheme of Table 4 is often used as a default for phenomenological studies at LHC and we will show later the estimated size of EW corrections for this setup.

To quantify the effect of the EW corrections, we reweight generated MC events to EW LO in the scheme used by the Dizet library and then introduce gradually EW corrections and form-factors calculated with that library. For each step appropriate numerator of the $w t^{E W}$ is calculated, while for the denominator the EW LO $\mathscr{A}^{\text {Born }}$ matrix element is used, parameterised as in the left-most column of Table 4. The sequential steps, in which we illustrate effects of EW corrections are given below:

1. Reweight with $w t^{E W}$, from EW LO scheme with $s_{W}^{2}=0.23113$ to EW LO scheme with $s_{W}^{2}=0.21215$, see Table 4 The $\mathscr{A}^{\text {Born }}$ matrix element, Eq. 18, is used for calculating numerator of $w t^{E W}$.
2. As in step (1), but include EW corrections to m_{W}, effectively changing value of s_{W}^{2} to $s_{W}^{2}=0.22352$ in calculation of $w t^{E W}$. Relation of formula (38) is not obeyed anymore.
3. As in step (2), but include EW loop corrections to the normalisation of Z-boson and γ propagators, i.e. QCD/EW corrections to $\alpha(0)$ and $\rho_{\ell f}(s)$ form-factor calculated without box corrections. The $\mathscr{A}^{\text {Born }+E W}$ is used for calculating numerator of $w t^{E W}$.
4. As in step (3), but include EW corrections to Z-boson vector couplings: $\mathscr{K}_{f}, \mathscr{K}_{e}, \mathscr{K}_{\ell f}$, calculated without box corrections. The $\mathscr{A}^{\text {Born }+E W}$ is used for calculating numerator of $w t^{E W}$.
5. Replace $\rho_{\ell f}, \mathscr{K}_{f}, \mathscr{K}_{e}, \mathscr{K}_{\ell f}$ form-factors by the ones including box corrections. The $\mathscr{A}^{B o r n+E W}$ is used for calculating numerator of $w t^{E W}$.

After step (1) the predictions are according to EW LO and QCD NLO, but with different EW scheme than used originally for events generation. Then steps (2)-(5) introduce EW corrections. Step (3) effectively changes back α to be close to initial $\alpha\left(M_{Z}\right)$, while steps (4)-(5) effectively shift back value of s_{W}^{2} to be close to the one used for events generation. Given the fact that EW LO scheme used for generating events has parameters already close to measured at the Z-pole, we expect the total EW corrections to the generated sample to be roughly at percent level.

In the following, we will also estimate how precise it would be to use effective Born approximation with $L E P$ or LEP with improved norm. parametrisations instead of complete EW corrections. To obtain those predictions similar to step (1) listed above reweight is needed, but in the numerator of $w t^{E W}$ the $\mathscr{A}^{\text {Born }}$ parametrisations as specified in the right two columns of Table 4 are used. For LEP with improved norm. the $\rho_{\ell, f}=1.005$ has to be included.

The important flexibility of proposed approach is that $w t^{E W}$ can be calculated using $d \sigma_{B o r n}$ in different frames: $\cos \theta^{*}$, Mustraal or Collins-Soper. For some observables, frame choice used for $w t^{E W}$ calculation is not relevant at all and the simplest $\cos \theta^{*}$ frame can be used. We show later an example, where only using Mustraal frame for the $w t^{E W}$ calculation leads to correct results of the reweighting procedure.

Table 6 details numerical values for EW corrections, integrated in the range $80<m_{e e}<100 \mathrm{GeV}$ and $89<$ $m_{e e}<93 \mathrm{GeV}$. Numbers for calculating EW weight using $\cos \theta^{*}$ definition of the scattering angle are shown. In Table 25 results obtained with $w t^{E W}$ calculated in different frames are compared. When using Mustraal frame or Collins-Soper frame instead of $\cos \theta^{*}$ one, the differences are at most at the 5-th digit.

In Table 24 compared are results with $w t^{E W}$ calculated in different frames. When using Mustraal frame or Collins-Soper frame instead of $\cos \theta^{*}$, the differences are at most at the 5 -th digit.

Table 24: EW corrections to cross-sections around Z-pole, $89<m_{e e}<93 \mathrm{GeV}$. The EW weight is calculated with $\cos \theta^{*}, \cos \theta^{\text {Mustraal }}$ or $\cos \theta^{C S}$ definitions for scattering angle.

Corrections to cross-section $\left(89<m_{e e}<93 \mathrm{GeV}\right)$	$w t^{E W}\left(\cos \theta^{*}\right)$	$w t^{E W}\left(\cos \theta^{\text {Mustraal }}\right)$	$w t^{E W}\left(\cos \theta^{C S}\right)$
$\sigma\left(\right.$ EW corr. to $\left.m_{W}\right) / \sigma(\mathrm{EW}$ LO $\alpha(0))$	0.97114	0.97115	0.97114
$\sigma($ EW corr. to $\chi(Z), \chi(\gamma)) / \sigma(\mathrm{EW}$ LO $\alpha(0))$	0.98246	0.98247	0.98246
$\sigma($ EW/QCD FF no boxes $) / \sigma(\mathrm{EW}$ LO $\alpha(0))$	0.96469	0.96471	0.96470
$\sigma($ EW/QCD FF with boxes $) / \sigma($ EW LO $\alpha(0))$	0.96473	0.96475	0.96474
$\sigma($ LEP $) / \sigma($ EW/QCD FF with boxes $)$	1.01102	1.01103	1.01102
$\sigma($ LEP with improved norm. $) / \sigma($ EW/QCD FF with boxes $)$	1.00100	1.00102	1.00100

Table 25: The difference in forward-backward asymmetry, $\Delta A_{F B}$ around Z-pole, $m_{e e}=89-93 \mathrm{GeV}$. The difference is calculated using $\cos \theta^{C S}$ to define forward and backward hemisphere. The EW weight is calculated with $\cos \theta^{*}$, $\cos \theta^{\text {Mustraal }}$ or $\cos ^{C S}$.
Numbers should be updated with Dizet 6.XX form factors.

Corrections to $A_{F B}\left(89<m_{e e}<93 \mathrm{GeV}\right)$	$w t^{E W}\left(\cos \theta^{*}\right)$	$w t^{E W}\left(\cos \theta^{M L}\right)$	$w t^{E W}\left(\cos \theta^{C S}\right)$
$A_{F B}\left(\right.$ EW/QCD corr. to $\left.m_{W}\right)-A_{F B}($ EW LO $\alpha(0))$	-0.02097	-0.02112	-0.02101
$A_{F B}($ EW/QCD corr. to $\chi(Z), \chi(\gamma))-A_{F B}($ EW LO $\alpha(0))$	-0.02066	-0.02081	-0.02070
$A_{F B}\left(\right.$ EW/QCD FF no boxes) $-A_{F B}($ EW LO $\alpha(0))$	-0.03535	-0.03560	-0.03542
$A_{F B}($ EW/QCD FF with boxes $)-A_{F B}($ EW LO $\alpha(0))$	-0.03534	-0.03559	-0.03541
$A_{F B}($ LEP $)-A_{F B}($ EW/QCD FF with boxes $)$	-0.00006	-0.00005	-0.00006
$A_{F B}($ LEP with improved norm. $)-A_{F B}($ EW/QCD FF with boxes $)$	-0.00005	-0.00005	-0.00005

F Powheg_ew

Comments:
This text should be completed by the authors, for now as placeholders some tables from past meetings.
Recently presented materials:
https://indico.cern.ch/event/829225/contributions/3481094/attachments/1871705/3080271/piccinini.pdf

F. 1 Benchmark results for different EW schemes

Comments:
Those tables should be completed by the authors, for now as placeholders.
Recently presented materials:
https://indico.cern.ch/event/829225/contributions/3481094/attachments/1871705/3080271/piccinini.pdf

Tables:

- Table 26. Cross-section and cross-section ratios at EW LO, NLO, NLO+HO, different EW schemes, Powheg_ew Monte Carlo. Status of December 2018.
- Table 27. Cross-sections, cross-sections difference in forward and backward hemispheres and forwardbackward asymmetry, Powheg_ew Monte Carlo, EW LO, NLO, NLO+HO, different schemes.Status of December 2018.
- Table 28 Forward-backward asymmetry differences between different EW schemes, as estimated by Powheg_ew, different EW schemes at LO, NLO, NLO+HO.Status of December 2018.

Table 26: Cross-sections and cross-sections ratios estimated with Powheg_ew for three mass windows. The pole definition is used for input parameters as in Table 14

	EW order	$m_{e e}=89-93 \mathrm{GeV}$	$m_{e e}=80-100 \mathrm{GeV}$	$m_{e e}=70-120 \mathrm{GeV}$
$\alpha(0) \mathrm{v} 0$	LO	630.848722	906.156051	959.658977
$\alpha(0) \mathrm{v} 1$	LO	571.411296	821.363274	870.729908
G_{μ}	LO	612.514433	880.446121	933.363827
$\alpha(0) \mathrm{v} 1$	NLO	600.185042	863.142557	915.580114
G_{μ}	NLO	607.142292	873.173294	926.253246
$\alpha(0) \mathrm{v} 1$	NLO+HO	607.551746	873.717147	926.761229
G_{μ}	NLO+HO	607.515354	873.655348	926.681425
$\alpha(0) \mathrm{v} 1$	NLO/LO	1.050350	1.05087	1.05151
G_{μ}	NLO/LO	0.991230	0.99174	0.99238
$\alpha(0) \mathrm{v} 1$	NLO+HO/LO	1.063247	1.063740	1.064349
G_{μ}	NLO+HO/LO	0.991038	0.992287	0.992840
$\alpha(0) \mathrm{v} 1 / \alpha(0) \mathrm{v0}$	LO	0.90578	0.906426	0.90733
$G_{\mu} / \alpha(0) \mathrm{v} 1$	LO	1.07193	1.07193	1.07193
$G_{\mu} / \alpha(0) \mathrm{v} 1$	NLO	1.01159	1.01162	1.01166
$G_{\mu} / \alpha(0) \mathrm{v} 1$	NLO+HO	0.99994	0.99993	0.99991
$G_{\mu} / \alpha(0) \mathrm{v} 0$	LO	0.97094	0.97163	0.97260

Table 27: Cross-sections, cross-sections difference in forward and backward hemispheres and forward-backward asymmetry as estimated by Powheg_ew, for three mass windows. The pole definition is used for input parameters as in Table 14

	EW order	$m_{e e}=89-93 \mathrm{GeV}$	$m_{e e}=80-100 \mathrm{GeV}$	$m_{e e}=70-120 \mathrm{GeV}$
$\sigma \alpha(0) \mathrm{v} 0$	LO	630.848722	906.156051	959.658977
$\sigma \alpha(0) \mathrm{v} 1$	LO	571.411296	821.363274	870.729908
σG_{μ}	LO	612.514433	880.446121	933.363827
$\Delta_{F B} \sigma \alpha(0) \mathrm{v} 0$	LO	42.2123628	57.9248406	60.0147094
$\Delta_{F B} \sigma \alpha(0) \mathrm{v} 1$	LO	26.5928310	35.6782853	36.6828324
$\Delta_{F B} \sigma G_{\mu}$	LO	42.2123628	57.9248406	60.0147094
$A_{F B} \alpha(0) \mathrm{v} 0$	LO	0.06691361	0.06392369	0.06253754
$A_{F B} \alpha(0) \mathrm{v} 1$	LO	0.04653886	0.04343789	0.04212883
$A_{F B} G_{\mu}$	LO	0.04653886	0.04343789	0.04212883
$\sigma \alpha(0) \mathrm{v} 1$	NLO	600.185042	863.142557	915.580114
σG_{μ}	NLO	607.142292	873.173294	926.253246
$\Delta_{F B} \sigma \alpha(0) \mathrm{v} 1$	NLO	18.0312902	23.2253069	23.5291169
$\Delta_{F B} \sigma G_{\mu}$	NLO	17.6425904	22.6341188	22.8962216
$A_{F B} \alpha(0) \mathrm{v} 1$	NLO	0.03004289	0.02690785	0.02569858
$A_{F B} G_{\mu}$	NLO	0.02905841	0.02592168	0.02471918
$\Delta A_{F B} \alpha(0) \mathrm{v} 1$	NLO-LO	-0.0164959	-0.0165300	-0.0164302
$\Delta A_{F B} G_{\mu}$	NLO-LO	-0.0174805	-0.0175162	-0.0174096
$\sigma \alpha(0) \mathrm{v} 1$	NLO+HO	607.551746	873.717147	926.761229
σG_{μ}	NLO+HO	607.515356	873.655348	926.681425
$\Delta_{F B} \sigma \alpha(0) \mathrm{v} 1$	NLO+HO	18.7322427	24.2066243	24.5563891
$\Delta_{F B} \sigma G_{\mu}$	NLO+HO	18.7739638	24.2682506	24.6205407
$A_{F B} \alpha(0) \mathrm{v} 1$	NLO+HO	0.03083234	0.02770533	0.02649700
$A_{F B} G_{\mu}$	NLO+HO	0.03090286	0.02777783	0.02656851
$\Delta A_{F B} \alpha(0) \mathrm{v} 1$	NLO+HO-LO	-0.0157065	-0.0157326	-0.0156318
$\Delta A_{F B} G_{\mu}$	NLO+HO-LO	-0.0156360	-0.0156596	-0.0155603

Table 28: Forward-backward asymmetry differences between different EW schemes, as estimated by Powheg_ew, for three mass windows. The pole definition is used for input parameters as in Table 14 .

$\Delta A_{F B}$	EW order	$m_{e e}=89-93 \mathrm{GeV}$	$m_{e e}=80-100 \mathrm{GeV}$	$m_{e e}=70-120 \mathrm{GeV}$
$\alpha(0) \mathrm{v} 1-\alpha(0) \mathrm{v0}$	LO	-0.020375	-0.020486	-0.020487
$G_{\mu}-\alpha(0) \mathrm{v} 0$	LO	-0.020375	-0.020486	-0.0204871
$G_{\mu}-\alpha(0) \mathrm{v} 1$	LO	0.0	0.0	0.0
$G_{\mu}-\alpha(0) \mathrm{v} 1$	NLO	-0.00098	-0.00098	-0.00098
$G_{\mu}-\alpha(0) \mathrm{v} 1$	NLO + HO	-0.00007	-0.00007	-0.00007

G MCSANC

Comments:
This text should be completed by the authors, for now as placeholders some tables from past meetings. Recently presented materials:

G. 1 Benchmark results for different EW schemes

Table 29: Cross-sections and cross-sections ratios estimated with MCSANC for three mass windows. The pole mass definition is used for input parameters as in Table 14
Numbers updated on 16.10.2019 to configuration of that Table.

$\sigma[\mathrm{pb}]$	EW order	$m_{e e}=89-93 \mathrm{GeV}$	$m_{e e}=80-100 \mathrm{GeV}$	$m_{e e}=70-120 \mathrm{GeV}$
$\alpha(0) \mathrm{v} 1$	LO	$571.41(1)$	$821.36(1)$	$870.72(1)$
G_{μ}	LO	$612.53(1)$	$880.47(1)$	$933.39(1)$
$\alpha(0) \mathrm{v} 1$	NLO	$600.08(1)$	$863.00(1)$	$915.42(1)$
G_{μ}	NLO	$607.41(1)$	$873.57(1)$	$926.66(1)$
$\alpha(0) \mathrm{v} 1$	NLO+HO			
G_{μ}	NLO+HO			
			1.05070	1.05134
$\alpha(0) \mathrm{v} 1$	NLO/LO	1.05017	0.992163	
G_{μ}	NLO/LO	0.991641		
$\alpha(0) \mathrm{v} 1$	NLO+HO/LO		1.092790	
G_{μ}	NLO+HO/LO			
			1.071966	
$G_{\mu} / \alpha(0) \mathrm{v} 1$	LO			
$G_{\mu} / \alpha(0) \mathrm{v} 1$	NLO	1.071962		
$G_{\mu} / \alpha(0) \mathrm{v} 1$	NLO+HO			

Table 30: Forward-backward asymmetry and differences estimated with MCSANC for three mass windows. The pole mass definition is used for input parameters as in Table 14
Numbers updated on 16.10.2019 to configuration of that Table.

$A_{F B}$	EW order	$m_{e e}=89-93 \mathrm{GeV}$	$m_{e e}=80-100 \mathrm{GeV}$	$m_{e e}=70-120 \mathrm{GeV}$
$\alpha(0) \mathrm{v} 1$	LO	$0.004655(1)$	$0.004347(1)$	$0.004215(1)$
G_{μ}	LO	$0.004656(1)$	$0.004347(1)$	$0.004215(1)$
$\alpha(0) \mathrm{v} 1$	NLO	$0.003058(1)$	$0.002746(1)$	$0.002623(1)$
G_{μ}	NLO	$0.002964(1)$	$0.002652(1)$	$0.002530(1)$
$\alpha(0) \mathrm{v} 1$	NLO+HO			
G_{μ}	NLO+HO			
			$-0.001601(1)$	$-0.001591(1)$
$\alpha(0)$ v1	NLO - LO	$-0.001597(1)$	$-0.001695(1)$	$-0.001685(1)$
G_{μ}	NLO - LO	$-0.001691(1)$		
$\alpha(0)$ v1	NLO+HO - LO		0.0	0.000093
G_{μ}	NLO+HO - LO		0.000094	
$G_{\mu}-\alpha(0)$ v1	LO			
$G_{\mu}-\alpha(0) \mathrm{v} 1$	NLO	NLO+HO	0.000094	
$G_{\mu}-\alpha(0) \mathrm{v} 1$	NLO+H			

H KKMC_hh

Comments:
This text should be completed by the authors

I HORACE

Comments:
This text should be completed by the authors

[^0]: ${ }^{2}$ The reason is that PowhegZj events were generated with somewhat arbitrary setting for QCD and EW parts (e.g. $\sin ^{2} \theta_{W}=0.23113$, fixed Γ_{Z} in the propagator, on-shell Z mass), so obtained results should not be quoted as the reference ones. They are however reweighted to EW $\alpha(0)$ v0 scheme before any benchmarks are evaluated.

[^1]: ${ }^{3}$ We will use " ℓ " for lepton, and " f " for quarks.

[^2]: ${ }^{4}$ Compatibility with this program is also part of the motivation, why we leave updates for the Dizet library to the forthcoming work. Dizet 6.21 is also well documented.

