Wrap-up from discussion on freezing choices for calculations: virtual corrections and QED emissions

E. Richter-Was, IF UJ, Kraków

Genuine weak and lineshape corrections

- Z-boson propagator
- \succ Scan for sin² θ_{eff}
- > QED FSR/ISR/IFI

Draft of YR: Section 2 & Appendixes A-G

1	Intr	oduction	3
	1.1	Electroweak pseudo-observables at LEP	3
	1.2	The weak mixing angle and effective weak mixing angle	3
	1.3	Observables sensitive to the weak mixing angle at hadron colliders	6
	1.4	Interpretation of early hadron collider measurements in terms of the effective weak mixing angle .	6
		interpretation of early mail on contect measurements in terms of the encetter of early mailing angle of	0
2	Virt	ual EW corrections	7
	2.1	Introduction	7
	2.2	Overview of calculations/tools and input schemes	7
	2.3	Numerical results for virtual EW corrections	7
	2.0	2.3.1 Loops and box corrections with different EW schemes	7
		2.3.2 α_{OED} with different EW schemes	9
		2.3.2 $\operatorname{sin}^2 \theta_W$ with different EW schemes	10
		2.3.4 Improved Born Approximation and Effective Born	11
		2.3.5 The Z-boson lineshape	11
	~ .	2.3.6 The <i>A_{FB}</i> distribution	12
	2.4	Benchmark results from Powheg_ew, MCSANC, PowhegZj+ <i>wt²</i> "	15
		2.4.1 Benchmarks at EW LO	16
		2.4.2 Benchmarks at EW NLO, NLO+HO	18
	2.5	Theoretical uncertainties and conclusions	18
3	OF	D emissions	24
3	3.1	D emissions Introduction	24 24
	3.2		24 24
		Overview of calculations and tools	_
	3.3	Numerical results for QED ISR and IFI	24
	3.4	Photon-induced processes	24
	3.5	Theoretical uncertainties and conclusions	24
4	A D	ossible strategy for run-2 measurements and combinations at the LHC	25
	4.1	Introduction	25
	4.2	Observables used for comparisons of expectations between experiments	25
	4.3		25
	4.5	4.3.1 QCD tools: DYTurbo, NNLOJET	25
		4.3.2 QED/EW tools: Dizet, Powheg EW, MC-SANC, ZGRAD2?	25
	4.4	Combination tools	25
	4.4	4.4.1 Correlations between measurements: PDFs, QCD, QED/EW	25 25
			25 25
		4.4.3 Compatibility tests between measurements of different experiments	25
		4.4.4 Profile likelihood fit to all observables and direct extraction of weak mixing angle	25
	4.5	Expected breakdown of uncertainties and conclusions	25
		4.5.1 Measurement uncertainties	25
		4.5.2 PDF uncertainties	25
		4.5.3 QED/EW uncertainties	25
		4.5.4 QCD uncertainties	25
		4.5.5 Parametric uncertainties	25
		4.5.6 Conclusions	25

Δ	EW schemes	28
	A.1 EW scheme: $\alpha(0), G_u, M_Z$	28
	A.1 EW scheme: $\alpha(0), \sigma_{\mu}, m_Z$ A.2 EW scheme: $\alpha(0), M_W, M_Z$	28
	A.3 EW scheme: G_{μ}, M_Z, M_W	29
	A.4 EW scheme: $\alpha(0), s_W^2, M_Z$	29
	A.5 EW scheme: G_{μ}, s_W^2, M_Z	29
	A.6 Benchmark initialisation	29
в	Improved Born Approximation	32
С	The <i>s</i> dependent Z-boson width	35
D	Genuine weak and line-shape corrections from Dizet 6.XX library	39
	D.1 Input parameters and initialisation flags	39
	D.2 Predictions: masses, couplings, EW form-factors	41
	D.3 Theoretical and parametric uncertainties	41
	D.3.1 Running $\alpha(s)$	41
	D.3.2 Fermionic two-loop corrections	43
	D.3.3 Top quark mass	43
	19.9.9 Top quar mass	4.5
В	TauSpinner with EW weights	46
	E.1 Born kinematic approximation and pp scattering	46
	E.2 Average over incoming partons flavour	46
	E.3 Effective beams kinematics	47
	E.4 Definition of the polar angle	47
	E.5 Concept of the EW weight	47
	E.6 EW corrections to doubly-deconvoluted observables	47
F	Powheg_ew	50
	F.1 Benchmark results for different EW schemes	50
G	MCSANC	53
	G.1 Benchmark results for different EW schemes	53
Н	KKMC_hh	55
т	HORACE	56

Genuine weak and lineshape corrections

- Defined five benchmark points i.e. EW schemes which differ by input parameters and/or formalisms for calculating corrections.
- Compared are three different codes:
 - Powheg_ew,
 - MCSANC,
 - Dizet FF + wt^{EW} (TauSpinner)
- Plans to have also QCD NLO for the final tables.

Program	QCD	EW	EW scheme	Comments
Powheg_ew	LO	LO	$\alpha(0) v0$	pole mass, fixed Γ_Z
		LO, NLO, NLO+HO	$\alpha(0) v 1$	
		LO, NLO, NLO+HO	G_{μ}	
		LO, NLO, NLO+HO	$\sin^2 \theta_{eff} v 1$	
		LO, NLO, NLO+HO	$\sin^2 \theta_{eff} v2$	
	NLO	NLO+HO	G_{μ}	pole mass, fixed Γ_Z
MCSANC	LO	LO, NLO, NLO+HO	$\alpha(0) v 1$	pole mass, fixed Γ_Z
		LO, NLO, NLO+HO	G_{μ}	
Dizet FF+wt ^{EW}	MC event	LO, NLO+HO	$\alpha(0) v0$	on-shell mass, running Γ_Z^1

EW schemes: input parameters

SM fundamental relation used to calculate EW LO parameters for different schemes (on-shell mass).

Completed since last meeting!

Parameter	$(\alpha(0), G_{\mu}, M_Z)$	$(\alpha(0), M_W, M_Z)$	(G_{μ}, M_Z, M_W)	$(\alpha(0), s_W^2, M_Z)$	(G_{μ}, s_W^2, M_Z)
	$\alpha(0) v 0$	$\alpha(0) v 1$	G_{μ}	$\sin^2_{eff} v1$	sin_{eff}^2 v2
M_Z (GeV)	91.1876	91.1876	91.1876	91.1876	91.1876
Γ_Z (GeV)	2.4952	2.4952	2.4952	2.4952	2.4952
Γ_W (GeV)	2.085	2.085	2.085	2.085	2.085
$1/\alpha$	137.035999139	137.035999139	132.23323	137.035999139	128.744939484
α	0.007297353	0.007297353	0.007562396	0.007297353	0.007767296
$G_{\mu} ({ m GeV^{-2}})$	$1.1663787 \cdot 10^{-5}$	$1.1254734 \cdot 10^{-5}$	$1.1663787 \cdot 10^{-5}$	$1.09580954 \cdot 10^{-5}$	$1.1663787 \cdot 10^{-5}$
M_W (GeV)	80.93886	80.385	80.385	79.93886984	79.93886984
s_W^2	0.2121517	0.2228972	0.2228972	0.231499	0.231499
$\frac{G_{\mu} M_{z}^{2} \cdot 16c_{W}^{2} s_{W}^{2}}{\sqrt{2.8\pi \cdot \alpha}} = 1.0$	$\rightarrow s_W^2, M_W$	$ ightarrow G_{\mu}, s_W^2$	$ ightarrow lpha, s_W^2$	$ ightarrow G_{\mu}, m_W$	$ ightarrow lpha, m_W$
$s_W^2 = 1 - m_W^2 / m_Z^2$					
$\alpha_s(M_Z)$	0.120178900000	0.120178900000	0.120178900000	0.120178900000	0.120178900000

$$s_W^2 = 1 - m_W^2 / m_Z^2$$
 $G_\mu = \frac{\pi \alpha}{\sqrt{2} M_W^2 s_W^2}$

EW schemes: input parameters

SM fundamental relation used to calculate EW LO parameters for different schemes (pole mass).

Completed since last meeting!

Parameter	$(\alpha(0), G_{\mu}, M_Z)$	$(\alpha(0), M_W, M_Z)$	(G_{μ}, M_Z, M_W)	$(\alpha(0), s_W^2, M_Z)$	(G_{μ}, s_W^2, M_Z)
	$\alpha(0) v0$	$\alpha(0) v 1$	G_{μ}	\sin^2_{eff} v1	sin_{eff}^2 v2
M_Z (GeV)	91.15348	91.15348	91.15348	91.15348	91.15348
Γ_Z (GeV)	2.494266	2.494266	2.494266	2.494266	2.494266
Γ_W (GeV)	2.085	2.085	2.085	2.085	2.085
$1/\alpha$	137.035999139	137.035999139	132.3572336357709	137.035999139	128.84133952
α	0.007297353	0.007297353	0.007555311	0.007297353	0.007761484
G_{μ} (GeV ⁻²)	$1.1663787 \cdot 10^{-5}$	$1.126555497 \cdot 10^{-5}$	$1.1663787 \cdot 10^{-5}$	$1.09663005 \cdot 10^{-5}$	$1.1663787 \cdot 10^{-5}$
M_W (GeV)	80.91191	80.35797	80.35797	79.90895881	79.90895881
s_W^2	0.21208680	0.22283820939	0.22283820939	0.231499	0.231499
$\frac{G_{\mu} \cdot M_z^2 \cdot 16c_W^2 s_W^2}{\sqrt{2} \cdot 8\pi \cdot \alpha} = 1.0$	$\rightarrow s_W^2, M_W$	$ ightarrow G_{\mu}, s_W^2$	$ ightarrow lpha, s_W^2$	$ ightarrow G_{\mu}, m_W$	$ ightarrow lpha, m_W$
$s_W^2 = 1 - m_W^2 / m_Z^2$					
$\alpha_s(M_Z)$	0.120178900000	0.120178900000	0.120178900000	0.120178900000	0.120178900000

$$s_W^2 = 1 - m_W^2 / m_Z^2$$
 $G_\mu = \frac{\pi \alpha}{\sqrt{2} M_W^2 s_W^2}$

EW schemes: input parameters

To complete, we defined also masses for fermions which are used in all codes.

Parameter	Mass (GeV)	Description
m _e	5.1099907e-4	mass of electron
m_{μ}	0.1056583	mass of muon
m_{τ}	1.7770500	mass of tau
m_u	0.0620000	mass of up-quark
m _d	0.0830000	mass of down-quark
m_c	1.5000000	mass of charm-quark
m_s	0.2150000	mass of strange-quark
m_b	4.7000000	mass of bottom-quark
m _t	173.0	mass of top quark
m_H	125.0	mass of Higgs boson

Table 12: Values of fermions and Higgs boson massed used for calculating EW corrections.

Pseudo-observables at Z-pole

Table to go into Section 2, started working on it.

"Best predictions" in each EW scheme, i.e. EW NLO+HO

Parameter	$(\alpha(0), G_{\mu}, M_Z)$	$(\alpha(0), M_W, M_Z)$	(G_{μ}, M_Z, M_W)	$(\alpha(0), s_W^2, M_Z)$	(G_{μ}, s_W^2, M_Z)
	$\alpha(0) v 0$	$\alpha(0) v 1$	G_{μ}	\sin^2_{eff} v1	sin_{eff}^2 v2
M_Z (GeV)	91.1876	91.1876	91.1876	91.1876	91.1876
$1/\alpha(M_Z)$	0.0077549256				
$\alpha(M_Z)$	128.9503020				
$G_{\mu} ({ m GeV^{-2}})$	$1.1663787 \cdot 10^{-5}$		$1.1663787 \cdot 10^{-5}$		$1.1663787 \cdot 10^{-5}$
M_W (GeV)	80.358935	80.385	80.385		
s_W^2	0.223401084	0.22289722	0.22289722		
$\sin^2 \theta_{eff}^{\ell}$	0.231499			0.231499	0.231499
$\sin^2 \theta^u_{eff}$	0.231392				
$\sin^2 \theta_{eff}^d$	0.231265				
$\sin^2 \Theta_{eff}^{b'f}$	0.232733				
	•				

$$s_W^2 = 1 - m_W^2 / m_Z^2$$

Dizet v6.45

Observables (distributions): Tables and plots

What used so far:

Example

	EW order	$m_{ee} = 89 - 93 \text{ GeV}$	$m_{ee} = 80 - 100 {\rm GeV}$	$m_{ee} = 70 - 120 \text{ GeV}$
Powheg_ew	NLO+HO/LO			
$\alpha(0)$ v1		1.06325	1.06374	1.06435
G_{μ}		0.99104	0.99229	0.99284
MCSANC	NLO+HO/LO			
$\alpha(0)$ v1		1.051194	1.066182	1.066778
G_{μ}		0.992299	0.992740	0.993295
PowhegZj+ <i>wt^{EW}</i>	NLO+HO/LO			
$\alpha(0) v0$		0.96452	0.96611	0.96757
$\alpha(0)$ v1		1.06506	1.06580	1.06640
G_{μ}		0.99167	0.99223	0.99289

We stay with this format for a now, **no decision made to change !** However, as **everybody will provide also results in form of histograms**, they can be Produced in desired bins later.

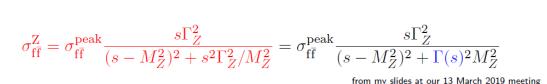
Tables and plots

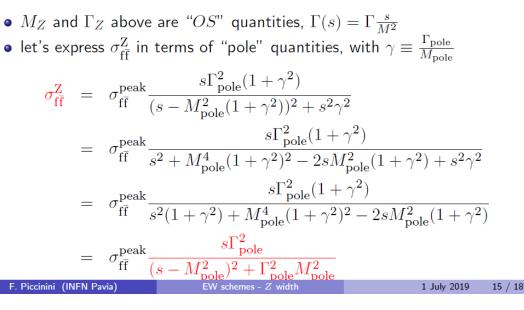
What used so far: range 60-200 GeV with 1 GeV binning. Histograms: total cross-sections, forward - backward cross-sections, and for convenience also A_{FB}

Example Ratio G_{NIC+10}/G_{IC} 1.15 1.05 EW soheme: a(0) v1 EW coheme: G. 1.04 SANC: QCD LO, EW NLO+HO/LO SANC: QCD LO, EW NLO+HO/LO OCD LO, EW NLOHHOLO 1.03 1.1 1.02 1.05 0.99 0.95 m., (GeV) m_{er} (GeV) .**₽**004 Poo 0.998 0.998 0.996 0.996

Status of the draft: Section 2 & Appendix: A-G

- Completed setup for bechmark configurations
- Updated several tables to Dizet v6.45 + benchmark points specifications. Will continue on it during next weeks.
- Started receiving updates from MCSANC: synchronizing with benchmarks specifications.
- We should try to
 - Conclude discussion on the Z-boson propagator
 - Add at least 2 more points to validate scan in sin_{eff}^2


- Discussed since fall last year, problem in nutshell
 - LEP1 legacy (Dizet+Zfitter, experiments):
 - use running width in the Born propagator
 - form-factors calculated with pole-mass/fixed width (internally converted), applied to Born with on-shell mass/running width
 - see references: hep-ex/0509008, hep-ph/9908433
 - LEP2, LHC standard
 - use complex-mass scheme, pole masses, fixed width propagator
 - Zfitter+Dizet v6.42, v6.45, FCCee standard
 - stayed with LEP1 convention


Is that a concern for $sin^2\theta_{eff}$ measurement at LHC ?

Topic discused in Fulvio's talks at EW meetings on 13.03, 7.05 and 1.07

How to model "resonance" Is the Breit-Wigner form good enough?

idea behind running width

$$\mu \bigvee_{\overrightarrow{q}} \bigvee_{k} \bigvee_{q} \bigvee_{q}$$

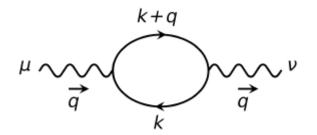
$$M_{OS}^2 = M_{\text{pole}}^2 \left(1 + \frac{\Gamma_{\text{pole}}^2}{M_{\text{pole}}^2}\right)$$
$$\Gamma_{OS}^2 = \Gamma_{\text{pole}}^2 \left(1 + \frac{\Gamma_{\text{pole}}^2}{M_{\text{pole}}^2}\right)$$

But the propagator in ME is of the form

$$\chi_Z(s) = \frac{1}{s - M_Z^2 + i \cdot \Gamma_Z \cdot s / M_Z}$$

Topic discused in Fuvio talks at EW meetings on 13.03, 7.05 and 1.07

including photon exchange


$$\begin{aligned} \frac{d\sigma_0^{\gamma}}{d\Omega} &= \frac{\alpha^2 Q_f^2 N_c}{4s} (1 + \cos^2 \vartheta) \\ \frac{d\sigma_0^{\gamma Z}}{d\Omega} &= -\frac{\alpha^2 Q_f N_c}{4\sqrt{2} s_{\theta}^2 c_{\theta}^2 s} \operatorname{Re}(\chi(s)) [g_V^e g_V^f (1 + \cos^2 \vartheta) + 2 g_A^e g_A^f \cos \vartheta] \\ \frac{d\sigma_0^Z}{d\Omega} &= -\frac{\pi \alpha^2 N_c}{32 s_{\theta}^4 c_{\theta}^4 s} |\chi(s)|^2 [f(g_V^{e,f}, g_A^{e,f})(1 + \cos^2 \vartheta) + g(g_V^{e,f}, g_A^{e,f}) \cos \vartheta] \\ \chi(s) &= \frac{s}{(s - M_Z^2) + i\Gamma_Z M_Z} \end{aligned}$$

$$\chi(s)_{\text{running}} = \frac{1}{(1+i\gamma)} \chi(s)_{\text{pole}} \qquad \gamma \simeq 0.0274$$

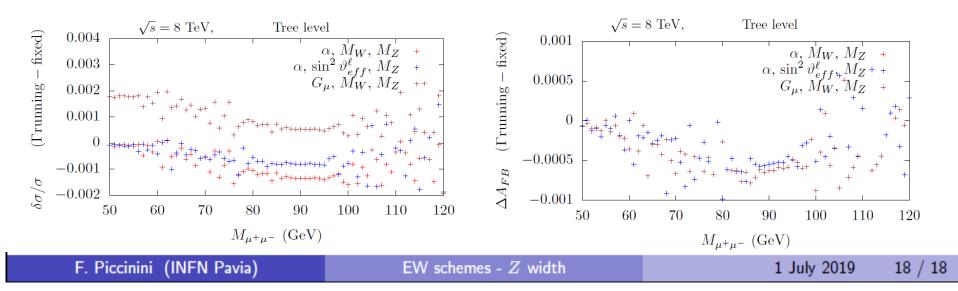
- the couplings, in schemes where $\sin^2\theta$ is connected to M_Z and M_W , get modified when changing from running- to fixed-width scheme
- the relative weights of channels can get modified

 F. Piccinini (INFN Pavia)
 EW schemes - Z width
 1 July 2019
 16 / 18

idea behind running width

$$\begin{split} M_{OS}^2 &= M_{\rm pole}^2 \left(1 + \frac{\Gamma_{\rm pole}^2}{M_{\rm pole}^2} \right) \\ \Gamma_{OS}^2 &= \Gamma_{\rm pole}^2 \left(1 + \frac{\Gamma_{\rm pole}^2}{M_{\rm pole}^2} \right) \end{split}$$

Mathematically formulas for $\chi(s)$ are equivalent, ones M_z , Γ_z , N_z are properly implemented.


At the Z-pole both formulas should lead to same calculated cross-section.

$$\begin{split} \chi'_{Z}(s) &= \frac{1}{s(1+i\cdot\Gamma_{Z}/M_{Z}) - M_{Z}^{2}} \\ &= \frac{(1-i\cdot\Gamma_{Z}/M_{Z})}{s(1+\Gamma_{Z}^{2}/M_{Z}^{2}) - M_{Z}^{2}(1-i\cdot\Gamma_{Z}/M_{Z})} \\ &= \frac{(1-i\cdot\Gamma_{Z}/M_{Z})}{(1+\Gamma_{Z}^{2}/M_{Z}^{2})} \frac{1}{s - \frac{M_{Z}^{2}}{1+\Gamma_{Z}^{2}/M_{Z}^{2}} + i\cdot\frac{\Gamma_{Z}M_{Z}}{1+\Gamma_{Z}^{2}/M_{Z}^{2}}} \\ &= N_{Z} \frac{1}{s - M_{Z}'^{2} + i\Gamma_{Z}'M_{Z}'} \\ M_{Z}' &= \frac{M_{Z}}{\sqrt{1+\Gamma_{Z}^{2}/M_{Z}^{2}}} \\ N_{Z} &= \frac{\Gamma_{Z}}{\sqrt{1+\Gamma_{Z}^{2}/M_{Z}^{2}}} \\ N_{Z} &= \frac{(1-i\cdot\Gamma_{Z}/M_{Z})}{(1+\Gamma_{Z}^{2}/M_{Z}^{2})} = \frac{(1-i\cdot\Gamma_{Z}'/M_{Z}')}{(1+\Gamma_{Z}'^{2}/M_{Z}'^{2})} \end{split}$$

Topic discused in Fulvio's talks at EW meetings on 13.03, 7.05 and 1.07

PRELIMINARY

PRELIMINARY

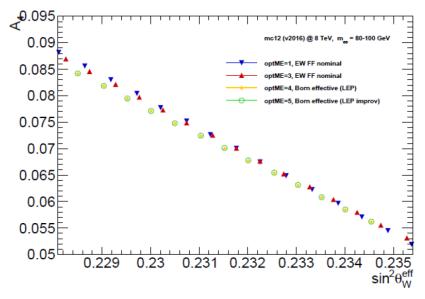
At Z-pole, predictions for σ and A_{FB} are not the same, difference of 0.15% for ratio of cross-sections and 5 10⁻⁴ for ΔA_{FB} . Looks like residuum scaling factor 1/(1+i γ) is missing, was it intentional?

Some differences for cross-sections between both formulas for $\chi(s)$, for observables outside the Z-pole were indeed discussed already at LEP1 times, considered not relevant for the precision of the measurements there. The "running width" model was observed as agreeing better with measured Z lineshape.

The effect/was/much smaller than what shown on plots above.

For now we took pragmatic approach: use defaults of each code:

- Powheg_ew and MCSANC: pole-mass and fixed width propagator
- wt^{EW} : calculated with on-shell masses and running width propagator, as it is standard used by Zfitter+Dizet


We should keep it in mind, that ones we reach precision of the comparisons which might be sensitive to the effect of $\chi(s)$ implementation.

It should be discussed as component of theoretical uncertainties of the predictions.

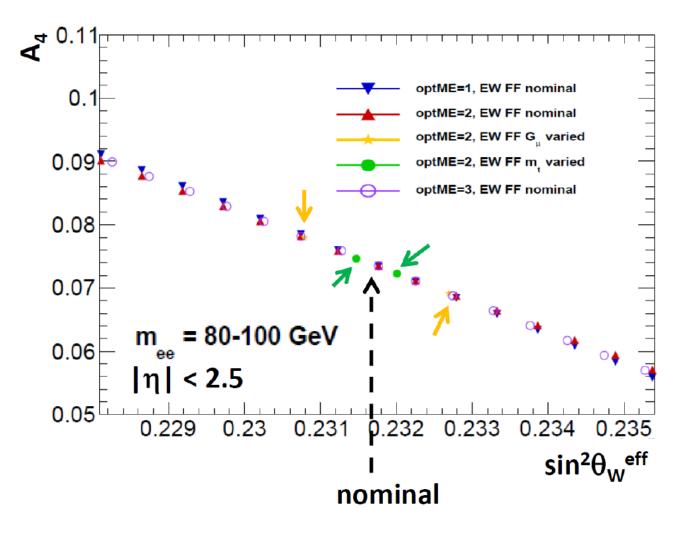
$sin^2\theta_{eff}$ scan for $A_{FB and/or} A4$

Can be done with codes predicting this pseudo-observable explicitly

- It is available with (Dizet FF +wt^{EW})
- Main motivation for Powheg_ew to develop new EW schemes was to have it available as well.
- We should complete this comparison benchmark. Needs at least two additional $\sin^2\theta_{eff}$ points, eg. $\sin^2\theta_{eff} = 0.231499 + 0.00050$ and then predicted slope of the A_{FB}.

Example for A₄ with wt^{EW}

Formulas used for this plot, varied δV


$$\begin{split} v_{\ell} &= (2 \cdot T_{3}^{\ell} - 4 \cdot q_{\ell} \cdot (s_{W}^{2} \cdot K_{\ell}(s, t) + \delta_{V})) / \Delta \\ v_{f} &= (2 \cdot T_{3}^{f} - 4 \cdot q_{f} \cdot (s_{W}^{2} \cdot K_{f}(s, t) + \delta_{V})) / \Delta \\ vv_{\ell f} &= \frac{1}{v_{\ell} \cdot v_{f}} [(2 \cdot T_{3}^{\ell})(2 \cdot T_{3}^{f}) \\ &- 4 \cdot q_{\ell} \cdot (s_{W}^{2} + \cdot K_{f}(s, t) + \delta_{V})(2 \cdot T_{3}^{\ell}) \\ &- 4 \cdot q_{f} \cdot (s_{W}^{2} \cdot K_{\ell}(s, t) + \delta_{V})(2 \cdot T_{3}^{f}) \\ &+ (4 \cdot q_{\ell} \cdot s_{W}^{2})(4 \cdot q_{f} \cdot s_{W}^{2})K_{\ell f}(s, t) \\ &+ 2 \cdot (4 \cdot q_{\ell}))(4 \cdot q_{f} \cdot) \cdot s_{W}^{2} \cdot K_{\ell f}(s, t) \cdot \delta_{V}] \frac{1}{\Delta^{2}} \end{split}$$

E. Richter-Was, IF JU

CERN, LHC EW precision, 18.10.2019

$sin^2\theta_{eff}$ scan for $A_{FB and/or}$ A4

Example for A₄ with wt^{EW}

Draft of YR: Section 3 & Appendixes F,G,H,I

1		oduction	3
	1.1 1.2	Electroweak pseudo-observables at LEP	3
	1.2	Observables sensitive to the weak mixing angle at hadron colliders	6
	1.4	Interpretation of early hadron collider measurements in terms of the effective weak mixing angle .	6
2	Virt	ual EW corrections	7
2	2.1		7
	2.2	Overview of calculations/tools and input schemes	7
	2.3	Numerical results for virtual EW corrections	7
		2.3.1 Loops and box corrections with different EW schemes	7
		2.3.2 α_{QED} with different EW schemes	9
		2.3.3 $\sin^2 \theta_W$ with different EW schemes	10
		2.3.4 Improved Born Approximation and Effective Born 2.3.5 The Z-boson lineshape	11 11
			12
	2.4	2.3.6 The A_{FB} distribution	12
	2.4	2.4.1 Benchmarks at EW LO	16
		2.4.2 Benchmarks at EW NLO, NLO+HO	18
	2.5	Theoretical uncertainties and conclusions	18
3	OFI) emissions	24
5	3.1		24
	3.2	Overview of calculations and tools	24
	3.3	Numerical results for QED ISR and IFI	24
	3.4	Photon-induced processes	24
	3.5	Theoretical uncertainties and conclusions	24
4	A po	ossible strategy for run-2 measurements and combinations at the LHC	25
	4. Î	Introduction	25
	4.2	Observables used for comparisons of expectations between experiments	25
	4.3	Interpretation tools	25
		4.3.1 QCD tools: DYTurbo, NNLOJET	25
		4.3.2 QED/EW tools: Dizet, Powheg EW, MC-SANC, ZGRAD2?	25
	4.4	Combination tools	25
		 4.4.1 Correlations between measurements: PDFs, QCD, QED/EW	25 25
		4.4.2 Profile intermodel in to an observables and direct extraction of weak mixing angle 4.4.3 Compatibility tests between measurements of different experiments	25
		4.4.4 Profile likelihood fit to all observables and direct extraction of weak mixing angle	25
	4.5	Expected breakdown of uncertainties and conclusions	25
		4.5.1 Measurement uncertainties	25
		4.5.2 PDF uncertainties	25
		4.5.3 QED/EW uncertainties	25
		4.5.4 QCD uncertainties	25
		4.5.5 Parametric uncertainties	25
		4.5.6 Conclusions	25

Α	EW schemes A.1 EW scheme: $\alpha(0), G_{\mu}, M_Z$ A.2 EW scheme: $\alpha(0), M_W, M_Z$ A.3 EW scheme: G_{μ}, M_Z, M_W A.4 EW scheme: $\alpha(0), s_W^2, M_Z$ A.5 EW scheme: G_{μ}, s_W^2, M_Z A.6 Benchmark initialisation	28 28 29 29 29 29
в	Improved Born Approximation	32
С	The s dependent Z-boson width	35
D E	 D.1 Input parameters and initialisation flags D.2 Predictions: masses, couplings, EW form-factors D.3 Theoretical and parametric uncertainties D.3.1 Running α(s) D.3.2 Fermionic two-loop corrections D.3.3 Top quark mass TauSpinner with EW weights E.1 Born kinematic approximation and <i>pp</i> scattering E.2 Average over incoming partons flavour E.3 Effective beams kinematics E.4 Definition of the polar angle	39 39 41 41 43 43 43 46 46 46 46 47 47
	E.5 Concept of the EW weight E.6 EW corrections to doubly-deconvoluted observables	47 47
F	Powheg_ew F.1 Benchmark results for different EW schemes	50 50
G	MCSANC G.1 Benchmark results for different EW schemes	53 53
н	KKMC_hh	55
I	HORACE	56

QED emission

- Problem with consistency of Afb because not calculated in the EW schemes.
- Proposal to normalise to "best predictions" of the EW scheme used. It will make Section 3 consistent with Section 2.
- We could also show only △A and ratio of cross-sections with different EW schemes, not the central values.
 - Caveats:
 - LO QCD, reference is LO EW with LUXQED PDF from NNPDF3.1
 - Mass window is 66 to 116 GeV for KKMC-hh (effects smaller near pole)
 - Still need to understand value of A_{FB} quoted by KKMC-hh!

80 < $m_{\mu\mu}$ < 102 GeV	A _{FB} (LO)	∆A(ISR) (10 ⁻⁴)	∆A(IFI) (10 ⁻⁴)	
Total phase space				
MC-SANC	0.0459	-0.4±0.1	-1.8±0.1	\leftarrow EW LO G _µ
Powheg EW	0.0448	0.0±0.6	1.3±0.8	\leftarrow EW LO G_u^{μ}
KKMC-hh	0.0200	-1.8±0.2	0.3±0.1	\leftarrow EW NLO+HO α (0) v1
Fiducial phase space				
MC-SANC	0.0189	-0.3±0.1	-0.4±0.1	
Powheg EW	0.0189	0.1±0.4	0.4±0.4	
KKMC-hh	0.0121	0.3±0.3	1.1±0.1	1

LPCC SM precision EW meeting, 07/05/2019

D. Froidevaux

QED emission

Snapshot of existing comparison results.

Integrated $A_{FB}(LO)$ and difference $\Delta A[QED] = [A_{FB}(LO+QED)-A_{FB}(LO)]$ in green – the numbers from the report of F. Piccinini on Dec 12, 2018

	$A_{FB}(LO)$	$\Delta A[ISR]$	$\Delta A[IFI]$	$\Delta A[q\gamma]$	$\Delta A[\gamma \gamma]$			
			[66-116]					
TV	0.03998(1)	-0.00004(1)	-0.00026(1)	0.00002(1)	-0.00018(1)			
	0.03986(2)	-0.00001(3)						
FV	0.01813(1)	0.00002(1)	-0.00006(1)	0.00000(1)	-0.00002(1)			
	0.01815(3)	0						
			[66-80]					
TV	-0.20465(6)	-0.00019(6)	-0.00076(6)	-0.00181(7)	0.01319(5)			
FV	-0.06969(3)	0.00000(4)	-0.00017(3)	-0.00073(3)	0.00093(3)			
			[80-102]					
TV	0.04496(1)	-0.00004(1)	-0.00018(1)	-0.00000(1)	-0.00008(1)			
	0.04481(2)	0						
FV	0.01891(1)	-0.00003(1)	-0.00004(1)	-0.00000(1)	-0.00000(1)			
	0.01895(3)	-0.00080(6)						
	[102-116]							
TV	0.21388(6)	0.00015(7)	-0.00215(6)	0.00087(7)	-0.00544(6)			
FV	0.09327(4)	0.00004(4)	-0.00064(4)	0.00033(4)	-0.00055(4)			

S. Bondarenko & L. Kalinovskaya

LHC EW Precision sub-group meeting, CERN, March 13, 2019

Status of the draft: Section 3 & Appendix: H, I

- Nothing there yet.
- Got collection of plots from KKMC_hh which could go to Appendix H.
- Nice results exist on ISR/FSR/IFI from Powheg_ew and MCSANC in presentions of previous meetings.
- I would like to start putting it into draft, so all is collected in one place. Please send me text/tables/plots as .tex and .eps files.
 Even if there are not final ones, will help converging.