

Resummation benchmarking

LHC EW precision group workshop

December 16, 2019

Resummation codes

- The benchmarking exercise and W mass measurement
 - We benchmark Z/W analytic resummed predictions
 - Has never been done before and there is already much to be learned

	<i>b</i> -space	k _t -space	add.	mult.	m. logs	profile	trans. fun	NP corr
PB-TMD		√						√
CuTe		√	✓				√	✓
DYres/DYTURBO	√		√		√			(√)
NangaParbat	√		√		√			✓
RadISH		√	(√)	√	√			
ResBos2	√	7	√		V			✓
Resolve	√		√		√			√
SCETLib	√		√			√	/ /	

+Artemide

16/12/19

Benchmarking levels

- Benchmarking of resummed p_TZ, p_TW/p_TZ:
 - Inputs: https://gitlab.cern.ch/arapyan/pt-comparison
 - 1) Canonical logarithms (as much as possible)
 - lacksquare Strictly $\ln(Qb_T/b_0)$, $\ln(q_T/Q)$, i.e. $\mu_H=Q_{\mathrm{res}}=Q$, $\mu_r=\mu_f=Q$
 - ▶ Including b^* or equivalent prescription, but no nonpert. form factor etc.
 - ► Result in **b**_T space (if possible)
 - ightharpoonup Result in q_T space

Great progress in 2018!

- 2) Nominal, favourite logarithms
 - Including turning off resummation at large q_T , e.g. $Q_{\rm res}=Q/2$, profile scales, $\ln(b_T)\to \ln(1+b_T)$, etc. ...
- 3) Resummation as in 2) plus matching nonsingular FO correction

	Boundary cond.	Anomalous di	FO matching	
Order	(FO singular)	γ_i (noncusp)	$\Gamma_{\rm cusp}, \beta$	(nonsingular)
LL	1	-	1-loop	-
NLL	1	1-loop	2-loop	-
NLL' (+NLO ₀)	α_s	1-loop	2-loop	α_s
$NNLL (+NLO_0)$	α_s	2-loop	3-loop	α_s
NNLL' (+NNLO ₀)	α_s^2	2-loop	3-loop	α_s^2
$N^3LL (+NNLO_0)$	α_s^2	3-loop	4-loop	α_s^2
N^3LL' (+ N^3LO_0)	α_s^3	3-loop	4-loop	α_s^3
$N^4LL (+N^3LO_0)$	α_s^3	4-loop	5-loop	α_s^3

Level-1 benchmarking

- As seen in Valerio's slides the first step of benchmarking has been quite successful
 - ReSolve, NangaParbat, DYRES, Radish, SCETlib are within ~1% in qT>10 GeV and qT<80 GeV regions
 - Cute, Artemide, and PB-TMD show larger differences
 - No inputs from Resbos
 - Demonstrated that low qT (<10GeV) differences are due to Landau-pole regularization procedure

Next steps...

- Level-2 benchmarking
 - Inclusion of modified logs
 - Different codes use their 'nominal' settings
 - For example: favorite Landau pole regularization
- Systematic uncertainties become relevant for this step
 - Perturbative uncertainties (µR/µF and resummation scales)
 - Profile scales, modified logarithms, etc.
 - We should list all relevant uncertainty sources at this step and add it to the benchmarking document.
- Timelines for level-2
 - Would it be reasonable to aim for the level-2 inputs from the groups by the end of January?
- Level-3 (matching to fixed-order) can follow after

Timelines and documentation

- From the Precision EW group the 3 steps will converge for the Yellow Report. it was also tentatively agreed:
 - There will be real added value in publishing the results of these comparisons (one can include a suitable version of such a publication in a Yellow Report). This would be jointly signed by all participating resummation groups.
- As discussed during the last meeting the modeling of the correlations of the uncertainties in the pT W/Z ratio is outside of the scope of this first benchmarking result and documentation
 - This will be studied beyond Summer of 2020 within the LHC EW group

16/12/19

ADDITIONAL MATERIAL