

MEDICIS Board:

Tb155Productions @ Arronax in 2019

Cyrille Alliot, Nadia Audouin, Férid Haddad, Celine Herault, Nathalie Michel Group accelerator, radiosafety group

Tilted target with graphite foils

3 Gd foils 25µm thickness between 2 graphite foils 500µm thickness in copper body

Graphite foils

Irradiation: JUL 02 2019

Proton beam 2h30– E=55MeV – 20μ A– 50μ A*h integrated

No change in gadolinium foil aspect No change in graphite foil aspect

Target used for Tb 155 production

Medicis

Two irradiations and shipping to CERN

JUL 30 2019 and AUG 27 2019

Gd in MEDICIS #671 M Re target and shipping to CERN Gd in MEDICIS #645 M W target and shipping to CERN

Produced Activities

radionuclide	Half-life		
Tb151	17.6 h		
Tb152	17,5 h		
Tb153	2,34 j		
Tb154	21 h		
Tb155	5,32 j		
Tb156	5,35j		

Good estimations of Tb 153, Tb 155, Tb 156 production with MCNPX in our conditions

Radionuclides	Tb153	Tb155	Tb156
Produced activities in MBq	228	154	79

Dose rate values

Mean dose rate value at contact ~1 mSV/h

Conclusion

- ➤ Production of 150 MBq of Tb 155 at ARRONAX and shipping to CERN
- ➤ Dose rate value at contact of the package around 1mSV/h
- The activity can be multiply by two in the current setup
 - ➤ Separation Gd/Tb in progress

Gd/Tb separation

Separation done after dissolution of the irradiated target, solution S0 with aim:

100

- LN (TRISKEM) resin washed with UP water + HNO3 8M
- conditioning with HNO3 0.75M at 1mL/min
- S0 in head column
- Rinsing of beaker: 2*1mL HNO3 0.75M
- Rinsing of the column: 8*1mL HNO3 0.75M
- Rinsing of the column: 30*1mL HNO3 2M

Gd/Tb separation

Possibility to separate 90 % of the Gd from the solution

Repeating the elution 4 fold to reach 1: 100 (Tb: Gd)

Optimization of the protocol ongoing

Conclusion

➤ Possibility to really increase activity by shipping solution after radiochemistry in a vial inside a lead container and type A package.

Five irradiations @ ARRONAX

- Irradiation n°1: 06 MAI 2019 EOB 15h15
 - Proton beam 4h47– E=35MeV 50μA 250.52μA*h integrated
 - Target: 3 Gd foils of 25μm thickness+ aluminium 2mm + in stainless steel cap
- Irradiation n°2: 28 MAI 2019 EOB 10h13
 - Proton beam 15 mn– E=60MeV 20μA– 5μA*h integrated
 - Target : 3 Gd foils of $25\mu m$ thickness between two copper plates in 15 ° tilted rabbit IBA12
- Irradiation n°3:02 JUL 2019 EOB 15h55
 - Proton beam 2h30– $E=55MeV <math>20\mu A$ $43.03\mu A$ *h integrated
 - Target : 3 Gd foils 25 μ m thickness between two graphite foils of 500 μ m thickness in copper plates into 15 ° tilted rabbit IBA12
- Irradiation n°4: 30 JUL 2019 EOB 16h58 IBA12 en P3
 - Proton beam 7h E=55MeV 10μA– 70.20μA*h integrated
 - Target : 3 Gd foils 25 μ m thickness between two graphite foils of 500 μ m thickness in copper plates into 15 ° tilted rabbit IBA12
- Irradiation n°5: 27 AOU 2019 EOB 15h47 IBA12 en P3
 - Proton beam 7h E=55MeV 10μ A– 70.20μ A*h integrated
 - Target : 3 Gd foils 25 μ m thickness between two graphite foils of 500 μ m thickness in copper plates into 15 ° tilted rabbit IBA12

Target improvement

1st irradiation has been done with encapsulated Gd foils

Cooling issue with this system

Irradiation: MAY 06 2019

Proton beam 5h– E=35MeV – 50μ A on target – 250 μ A*h integrated

Window deformation Bad thermal contact Melting of the target

New design with tilted target

Second irradiation with Gd foils in copper body

Irradiation: MAY 28 2019 proton beam 15mn -E=60MeV -20μ A sur cible -5μ A*h integrated

- White traces on Gd: redox reactions under beam beetween Cu and Gd?
- → Addition of a graphite sheet between Gd and Cu to avoid interaction.

