

Technical developments for MED22-23

Charlotte DUCHEMIN (Joined the team on 1st August 2019)

Supervisor KU Leuven: Thomas COCOLIOS Supervisor CERN: Thierry STORA

- Interest in both Fe-52 and Fe-59 for imaging purposes
 - Both can be produced via spallation reactions on nickel
- The idea is to produce an alloy nickel/aluminium
 - Increase the melting point from 1450 °C (nickel) to 1600 °C

- Expertise at KU Leuven & CERN
 - « Department of Physics and Astronomy » Thomas Cocolios group
 - Target material development for C-11 production Simon Stegemann PhD thesis
 - « material engineering » department: Jef Vleugels willing to help
 - Currently developping TaC and TiC targets in collaboration with ISOL@MYRRHA
 - Meeting in August: to buy Ni and Al powder and press it to get disks (50 mm diameter, 50 mm length)
- First theoritical study regarding production efficiency required

Geometry simplified, based on elements extracted from an input courtesy of J. Vollaire Visualized with SimpleGeo[®]

- Scoring of neutron, proton, π +, π and photon fluence
- Off-line calculation of activity via ActiWiz giving more flexibility w.r.t. material composition & irradiation/cooling parameters

Primary beam impacting on the ISOLDE target before the MEDICIS Ni-Al target

Primary beam impacting directly on the MEDICIS Ni-Al target

1.9e-6 7.2e-6 2.7e-5 1.0e-4 3.7e-4 1.4e-3 5.2e-3 1.9e-2 7.2e-2 2.7e-1 1.0e+0 1.0e-6 3.7e-6 1.4e-5 5.2e-5 1.9e-4 7.2e-4 2.7e-3 1.0e-2 3.7e-2 1.4e-1 5.2e-1 Proton fluence (1/cm2)

- Expected activities of Fe-52 and Fe-59 in a Ni50-Al50 MEDICIS target
 - 1 uA (6.25E12 particles/s), 1 hour irradiation, 1 hour of cooling time.

E12 particles/s), 1 nour irradiation, 1 nour of cooling time.							
Configuration 1.4 GeV	Fe-52	Fe-59	Ratio Fe-52/Fe-59	ninary			
With ISOLDE target	57 MBq	141 kBq	400				
Without ISOLDE target	116 MBq	287 kBq	400				
	x2	x2					

To be studied:

- Feasibility of extraction via mass separation at MEDICIS ?
 - Fe isotopes have already been extracted at ISOLDE from Y_2O_3

• Interest in platinum isotopes such as Pt-191, Pt-193m and Pt-195m

- Production of Pt-191 at MEDICIS
 - through the decay of Hg-191
 - Hg isotopes have already been extracted at ISOLDE

191Hg 49 M	192Hg 4.85 H	193Hg 3.80 H	194Hg 444 Y
ε: 100.00% α: 5.0E-6%	ε: 100.00%	ε: 100.00%	ε: 100.00%
190Au 42.8 M	191Au 3.18 H	192Au 4.94 H	193Au 17.65 H
$\epsilon: 100.00\%$ $\alpha \le 1.0E-6\%$	ε: 100.00%	ε: 100.00%	ε: 100.00%
189Pt	190Pt	191Pt	192Pt
10.87 H	6.5E+11 Y	2.83 D	STABLE
ε: 100.00%	0.012% α: 100.00%	ε: 100.00%	0.782%
	191Hg 49 M ε: 100.00% π: 5.0E-8% 190Au 42.8 M ε: 100.00% π < 1.0E-8% 189Pt 10.87 H ε: 100.00%	191Hg 49 M 192Hg 4.85 H ε: 100.00% ε: 100.00% π: 5.0E-6% ε: 100.00% 190Au 42.8 M 191Au 3.18 H ε: 100.00% ε: 100.00% π < 1.0E-6% ε: 100.00% 189Pt 10.87 H 190Pt 6.5E+11 Y 0.012% ε: 100.00% π: 100.00%	$\begin{array}{c} 191 \text{Hg} \\ 49 \text{ M} \\ 49 \text{ M} \\ 4.85 \text{ H} \\ 3.80 \text{ H} \\ 3.80 \text{ H} \\ 3.80 \text{ H} \\ 5.0 \text{E} 100.00\% \\ \pi \le 5.0 \text{E} 6\% \\ 190 \text{Au} \\ 42.8 \text{ M} \\ 42.8 \text{ M} \\ 3.18 \text{ H} \\ 3.18 \text{ H} \\ 4.94 \text{ H} \\ 5.100.00\% \\ \pi < 1.0 \text{E} 6\% \\ 189 \text{Pt} \\ 10.87 \text{ H} \\ 5.5 \text{E} + 11 \text{ Y} \\ 0.012\% \\ \pi \ge 100.00\% \\ \pi $

- Use of a MEDICIS lead target with collection of Hg-191 ?
 - Hg-191 4.2 GBq (for 1 uA, 1 hour irradiation & 1h after EOI)

Production of Pt-193m and Pt-195m at MEDICIS?

- Would require direct production and collection
- No generator possible
- Pt cannot easily be extracted from the target

Thank you !

Total fluence	1.4	2	2 GeV vs. 1.4 GeV
(cm ⁻²)	GeV	GeV	ratio
Neutrons	1.11E-02	1.62E-02	1.46E+00
Protons	2.43E-02	2.97E-02	1.22E+00
Pi+	5.21E-04	9.79E-04	1.88E+00
Pi-	2.06E-04	5.62E-04	2.73E+00
Total	3.61E-02	4.75E-02	1.31E+00

- No fundamental differences except somewhat higher pion yield
- Total yield at 2 GeV is ~30% higher
- Roughly equivalent increase in isotope production to be expected

* Photons not shown for clarity. Their contribution is < 1% to the isotope production of interest

- Production of Pt-193m and Pt-195m at MEDICIS?
 - No generator possible
 - Would require direct production and collection
 - Pt cannot easily be extracted from the target

Though lead itself is volatile, most of these radioelements may be extracted from the lead target by gas chemical methods in a stream of air and separated with the help of high temperature chemical filters. In several experiments the pieces of irradiated Pb were mixed with quartz sand (weight ratio 1:3.5 or more) and heated slowly from 500 to 1100 °C. The heating was continued at this temperature for few hours in a stream of air. Thus lead and bismuth were transformed into

nonvolatile silicate form. Re, Os, Ir, Pt, Hg and Tl radionuclides were sublimated. Re, Os, Ir and Pt were separated in a stream of oxygen with the help of chemical filters. Thus, metallic gold absorbs Pt at high temperatures (1000 °C or more) and Ir at about 300–500 °C.⁸ Re and Os are more volatile in a stream of oxygen, these elements may be most effectively separated with the help of MgO or CaO filter absorbing Re at about 1100 °C.⁸

