Mass separation of 225Ac from 227Ac and from irradiated Th targets to support Targeted Alpha Therapy
\(^{225}\text{Ac}\) for medical application

- Direct use as an α emitter
 - 4 α particles in close succession
 - \(T_{1/2} \sim 10\) days

- As a generator for \(^{213}\text{Bi}\)
 - 100% α emission
 - \(T_{1/2} \sim 45\) min

- Can be combined with \(^{68}\text{Ga}\) for theranostics applications

Sources of ^{225}Ac

Existing supply
- In the decay chain of ^{229}Th
- Extracted from ^{233}U bread during the XX$^\text{th}$ century weapon research
- 3 main suppliers: ORNL, ITU, IPPE
- Global annual production of 63 GBq
- Supporting some clinical trials worldwide but insufficient for future use & not sustainable

Considered alternative routes
- $^{226}\text{Ra}(\gamma,n)^{225}\text{Ra} \rightarrow ^{225}\text{Ac}$
- $^{226}\text{Ra}(p,2n)^{225}\text{Ac} @ 16.8$ MeV
 - Best on paper
 - Difficulties associated with ^{226}Ra
- $^{232}\text{Th}(p,x)^{225}\text{Ac} @ >70$ MeV
 - Co-production of ^{227}Ac
- ISOL
 - TRIUMF ISAC
 - CERN ISOLDE / MEDICIS
Sources of ^{225}Ac

<table>
<thead>
<tr>
<th>Production Method</th>
<th>Facility</th>
<th>Capabilities</th>
<th>Monthly ^{225}Ac Production [GBq (Ci)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Sources</td>
<td>^{229}Th generator</td>
<td>ORNL</td>
<td>0.704 g (150 mCi) of ^{229}Th</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ITU</td>
<td>0.215 g (46 mCi) of ^{229}Th</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IPPE</td>
<td>0.704 g (150 mCi) of ^{229}Th</td>
</tr>
<tr>
<td>Potential</td>
<td>$^{232}\text{Th}(p, x)^{225}\text{Ac}$</td>
<td>TRIUMF</td>
<td>500 MeV, 120 μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BNL</td>
<td>200 MeV, 173 μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>INR Arronax</td>
<td>160 MeV, 120 μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>70 MeV, 2×375 μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LANL</td>
<td>100 MeV, 250 μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iThemba LABS</td>
<td>66 MeV, 250 μA</td>
</tr>
<tr>
<td>Future</td>
<td>$^{226}\text{Ra}(p, 2n)^{225}\text{Ac}$</td>
<td>20 MeV, 500 μA cyclotron</td>
<td>3983.1 (107.65)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15 MeV, 500 μA cyclotron</td>
<td>1157.4 (31.28)</td>
</tr>
<tr>
<td>Sources</td>
<td>ISOL</td>
<td>TRIUMF (existing)</td>
<td>0.37 (0.01)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TRIUMF (potential upgrades)</td>
<td>190.6 (5.15)</td>
</tr>
<tr>
<td></td>
<td>$^{226}\text{Ra}(\gamma, n)^{225}\text{Ra}$</td>
<td>medical linac</td>
<td>18 MeV, 26 μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ALTO</td>
<td>50 MeV, 10 μA</td>
</tr>
<tr>
<td></td>
<td>$^{238}\text{Ra}(n, 2n)^{225}\text{Ra}$</td>
<td>fast breeder reactor</td>
<td>~37 (1)</td>
</tr>
</tbody>
</table>
Handling Ac with the ISOL method

- High-energy spallation of ^{232}Th or ^{238}U yields to the co-production of Ra / Ac with $A=220-230$
- Radiochemistry yields a mix $^{225}\text{Ac} / ^{227}\text{Ac}$ (2%), deteriorating in time
 - Waste management problem
- Mass separation yields a mix $^{225}\text{Ac} / ^{225}\text{Ra}$
 - Acceptable as a co-generator
 - Efficiency?

![Diagram of ISOL method]

Radioactive isotopes are produced in a target, and a magnetic field bends ions according to A/q. Light mass ions are separated from heavy mass ions, and selected mass ions are extracted. Production beam leads to the target, and the separator collects the desired ions.
Handling Ac with the ISOL method

- Surface ionization of Ra has a long history at ISOLDE & laser ionization is now available as well
- Laser ionization of Ac has been demonstrated at Mainz / TRIUMF / LISOL / ISOLDE
- Release of Fr/Ra/Ac from UCₓ has been studied at ISOLDE under IS637 yielding ~ few % efficiency
MED024: 225Ac at MEDICIS

- Production route 1: mass separation of chemically-separated actinium, namely 225Ac / 227Ac (2%). This sample may be engineered from separate supplies of either isotope as well to reproduce the conditions.

- Production route 2: direct extraction and separation of 225Ac from an irradiated 232Th sample (metallic foil, ThO$_x$, ThC$_x$?). Considering irradiation at TRIUMF while CERN undergoes LS2.

- Characterization
 - Pre-separation & post-separation (full post-analysis of the sample at SCK•CEN)
 - Total activity and specific activities of 225Ac & 227Ac
 - Determining the process efficiency and enrichment factor
MED024: aims & request

• Characterize the separation of 225Ac / 227Ac in a quantitative way
• Start from chemically-separated Ac, as well as from various forms of irradiated Th
• Provide 225Ac for the future operation of MEDICIS and offer a long-term solution for the purification of 225Ac.
Irradiation at TRIUMF

- Irradiations planned at Beam Line 1A
- Radiochemistry to be performed on site prior to shipping