
Fast Machine Learning Inference on
FPGAs for Trigger and DAQ

Javier Duarte, Sergo Jindariani, Ben Kreis, Ryan Rivera, Nhan Tran (Fermilab)
Jennifer Ngadiuba, Maurizio Pierini, Vladimir Loncar, Sioni Summers (CERN)

Edward Kreinar (Hawkeye 360)
Phil Harris, Song Han, Dylan Rankin (MIT)

Zhenbin Wu (University of Illinois at Chicago)
Giuseppe di Guglielmo (Columbia University)

4th ATLAS Machine Learning Workshop - CERN - 11th November 2019

hls4ml - 4th ATLAS ML Workshop - Sioni Summers11.11.2019

Contents

• Introduction

• Neural Network to FPGA translation with hls4ml

• Binary Neural Networks in hls4ml

 2

hls4ml - 4th ATLAS ML Workshop - Sioni Summers11.11.2019 3

The challenge: triggering at (HL-)LHC

Extreme bunch crossing frequency of 40 MHz → extreme data rates O(100 TB/s)

“Triggering” = filter events to reduce data rates to manageable levels

 3

11.11.2019 hls4ml - 4th ATLAS ML Workshop - Sioni Summers

Javier Duarte I hls4ml 6

CMS Trigger
High-Level
TriggerL1 Trigger

1 kHz
1 MB/evt

40 MHz

100 kHz

• Level-1 Trigger (hardware)

• 99.75% rejected

• decision in ~4 μs

• High-Level Trigger (software)

• 99% rejected

• decision in ~100s ms

• After trigger, 99.99975% of events are gone forever

Javier Duarte I hls4ml 6

CMS Trigger
High-Level
TriggerL1 Trigger

1 kHz
1 MB/evt

40 MHz

100 kHz

• Level-1 Trigger (hardware)

• 99.75% rejected

• decision in ~4 μs

• High-Level Trigger (software)

• 99% rejected

• decision in ~100s ms

• After trigger, 99.99975% of events are gone forever
 4

Javier Duarte I hls4ml 6

CMS Trigger
High-Level
TriggerL1 Trigger

1 kHz
1 MB/evt

40 MHz

100 kHz

• Level-1 Trigger (hardware)

• 99.75% rejected

• decision in ~4 μs

• High-Level Trigger (software)

• 99% rejected

• decision in ~100s ms

• After trigger, 99.99975% of events are gone forever

40
 M

Hz  

pp co
llis

ions

The LHC big data problem

L1 T
rig

ger

High-Lev
el

Tri
gger Offl

ine

Computin
g

Javier Duarte I hls4ml 6

CMS Trigger
High-Level
TriggerL1 Trigger

1 kHz
1 MB/evt

40 MHz

100 kHz

• Level-1 Trigger (hardware)

• 99.75% rejected

• decision in ~4 μs

• High-Level Trigger (software)

• 99% rejected

• decision in ~100s ms

• After trigger, 99.99975% of events are gone forever

100 ms 1 s1 ns 1 μs

Deploy ML algorithms very early in the game

Challenge: strict latency constraints!

11.11.2019 hls4ml - 4th ATLAS ML Workshop - Sioni Summers

What are FPGAs?
Field Programmable Gate Arrays are reprogrammable
integrated circuits

Logic cells / Look Up Tables perform arbitrary
functions on small bitwidth inputs (2-6)

These can be used for boolean operations, arithmetic,
memory

Flip-Flops register data in time with the clock pulse

 5

FPGA diagram

Machine learning algorithms are ubiquitous in HEP

FPGA usage broad across HEP experiments
Centered on DAQ and trigger development

Some early adaptions of ML techniques in trigger [1]

FPGA development becoming more accessible

High Level Synthesis, OpenCL

FPGA interest in industry is growing
Programmable hardware with structures 
that maps nicely onto ML architectures  

MACHINE LEARNING & FPGAS 7

FPGA
“programmable hardware”

DSPs (multiply-accumulate, etc.)
Flip Flops (registers/distributed memory)

LUTs (logic)
Block RAMs (memories)

[1] Carnes et al., https://indico.cern.ch/event/567550/contributions/2629686/

DSPs are specialized units for
multiplication and arithmetic

BRAMs are small, fast memories -
RAMs, ROMs, FIFOs (18Kb each in
Xilinx)

hls4ml - 4th ATLAS ML Workshop - Sioni Summers11.11.2019

Physics case: jet tagging

Study a multi-classification task to be implemented on FPGA: discrimination
between highly energetic (boosted) q, g, W, Z, t initiated jets

CASE STUDY: JET SUBSTRUCTURE 10

Just an illustrative example, lessons are generic!
Might not be the best application, but a familiar one

ML in substructure is well-studied

CASE STUDY: JET SUBSTRUCTURE 10

Just an illustrative example, lessons are generic!
Might not be the best application, but a familiar one

ML in substructure is well-studied

CASE STUDY: JET SUBSTRUCTURE 10

Just an illustrative example, lessons are generic!
Might not be the best application, but a familiar one

ML in substructure is well-studied

 top
other quark

CASE STUDY: JET SUBSTRUCTURE 10

Just an illustrative example, lessons are generic!
Might not be the best application, but a familiar one

ML in substructure is well-studied

CASE STUDY: JET SUBSTRUCTURE10

Just an illustrative example, lessons are generic!
Might not be the best application, but a familiar one

ML in substructure is well-studied

Z W gluon

t→bW→bqq

3-prong jet

Reconstructed as one massive jet with substructure

q/g backgroundW→qqZ→qq

2-prong jet 2-prong jet no substructure

and/or mass ~ 0

 6

hls4ml - 4th ATLAS ML Workshop - Sioni Summers11.11.2019

Physics case: jet tagging

• Fully connected neural network with 16 expert-level inputs:

- Relu activation function for intermediate layers

- Softmax activation function for output layer

 7

16 inputs

64 nodes
activation: ReLU

32 nodes
activation: ReLU

32 nodes
activation: ReLU

5 outputs
activation: SoftMax

AUC = area under ROC curve
(100% is perfect, 20% is random)

• We train (on GPU) the five output multi-classifier on a sample of ~ 1M events with two
boosted WW/ZZ/tt/qq/gg anti-kT jets

better

Neural Network to FPGA
translation with hls4ml

!8

hls4ml - 4th ATLAS ML Workshop - Sioni Summers11.11.2019 9

high level synthesis for machine learning

2 Building neural networks with hls4ml

In this section we give an overview of the basic task of translating a given neural network model into
a firmware implementation using HLS. We then pick a specific use-case to study, though the study
will be discussed in a way that is meant to be applicable for a broad class of problems. We conclude
this section by discussing how to create an e�cient and optimal firmware implementation of a neural
network in terms of not only performance but also resource usage and latency.

2.1 hls4ml concept

Our basic task is to translate a trained neural network by taking a model architecture, weights, and
biases and implementing them in HLS in an automated fashion. This automated procedure is the task
of the software/firmware package, hls4ml. A schematic of a typical workflow is illustrated in Fig. 1.

-

	

/

hls 4 ml

hls4ml

HLS 4 ML

Figure 1: A typical workflow to translate a model into a firmware implementation using hls4ml.

The part of the workflow that is illustrated in red indicates the usual software workflow required
to design a neural network for a specific task. This usual machine learning workflow, with tools such
as Keras and PyTorch, involves a training step and possible compression steps (more discussion
below in Sec. 2.3) before settling on a final model. The blue section of the workflow is the task of
hls4ml which translates a model into an HLS project that produces a firmware block. This automated
tool has a number of configurable parameters which can help the user customize the network translation
for their application.

The time to perform the hls4ml translation is much shorter (minutes to hours) than a custom
design of a neural network and can be used to rapidly prototype machine learning algorithms without
dedicated engineering support. For physicists, this makes designing physics algorithms for the trigger
or DAQ significantly more accessible and e�cient, thus allowing the "time to physics" to be greatly
reduced.

– 5 –

https://hls-fpga-machine-learning.github.io/hls4ml/

User friendly and optimised translation for ML to FPGA
• Input model trained with standard DL libraries
• Xilinx HLS software: accessible to non-FPGA-expert, a resource not common in HEP
• Comes with implementation of common ingredients: layers, activation functions
• ‘Exotic things’: binary/ternary networks
• And optimisations: layer merging
• https://fastmachinelearning.org/

https://arxiv.org/abs/1804.06913

https://hls-fpga-machine-learning.github.io/hls4ml/
https://arxiv.org/abs/1804.06913

hls4ml - 4th ATLAS ML Workshop - Sioni Summers11.11.2019 10

With hls4ml package we have studied/optimized the FPGA
design through:

• compression: reduce number of synapses or neurons

• quantization: reduces the precision of the calculations (inputs,
weights, biases)

• parallelization: tune how much to parallelize to make the
inference faster/slower versus FPGA resources

Efficient NN design for FPGAs
FPGAs provide huge flexibility

Performance depends on how well you
take advantage of this

Constraints:
Input bandwidth
FPGA resources
Latency

NN training

FPGa project 

designing

11.11.2019 hls4ml - 4th ATLAS ML Workshop - Sioni Summers

Compression with parameter pruning
• Iterative approach:

- train with L1 regularization (loss function augmented with penalty term):

 11

- sort the weights based on the value relative to the max value of the
weights in that layer

Train
with L1

Retrain
with L1

Prune

Prune

Retrain
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……

hls4ml - 4th ATLAS ML Workshop - Sioni Summers11.11.2019 12

• DSPs (used for multiplication) are often
limiting resource

- DSPs have a max size for input (e.g.
27x18 bits), so number of DSPs per
multiplication changes with precision

compression

70% compression ~ 70% fewer DSPs

Number of DSPs available

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

Efficient NN design: compression

hls4ml - 4th ATLAS ML Workshop - Sioni Summers11.11.2019 13

Efficient NN design: quantization
• Quantify the performance of the classifier with the AUC

• Expected AUC = AUC achieved by 32-bit floating point
inference of the neural network

0101.1011101010

width
fractionalinteger

Full performance
at 6 integer bits

Scan integer bits

Fractional bits fixed to 8

Scan fractional bits

Integer bits fixed to 6

Full performance
at 8 fractional bits

FP
G

A
AU

C
 /

Ex
pe

ct
ed

 A
U

C

ap_fixed<width,integer>

FP
G

A
AU

C
 /

Ex
pe

ct
ed

 A
U

C

hls4ml - 4th ATLAS ML Workshop - Sioni Summers11.11.2019

Efficient NN design: reuse

• Key feature of hls4ml: a handle to trade resource usage and latency/throughput
• Reuse = 1: fully unroll everything onto different resources

- Fastest, most resource intensive

• Reuse > 1: one resource used sequentially for several operations
- Slower, but save resources

 14

mult

mult

mult

mult

mult

mult

mult

reuse = 4
use 1 multiplier 4 times

reuse = 2
use 2 multipliers 2 times each

reuse = 1
use 4 multipliers 1 time each

Longer latency

More resources

hls4ml - 4th ATLAS ML Workshop - Sioni Summers11.11.2019

Parallelisation
• Low reuse gives lowest latency, most resource usage

• High reuse gives longer latency, lower resource usage

• Throughput decreases with increasing reuse

• A large enough model will use all of the resources with reuse=1, so sometimes must
increase it

 15

Figure 11: DSP usage in the pruned 3-layer model as a function of the network precision. The various
curves illustrate resource usage for di�erent resource usage factors.

Figure 12: FF and LUT usage in the pruned 3-layer model as a function of the network precision. The
various curves illustrate resource usage for di�erent resource usage factors.

corresponding to the four layers of neuron values that must be computed, with each increment in reuse
factor. This is in line with expectations from Eq. 2.4 where additional reuse of multipliers in a given
layer calculation incurs added latency. In the right plot of Fig. 13, the initiation interval is shown for
di�erent reuse factors. By design, the initiation interval and the reuse factor match as a new input can
be introduced to the algorithm only when all multiplications for a given DSP multiplier are completed.
At very low network precision, the HLS synthesis initiation interval is smaller than the reuse factor.
This is because multiplications are no longer implemented in DSPs but through FFs and LUTs.

– 19 –

Figure 13: Latency (left) and pipeline interval (right) in the pruned 3-layer model as a function of the
network precision. The various curves illustrate resource usage for di�erent resource usage factors.
The latency is given in clock cycles for a 200 MHz clock frequency.

3.3 Firmware Implementation

In this section, we compare the resource estimates from HLS synthesis with a firmware implementation
after final Vivado optimization. To get a rough scaling of the di�erences between the HLS synthesis
resource estimates and a final firmware implementation, we use a "bare" firmware design that allows for
the compilation of the ML algorithm with almost no additional resources. This “bare” implementation
consists of a simple VHDL wrapper that connects the available pins on the FPGA input/output directly
to the hls4mlfirmware block with the assumption that all inputs are delivered on the same clock edge
for evaluation. Including the VHDL wrapper, we perform the firmware implementation and compare
the resulting resource usage.

When performing the implementation, we noticed that the target latency benchmarks in HLS
could not be attained, and we had to reduce the clock speed so as to allow for the compiled algorithm
to meet the timing constraints. The amount needed to reduce of the clock speed became larger with
NN complexity; algorithms that took a large part of the FPGA required slower clocks. For the 3-layer
pruned NN at 32-bit precision, a clock of 8 ns was needed to implement an HLS block designed for
5 ns. This is observed for all reuse factors. A simple solution to overcome this issue is to synthesize
the HLS design for a slightly faster clock than intended. We also note that di�erent versions of Vivado
HLS have varying degrees of success meeting timing. We have had more success meeting timing with
Vivado 2�16.4 than 2�17.2.

Due to the limited number of pins, we now consider a di�erent neural network model with fewer
inputs. BK: subtle point to clarify how this IO limitation will a�ect everyone. In this case, we consider
a small 1 hidden layer model with 10 inputs and 1 output node. We also tested with the 3-layer
pruned network and we find similar quantitative conclusions in the regions where the number of pins
was su�cient for implementation. For the rest of this subsection, we present results with the 1-layer
network using an 8 ns clock at implementation.

– 20 –

~ 175 ns

~ 75 ns

Low precision Neural
Networks in hls4ml

!16

hls4ml - 4th ATLAS ML Workshop - Sioni Summers11.11.2019

• DSPs (multipliers) usually the limiting resource for our NN inference

• Instead, use 1- or 2-bit weights with limited performance loss

• Can have very efficient computation in the FPGA

• Binarize weights but not
gradients during
backpropagation

• Use Binary Tanh, Ternary
Tanh or ReLu activation

• Batch Normalization

• BNN: arxiv.1602.02830

• TNN: arxiv.1605.04711

Binary / Ternary neural networks

 17

https://software.intel.com/en-us/articles/accelerating-neural-networks-with-binary-arithmetic

https://software.intel.com/en-us/articles/accelerating-neural-networks-with-binary-arithmetic

hls4ml - 4th ATLAS ML Workshop - Sioni Summers11.11.2019

BNN - Jet Classification
• Design an architecture to perform the same jet classification task but now with binary

weights and activations

• Performed hyperparameter optimization to find most performant model within some
constraints

 18

16 inputs

64 nodes

ReLU

32 nodes

ReLU

32 nodes

ReLU

5 outputs

SoftMax

16 inputs

448 nodes

Batch Normalization

Binary Tanh

224 nodes

Batch Normalization

Binary Tanh

224 nodes

Batch Normalization

Binary Tanh

5 outputs

Batch Normalization

7x neurons

per layer

hls4ml - 4th ATLAS ML Workshop - Sioni Summers11.11.2019

BNN - Jet Classification
• Design an architecture to perform the same jet classification task but now with binary

weights and activations

• Performed hyperparameter optimization to find most performant model within some
constraints

• Performance is a little bit worse, but not a lot

 19

Original: 16-bit weights
Average accuracy: 0.75

Binarized: 1-bit weights
Average accuracy: 0.72

hls4ml - 4th ATLAS ML Workshop - Sioni Summers11.11.2019 20

• Results targeting Xilinx VU9P FPGA at 200 MHz

BNN - Jet Classification

Model Accuracy Latency
(μs)

DSP
(%)

LUT
(%)

FF
(%)

Original model 0.75 0.06 60 7 1

Original model
(70% compressed) 0.75 0.09 15 1.7 0.7

Small BNN
(16x64x32x32x5) 0.62 0.04 - 0.8 0.1

Optimized BNN
(16x448x224x224x5) 0.72 0.21 - 15 7

BNN w/ReLu
(16x128x64x64x5) 0.70 0.140 4 6 1

Optimized TNN
(16x128x64x64x64x5) 0.72 0.11 - 6 1

TNN w/ReLu
(16x64x32x32x5) 0.68 0.06 2 2 0.2

hls4ml - 4th ATLAS ML Workshop - Sioni Summers11.11.2019 21

• Model compression saves a lot of resources with no impact on classification
performance

BNN - Jet Classification

Model Accuracy Latency
(μs)

DSP
(%)

LUT
(%)

FF
(%)

Original model
(16x64x32x32x5) 0.75 0.06 60 7 1

Original model
(75% compressed) 0.75 0.06 15 1.7 0.7

Small BNN
(16x64x32x32x5) 0.62 0.04 - 0.8 0.1

Optimized BNN
(16x448x224x224x5) 0.72 0.21 - 15 7

BNN w/ReLu
(16x128x64x64x5) 0.70 0.140 4 6 1

Optimized TNN
(16x128x64x64x64x5) 0.72 0.11 - 6 1

TNN w/ReLu
(16x64x32x32x5) 0.68 0.06 2 2 0.2

hls4ml - 4th ATLAS ML Workshop - Sioni Summers11.11.2019 22

• Same-architecture Binary NN is much smaller, but accuracy is much worse

BNN - Jet Classification

Model Accuracy Latency
(μs)

DSP
(%)

LUT
(%)

FF
(%)

Original model
(16x64x32x32x5) 0.75 0.06 60 7 1

Original model
(75% compressed) 0.75 0.06 15 1.7 0.7

Small BNN
(16x64x32x32x5) 0.62 0.04 - 0.8 0.1

Optimized BNN
(16x448x224x224x5) 0.72 0.21 - 15 7

BNN w/ReLu
(16x128x64x64x5) 0.70 0.140 4 6 1

Optimized TNN
(16x128x64x64x64x5) 0.72 0.11 - 6 1

TNN w/ReLu
(16x64x32x32x5) 0.68 0.06 2 2 0.2

hls4ml - 4th ATLAS ML Workshop - Sioni Summers11.11.2019 23

• 7x larger Binary NN uses no DSPs, slightly more LUTs and FFs (max % utilisation lower)

• Accuracy drops from 0.75 to 0.72

BNN - Jet Classification

Model Accuracy Latency
(μs)

DSP
(%)

LUT
(%)

FF
(%)

Original model
(16x64x32x32x5) 0.75 0.06 60 7 1

Original model
(75% compressed) 0.75 0.06 15 1.7 0.7

Small BNN
(16x64x32x32x5) 0.62 0.04 - 0.8 0.1

Optimized BNN
(16x448x224x224x5) 0.72 0.21 - 15 7

BNN w/ReLu
(16x128x64x64x5) 0.70 0.140 4 6 1

Optimized TNN
(16x128x64x64x64x5) 0.72 0.11 - 6 1

TNN w/ReLu
(16x64x32x32x5) 0.68 0.06 2 2 0.2

hls4ml - 4th ATLAS ML Workshop - Sioni Summers11.11.2019 24

• Can use a smaller model with 1-bit weights, ReLu activations. Still a bit worse than original

• Using ReLu activation reintroduces some DSPs (for Batch Norm)

BNN - Jet Classification

Model Accuracy Latency
(μs)

DSP
(%)

LUT
(%)

FF
(%)

Original model
(16x64x32x32x5) 0.75 0.06 60 7 1

Original model
(75% compressed) 0.75 0.06 15 1.7 0.7

Small BNN
(16x64x32x32x5) 0.62 0.04 - 0.8 0.1

Optimized BNN
(16x448x224x224x5) 0.72 0.21 - 15 7

BNN w/ReLu
(16x128x64x64x5) 0.70 0.14 4 6 1

Optimized TNN
(16x128x64x64x64x5) 0.72 0.11 - 6 1

TNN w/ReLu
(16x64x32x32x5) 0.68 0.06 2 2 0.2

hls4ml - 4th ATLAS ML Workshop - Sioni Summers11.11.2019 25

• Ternary NN can be smaller than Binary NN for same performance (smaller architecture, smaller
resources, lower latency)

BNN - Jet Classification

Model Accuracy Latency
(μs)

DSP
(%)

LUT
(%)

FF
(%)

Original model
(16x64x32x32x5) 0.75 0.06 60 7 1

Original model
(75% compressed) 0.75 0.06 15 1.7 0.7

Small BNN
(16x64x32x32x5) 0.62 0.04 - 0.8 0.1

Optimized BNN
(16x448x224x224x5) 0.72 0.21 - 15 7

BNN w/ReLu
(16x128x64x64x5) 0.70 0.14 4 6 1

Optimized TNN
(16x128x64x64x64x5) 0.72 0.11 - 6 1

TNN w/ReLu
(16x64x32x32x5) 0.68 0.06 2 2 0.2

hls4ml - 4th ATLAS ML Workshop - Sioni Summers11.11.2019 26

• Ternary NN with ReLu again smaller than Binary equivalent

BNN - Jet Classification

Model Accuracy Latency
(μs)

DSP
(%)

LUT
(%)

FF
(%)

Original model
(16x64x32x32x5) 0.75 0.06 60 7 1

Original model
(75% compressed) 0.75 0.06 15 1.7 0.7

Small BNN
(16x64x32x32x5) 0.62 0.04 - 0.8 0.1

Optimized BNN
(16x448x224x224x5) 0.72 0.21 - 15 7

BNN w/ReLu
(16x128x64x64x5) 0.70 0.14 4 6 1

Optimized TNN
(16x128x64x64x64x5) 0.72 0.11 - 6 1

TNN w/ReLu
(16x64x32x32x5) 0.68 0.06 2 2 0.2

hls4ml - 4th ATLAS ML Workshop - Sioni Summers11.11.2019

Other activities
• Many features under development coming soon:

• CNNs - already have support, but working to scale up to larger models

• Recurrent NNs, Graph NNs, Autoencoders

• Multi-FPGA inference - for low latency inference of large models, split model across
devices

• BDTs - not NNs, but can be fast and lightweight

• Other vendors / tools: Intel FPGAs with Quartus HLS, and Mentor Catapult HLS

 27

hls4ml - 4th ATLAS ML Workshop - Sioni Summers11.11.2019

Conclusion

• hls4ml software package translates trained neural networks into synthesizable FPGA
firmware

• User can tune resource usage vs. latency/throughput with reuse factor
• Initially targeting Level 1 Trigger - big FPGAs, O(1 μs) latency
• Compression techniques can greatly improve the resource usage in the FPGA

- L1 Regularization to zero weights
- Binary / Ternary NNs with low precision in each weight

• fastmachinelearning.org
• arxiv.org/abs/1804.06913

 28

hls4ml - 4th ATLAS ML Workshop - Sioni Summers11.11.2019

BNN - Dense Layer
• DSPs often limiting FPGA resource

• Encode ‘-1’ as ‘0’

• Multiplication become XNOR, sum becomes bitcount

 29

activation function multiplication addition
precomputed and
stored in BRAMs DSPs logic cells

xn = gn(Wn,n�1xn�1 + bn)

activation function xnor no bias
simple binary tanh

/ sign function logic cells

xn = gn(Wn,n�1xn�1 + bn)xn = gn(Wn,n�1xn�1 + bn)

A B A*B
-1 -1 1
-1 1 -1
1 -1 -1
1 1 1

A B A==B
0 0 1
0 1 0
1 0 0
1 1 1

A A’
-1 0
1 1

Original: 16-bit weights

Binarized: 1-bit weights

hls4ml - 4th ATLAS ML Workshop - Sioni Summers11.11.2019

BNN - Activation
• Using ‘binary tanh’ activation function: f(x) = sign(x) : +1 if input is +ve, -1 if input is -ve

• Can be merged with Batch Normalization layer

• After binary tanh, becomes a shift or inversion: +1 if input is > threshold, -1 if input is <
threshold

 30

x

f(x)

+1

-1

x

f(x)

+1

-1

t

x

f(x)

+1

-1
t

x

f(x)

+1

-1
t

hls4ml - 4th ATLAS ML Workshop - Sioni Summers11.11.2019

Using hls4ml
• The model to translate

• Some test vectors for
simulation (check precision)

• Output directory / name

• Target FPGA, clock speed

• Model data precision and
parallelisation

• More fine grained data
precision and parallelisation

- Per-layer, or per-layer type

• Then:

 31

KerasJson: keras/KERAS_3layer.json
KerasH5: keras/KERAS_3layer_weights.h5
#InputData: keras/KERAS_3layer_input_features.dat
#OutputPredictions: keras/KERAS_3layer_predictions.dat
OutputDir: my-hls-test
ProjectName: myproject
XilinxPart: xcku115-flvb2104-2-i
ClockPeriod: 5

IOType: io_parallel # options: io_serial/io_parallel
HLSConfig:
 Model:
 Precision: ap_fixed<16,6>
 ReuseFactor: 1
LayerType:
Dense:
ReuseFactor: 2
Strategy: Resource
Compression: True

hls4ml convert -c my_model.yml
hls4ml build -p my-hls-test

