his 4 ml

Fast Machine Learning Inference on
FPGAs for Trigger and DAQ

4th ATLAS Machine Learning Workshop - CERN - 11th November 2019

Javier Duarte, Sergo Jindariani, Ben Kreis, Ryan Rivera, Nhan Tran (Fermilab)
Jennifer Ngadiuba, Maurizio Pierini, Vladimir Loncar, Sioni Summers (CERN)
- Edward Kreinar (Hawkeye 360)
—_= Phil Harris, Song Han, Dylan Rankin (MIT)
Zhenbin Wu (University of lllinois at Chicago)

Giuseppe di Guglielmo (Columbia University)

Contents

¢ |[ntroduction

e Neural Network to FPGA translation with his4ml

e Binary Neural Networks in hls4mil

11.11.2019 hls4ml - 4th ATLAS ML Workshop - Sioni Summers

The challenge: triggering at (HL-)LHC

Extreme bunch crossing frequency of 40 MHz — extreme data rates O(100 TB/s)
“Triggering” = filter events to reduce data rates to manageable levels

The LHC big data problem

Deploy ML algorithms very early in the game
Challenge: strict latency constraints!

11.11.2019 hls4ml - 4th ATLAS ML Workshop - Sioni Summers 4

What are FPGAS?

Field Programmable Gate Arrays are reprogrammable FPGA diagram
integrated circuits

Logic cells / Look Up Tables perform arbitrary
functions on small bitwidth inputs (2-6)

These can be used for boolean operations, arithmetic,
memory

Flip-Flops register data in time with the clock pulse

DSPs are specialized units for
multiplication and arithmetic

BRAMs are small, fast memories -
RAMs, ROMs, FIFOs (18Kb each in
Xilinx)

11.11.2019 hls4ml - 4th ATLAS ML Workshop - Sioni Summers S

Physics case: jet tagging

Study a multi-classification task to be implemented on FPGA: discrimination

between highly energetic (boosted) q, g, W, Z, t initiated jets

t—-bW—-bqq Z—qq W-qq q/g background

3-prong jet 2-prong jet 2-prong jet no substructure
and/or mass ~ O

Reconstructed as one massive jet with substructure

11.11.2019 hls4ml - 4th ATLAS ML Workshop - Sioni Summers 6

Physics case: jet tagging

e \We train (on GPU) the five output multi-classifier on a sample of ~ 1M events with two
boosted WW/ZZ/tt/qa/gg anti-kr jets

¢ Fully connected neural network with 16 expert-level inputs:

- Relu activation function for intermediate layers 16 inputs
i C . 64 nodes
Softmax activation function for output layer sotivation: ReLU
100 - his4m| 32 nodes
| — 9 tagger, AUC = 93.8% activation: ReLU
1 —— q tagger, AUC = 90.4%
| — w tagger, AUC = 94.6% 8
| —— ztagger, AUC = 93.9% 52 nodes
2 101 et activation: ReLU
E 5 outputs
5 activation: SoftMax
$ 102 \
better AUC = area under ROC curve
| (100% is perfect, 20% is random)
Y 02 04 06 0s 10

Signal Efficiency

11.11.2019 hls4ml - 4th ATLAS ML Workshop - Sioni Summers

Neural Network to FPGA
translation with his4dml

high level synthesis for machine learning

User friendly and optimised translation for ML to FPGA

¢ |nput model trained with standard DL libraries

e Xilinx HLS software: accessible to non-FPGA-expert, a resource not common in HEP

e Comes with implementation of common ingredients: layers, activation functions

e ‘Exotic things’: binary/ternary networks

e And optimisations: layer merging
e https://fastmachinelearning.org/

PYTORCH
Keras
TensorFlow
PyTorch
compressed
model
Usual ML

software workflow

v
+Tenscl;r @ ONNX

O PyTorch

11.11.2019 hls4ml - 4th ATLAS ML Workshop - Sioni Summers

his 4 ml

HLS
conversion

it

Co-processing kernel

tune configurati
precision
reuse/pipeline

y

https://hls-fpga-machine-learning.qgithub.io/his4ml/

Custom firmware
design

https://arxiv.org/abs/1804.06913

Vivado™ HLS

f

https://hls-fpga-machine-learning.github.io/hls4ml/
https://arxiv.org/abs/1804.06913

Efficient NN design for FPGAs

FPGAs provide huge flexibility Constraints:
Performance depends on how well you Input bandwidth
take advantage of this FPGA resources

Latency

With hls4ml package we have studied/optimized the FPGA
design through: R\

e compression: reduce number of synapses or neurons ®

¢ quantization: reduces the precision of the calculations (inputs, @3@@3
- - o
weights, biases) @Y,}\@@ §®@

¢ parallelization: tune how much to parallelize to make the
inference faster/slower versus FPGA resources

11.11.2019 hls4ml - 4th ATLAS ML Workshop - Sioni Summers 10

Compression with parameter pruning

® [terative approach:

- train with L1 regularization (loss function augmented with penalty term):
Lx(w) = L(w) + Al|w |

- sort the weights based on the value relative to the max value of the
weights in that layer

his4mi 5% 95% his4ml 5% 32.7% 95%
700 1 W fc3 _relu : : 4001 Wmm fc3 relu : : :
I output_softmax : : " I output_softmax : : :
[[I [[[
600 4 B fc2 relu | | ral n 350 1 B fc2 relu | | |
Em fcl relu | | mm fcl relu : : :
[[. [[|
300
[[[[|
5 500 . ~ with L1, | . .
5 ' | = : : :
[[o
g I I g 250 I I I
400 - - [[[[|
Y= St t t I I ﬁ Y I I I
: 1st iteration | : : :
bt | | bt | | |
£ 300 : : : : :
> | | = 150 | |
[[[[
200 ! ' I |
[[[
100 ' | |
50 A | |
0 1 T 1 T T T 1 T ol O T T L
1077 10 1073 1074 1073 1072 1071 10° 1077 10 107> 1074 103 1072 1071 10°
Absolute Relative Weights Absolute Relative Weights

11.11.2019 hls4ml - 4th ATLAS ML Workshop - Sioni Summers 11

Efficient NN design: compression

before pruning after pruning
1eq hls4ml Reuse factor = 1, Kintex Ultrascale
3.0 4 —®— Full model
Pruned model pruning
synapses
2.5 1
2.01 pruning >
neurons
7y
0 1.5
compression
1.0
Number of DSPs availabl
F /A A
e DSPs (used for multiplication) are often
0.0

<8:6> <16I,6> <24|,6> <32|,6> <40|,6> ||m|t|ng resource

Fixed-point precision

- DSPs have a max size for input (e.g.
27x18 bits), so number of DSPs per
multiplication changes with precision

70% compression ~ 70% fewer DSPs

11.11.2019 hls4ml - 4th ATLAS ML Workshop - Sioni Sumnmers 12

Efficient NN design: quantization

ap_fixed<width,integer>

0101.1011101010

_—
integer fractional
width

Scan integer bits

Fractional bits fixed to 8
his4dml

O 1.1
D)
<C 10
O
D o9- :
O .
Q sl : [Full performance
05 - at 6 integer bits
0.7 .
5 —
—) 0.6 : —=— g tagger
< —m— q tagger
<E 05 —=— W tagger
—a— 7z tagger
g —=— t tagger
0.4 I = I I I I I I
LL <10,2> <15,7> <20,12> <25,17> <30,22> <35,27> <40,32>
Fixed-point precision
11.11.2019

FPGA AUC / Expected AUC

1.1

1.0

0.9 1

0.8 1

0.7 A

0.6 1

0.5 1

0.4

e Quantify the performance of the classifier with the AUC

e Expected AUC = AUC achieved by 32-bit floating point
iInference of the neural network

Scan fractional bits
Integer bits fixed to 6

hisdml

: Full performance

rat 8 fractional bits
—

—=— g tagger
—=— (tagger
—=— w tagger
—=— 7z tagger

—=— t tagger

<8,6> <13,6> <18,6> <23,6> <28,6> <33,6> <38,6>
Fixed-point precision

hls4ml - 4th ATLAS ML Workshop - Sioni Summers

13

Efficient NN design: reuse

reuse =4
use 1 multiplier 4 times Longer Iatency

reuse =2
use 2 multipliers 2 times each

reuse = 1
use 4 multipliers 1 time each

More resources

e Key feature of hils4ml: a handle to trade resource usage and latency/throughput
e Reuse = 1: fully unroll everything onto different resources

- Fastest, most resource intensive
e Reuse > 1: one resource used sequentially for several operations

- Slower, but save resources

11.11.2019 hls4ml - 4th ATLAS ML Workshop - Sioni Summers

14

Parallelisation

® | Ow reuse gives lowest latency, most resource usage

¢ High reuse gives longer latency, lower resource usage

e [hroughput decreases with increasing reuse

¢ A large enough model will use all of the resources with reuse=1, so sometimes must

3-layer pruned, Kintex Ultrascale

~ 175 NS

~ /5nNs

INcrease It
1e3 his4ml 3-layer pruned, Kintex Ultrascale his4aml
—#— Reuse Factor =1 50 —=— Reuse Factor =1
6 1 —=— Reuse Factor = 2 Max DSP =— Reuse Factor = 2
- —#— Reuse FaCtor =3 mm e e e e e e e e e e e = o = = —=— Reuse Factor = 3
. —a— Reuse Factor =4 —=— Reuse Factor = 4
—s— Reuse Factor =5 40 1 —=— Reuse Factor =5
—a— Reuse Factor = 6 —a— Reuse Factor = 6
4 -
3 .
2 .
1 -
O T 1 1 1 1 O T T
<8,6> <16,6> <24,6> <32,6> <40,6> <8,6> <16,6>
Fixed-point precision
11.11.2019 hls4ml - 4th ATLAS ML Workshop - Sioni Summers

<24,6> <32,6> <40,6>

Fixed-point precision

15

Low precision Neural
Networks in his4dml

Binary / Ternary neural networks

e DSPs (multipliers) usually the limiting resource for our NN inference

¢ Instead, use 1- or 2-bit weights with limited performance loss

e Can have very efficient computation in the FPGA

e Binarize weights but not
gradients during
backpropagation

Real-valued

Networks

e Use Binary Tanh, Ternary
Tanh or Rel.u activation

e Batch Normalization

Binary

Networks

e BNN: arxiv.1602.02830

e TNN: arxiv.1605.04/711

(710 to 64 bits

O
OO IO N
O
N
O |
O N
UL .
; HE
3 4
1 bit

= |
aE W (nE
CmCCOmC]

OOmOOmR®

Prouct

I XNOR)
.BitCO'lml 512

'

]
]
|
!
]
;
Sig
g
ig

Ao
>

https://software.intel.com/en-us/articles/accelerating-neural-networks-with-binary-arithmetic

11.11.2019

hls4ml - 4th ATLAS ML Workshop - Sioni Summers 17

https://software.intel.com/en-us/articles/accelerating-neural-networks-with-binary-arithmetic

BNN - Jet Classification

¢ Design an architecture to perform the same jet classification task but now with binary
weights and activations

e Performed hyperparameter optimization to find most performant model within some
constraints

16 inputs 16 inputs
i 2
448 nodes
64 nodes .
Batch Normalization
RelLU .
Binary Tanh
l /X neurons ¥
per layer 224 nodes
32 nodes > .
Batch Normalization
RelLU :
l Binary Tanh
L
32 nodes 224 nodgs .
Batch Normalization
RelLU .
Binary Tanh
! v
S outputs S outputs
SoftMax Batch Normalization

11.11.2019 hls4ml - 4th ATLAS ML Workshop - Sioni Summers

BNN - Jet Classification

¢ Design an architecture to perform the same jet classification task but now with binary
weights and activations

e Performed hyperparameter optimization to find most performant model within some
constraints

e Performance is a little bit worse, but not a lot

his4dml his4ml
100 10° -
{ — gtagger, AUC = 93.8% { — gtagger, AUC = 91.5%
] q tagger, AUC = 90.4% 1 q tagger, AUC = 88.4%
| —— w tagger, AUC = 94.6%] —— wtagger, AUC = 92.4%
| —— ztagger, AUC = 93.9% | =—— 2z tagger, AUC = 90.2%
- —— ttagger, AUC = 95.8% o —— t tagger, AUC = 93.8%
g 107! g 1071
o @
O S
£ w
© ©
9 g
% 1072 é 102
o
10_3 T T T T T T 10_3 L T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Signal Efficiency Signal Efficiency
Original: 16-bit weights Binarized: 1-bit weights
Average accuracy: 0.75 Average accuracy: 0.72

11.11.2019 hls4ml - 4th ATLAS ML Workshop - Sioni Summers

BNN - Jet Classification

e Results targeting Xilinx VU9P FPGA at 200 MHz

Model

Accuracy

Original model

Original model
(70% compressed)

Small BNN
(16x64x32x32x5)

Optimized BNN
(16x448x224x224x5)

BNN w/RelLu
(16x128x64x64x5)

Optimized TNN
(16x128x64x64x64x5)

TNN w/RelLu
(16x64x32x32x5)

11.11.2019

hls4ml - 4th ATLAS ML Workshop - Sioni Summers

BNN - Jet Classification

® Model compression saves a lot of resources with no impact on classification
performance

Model Accuracy

Original model
(16x64x32x32x5)

Original model
(75% compressed)

Small BNN
(16x64x32x32x5)

Optimized BNN
(16x448x224x224x5)

BNN w/RelLu
(16x128x64x64x5)

Optimized TNN
(16x128x64x64x64x5)

TNN w/RelLu
(16x64x32x32x5)

11.11.2019 hls4ml - 4th ATLAS ML Workshop - Sioni Summers

BNN - Jet Classification

® Same-architecture Binary NN is much smaller, but accuracy is much worse

Model Accuracy

Original model
(16x64x32x32x5)

Original model
(75% compressed)

Small BNN
(16x64x32x32x5)

Optimized BNN
(16x448x224x224x5)

BNN w/RelLu
(16x128x64x64x5)

Optimized TNN
(16x128x64x64x64x5)

TNN w/RelLu
(16x64x32x32x5)

11.11.2019 hls4ml - 4th ATLAS ML Workshop - Sioni Summers

BNN - Jet Classification

® /x larger Binary NN uses no DSPs, slightly more LUTs and FFs (max % utilisation lower)

® Accuracy drops from 0.75 10 0.72

Model

Accuracy

Original model
(16x64x32x32x5)

Original model
(75% compressed)

Small BNN
(16x64x32x32x5)

Optimized BNN
(16x448x224x224x5)

BNN w/RelLu
(16x128x64x64x5)

Optimized TNN
(16x128x64x64x64x5)

TNN w/RelLu
(16x64x32x32x5)

11.11.2019

hls4ml - 4th ATLAS ML Workshop - Sioni Summers

BNN - Jet Classification

® Can use a smaller model with 1-bit weights, Rel.u activations. Still a bit worse than original

® Using Relu activation reintroduces some DSPs (for Batch Norm)

Model

Accuracy

Original model
(16x64x32x32x5)

Original model
(75% compressed)

Small BNN
(16x64x32x32x5)

Optimized BNN
(16x448x224x224x5)

BNN w/RelLu
(16x128x64x64x5)

Optimized TNN
(16x128x64x64x64x5)

TNN w/RelLu
(16x64x32x32x5)

11.11.2019

hls4ml - 4th ATLAS ML Workshop - Sioni Summers

BNN - Jet Classification

® Ternary NN can be smaller than Binary NN for same performance (smaller architecture, smaller
resources, lower latency)

Model

Accuracy

Original model
(16x64x32x32x5)

Original model
(75% compressed)

Small BNN
(16x64x32x32x5)

Optimized BNN
(16x448x224x224x5)

BNN w/RelLu
(16x128x64x64x5)

Optimized TNN
(16x128x64x64x64x5)

TNN w/RelLu
(16x64x32x32x5)

11.11.2019

hls4ml - 4th ATLAS ML Workshop - Sioni Summers

BNN - Jet Classification

Ternary NN with RelLu again smaller than Binary equivalent

Model Accuracy

Original model
(16x64x32x32x5)

Original model
(75% compressed)

Small BNN
(16x64x32x32x5)

Optimized BNN
(16x448x224x224x5)

BNN w/RelLu
(16x128x64x64x5)

Optimized TNN
(16x128x64x64x64x5)

TNN w/RelLu
(16x64x32x32x5)

11.11.2019 hls4ml - 4th ATLAS ML Workshop - Sioni Summers

Other activities

e Many features under development coming soon:
e CNNSs - already have support, but working to scale up to larger models
e Recurrent NNs, Graph NNs, Autoencoders

e Multi-FPGA inference - for low latency inference of large models, split model across
devices

e BDTs - not NNs, but can be fast and lightweight

e Other vendors / tools: Intel FPGAs with Quartus HLS, and Mentor Catapult HLS

11.11.2019 hls4ml - 4th ATLAS ML Workshop - Sioni Summers

27

Conclusion

hils 4 ml

¢ his4dml software package translates trained neural networks into synthesizable FPGA
firmware

e User can tune resource usage vs. latency/throughput with reuse factor

e |nitially targeting Level 1 Trigger - big FPGAs, O(1 us) latency

e Compression techniques can greatly improve the resource usage in the FPGA
- L1 Regularization to zero weights
- Binary / Ternary NNs with low precision in each weight

¢ fastmachinelearning.org

e arxiv.org/abs/1804.06913

11.11.2019 hls4ml - 4th ATLAS ML Workshop - Sioni Summers

28

BNN - Dense Layer

e DSPs often limiting FPGA resource

e Fncode -1’ as ‘0’

e Multiplication become XNOR, sum becomes bitcount

A B A*B

Original: 16-bit weights

activation function multiplication addition

precomputed and
stored in BRAMs

DSPs logic cells

N
—>
Vel

r -------------------------------- L}
|
|
| —_— |
v Xn = gn(wn,n—lxn—l) !
|
1 |
: Pl ? % :
. activation function Xnor no bias
|
: simple binary tanh ogic cells i
i / sign function J :
|

Binarized: 1-bit welghts

11.11.2019 hls4ml - 4th ATLAS ML Workshop - Sioni Summers 29

BNN - Activation

e Using ‘binary tanh’ activation function: f(x) = sign(x) : +1 if input is +ve, -1 if input is -ve
f(x)

+1

-1

X—p

Vol + ¢

e After binary tanh, becomes a shift or inversion: +1 if input is > threshold, -1 if input is <
threshold

fix); t f(x) f(x)

e Can be merged with Batch Normalization layer y = y+/

1] +1 41

-1 - 5 5
t: t:

11.11.2019 hls4ml - 4th ATLAS ML Workshop - Sioni Summers

Using his4ml
e Some test vectors for \

simulation (check precision)

¢ The model to translate

KerasJson: keras/KERAS_3layer.json

KerasH5: keras/KERAS_3layer_weights.h5

#InputData: keras/KERAS_3layer_input_features.dat

. #0utputPredictions: keras/KERAS_3layer_predictions.dat
* Output directory / name > OutputDir: my-hls-test

ProjectName: myproject

e Target FPGA, clock s eed'XilinxPa rt: xckull5-flvb2104-2-1
J & ClockPeriod: 5

I0Type: 1io_parallel # options: io_serial/io_parallel
HLSConfig:
e Model data precision and Model: |
parallelisation * ggﬁg;;;gg 0 r?pleEd<16’ 0>
. | # LayerType:
e More fine grained data # Dense:
precision and parallelisation # ReuseFactor: 2
it Strategy: Resource
#

Compression: True
- Per-layer, or per-layer type

* Then: hls4dml convert -c my model.yml

hls4ml build -p my-hls-test

11.11.2019 hls4ml - 4th ATLAS ML Workshop - Sioni Summers 31

