

b-jet energy regression for the CMS experiment

Nadya Chernyavskaya - ETH Zurich on behalf of the CMS collaboration

ATLAS ML workshop CERN 11 - 15 Nov, 2019

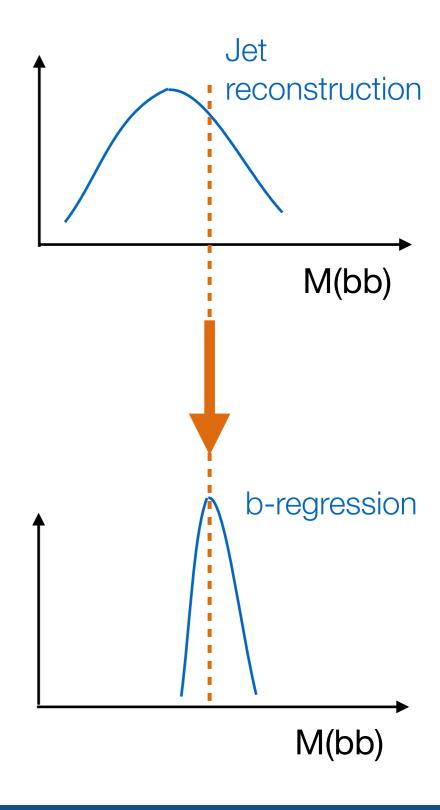
- Introduction
- Historical overview
- CMS b-jet regression
- Performance in simulation
- Validation on data

Introduction

- b jets are important for many LHC analyses
- Many different analyses can benefit from a momentum scale correction and improved resolution for b jets
 - Higgs → bb
 - BSM analyses with b jets in the final state
 - Di-Higgs H(bb)H(xx)
 - most sensitive channels where one H →bb

goals of b-jet energy regression:

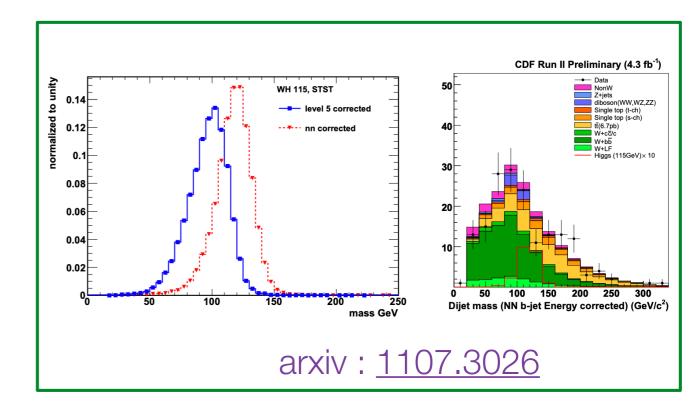
- To improve detector response for all b jets (hadronic, semi-leptonic, leptonic)
- To correct for (semi)leptonic b decays that lead to mismeasurement of p_T due to undetected neutrino



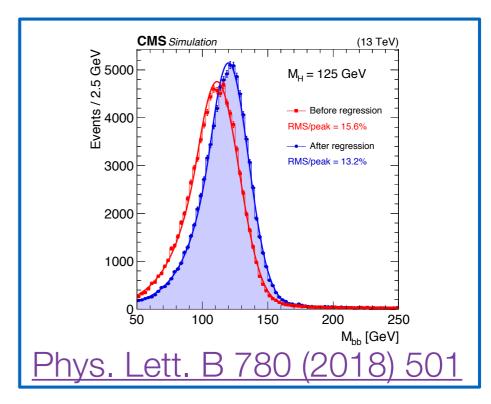
Historical overview of techniques

b-jet energy regression:

- Early applications at Tevatron
 - Tool to improve H → bb searches
 - Shallow neural network (NN) with 1 hidden layer and 9 neurons to estimate energy of b jets
 - Input variables include information about jet kinematics and composition



- LHC CMS Run I and 2016
 - BDT based regression
 - Similar input variables
 - Employed in VH→ bb and resonant Di-Higgs analyses

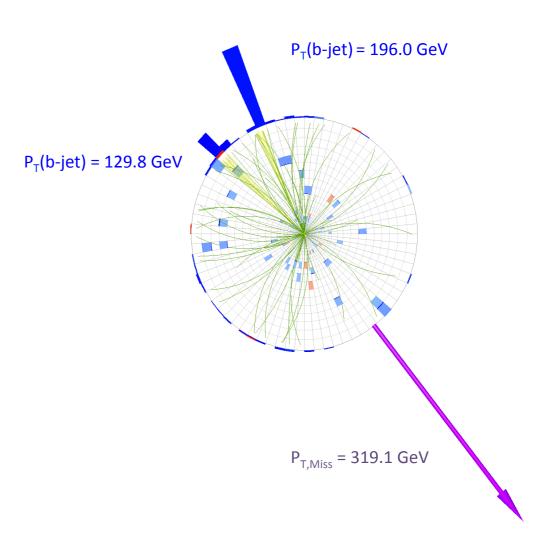


New b-jet energy regression in CMS ETH

New b-jet energy regression in CMS:

- Implemented in a Deep Neural Network
- Trained per jet (not per event)
- Developed to improve resolution of b jets regardless of the final state of a process
- Provides jet energy resolution estimator on jet-by-jet basis
- Improvement in dijet mass resolution brought by this regression helped to reach observation of H → bb

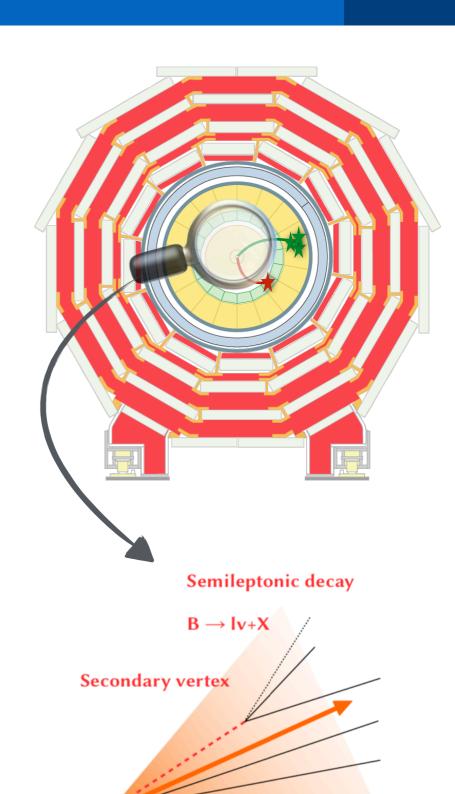
Z(vv)H(bb)



Phys. Rev. Lett. 121 (2018) 121801

New b-jet energy regression in CMS ETH

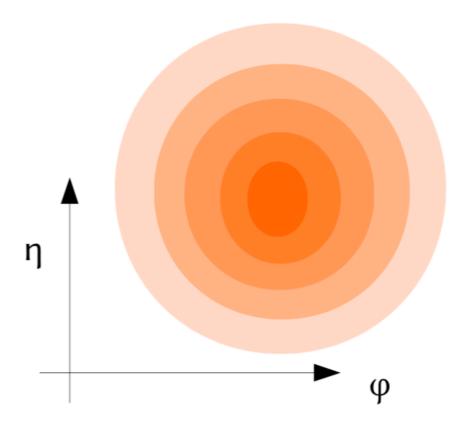
- Reconstruct b-jet energy using a multidimensional regression.
 - Combine information about jet's :
 - kinematics
 - constituents: tracks, secondary vertices, and individual energy deposits reconstructed by the different subdetectors
 - use as target true b-jet energy at generator level from the simulated events
 - include missing energy from neutrinos to the gen jet 4-vector
 - As a regressor use a deep neural network(DNN)
 - Train regression per jet
 - Large sample of b jets needed: 100 M b jets from tt sample



Study of additional inputs

- Jet shapes (proxy to individual jet constituents which are difficult to model):
 - energy fractions in rings of dR
 - split the composition by origin: em, charged, neutral and muons
 - energy spread
- Multiplicity of jet constituents
- Lepton ID (e/µ)
- Jet p_⊤ rel wrt to lepton, jet mass

Jet energy rings



Jet rings in
$$dR = \sqrt{d\phi^2 + d\eta^2}$$
: (0 \rightarrow 0.05 \rightarrow 0.1 \rightarrow 0.2 \rightarrow 0.3 \rightarrow 0.4)

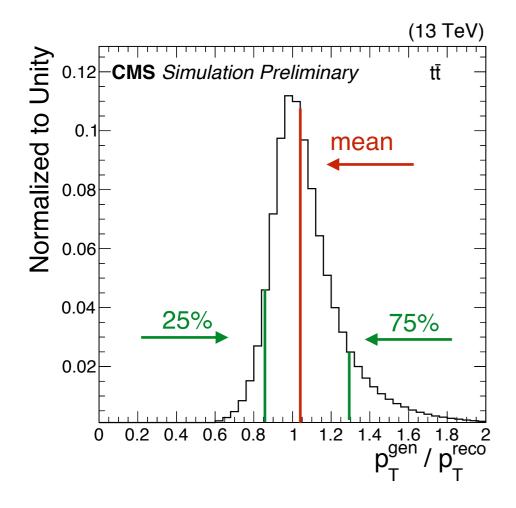
Good Data/MC agreement for all input variables

Resolution estimator

Any analysis can increase sensitivity by adding information about jet resolution

Goal: provide jet resolution estimator on jet-by-jet basis

How to get a jet resolution estimator?



- Analytical shape is not trivial in this case
- Alternatively, we can be agnostic of the shape of the target and try to estimate quantiles positions
- As a **resolution estimator** use half difference of 25% and 75% quantiles (for a Gaussian distribution σ = 1.482 * IQR)

$$IQR = (\tau_{75\%} - \tau_{25\%}) / 2$$

Easy to implement in a simple loss function

Regression Loss function

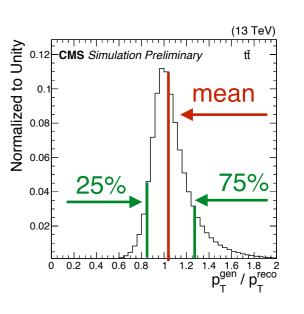
Loss function for DNN regression

- Regression task: energy correction to improve resolution and provide a jet resolution estimator per-jet
- Regression target $y = \frac{p_T^{gen+\nu}}{p_T^{reco}}$
- To get energy correction we use the **Huber loss**:

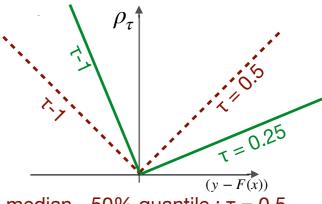
$$Huber(y, F(x)) = \begin{cases} \sum_{i} \frac{1}{2} (y_i - F(x_i))^2, & \text{for } |y_i - F(x_i)| < 1\\ \sum_{i} |y_i - F(x_i)| - \frac{1}{2}, & \text{otherwise.} \end{cases}$$

 As resolution estimator use two quantile loss functions for 25% and 75% quantiles, τ - quantile:

$$\rho_{\tau}(y, F(x)) = \begin{cases} \sum_{i} \tau \cdot (y_i - F(x_i)), \text{ for } (y_i - F(x_i)) > 0\\ \sum_{i} (\tau - 1) \cdot (y_i - F(x_i)), \text{ otherwise.} \end{cases}$$



Quantile loss $\rho_{\tau}(y, F(x))$



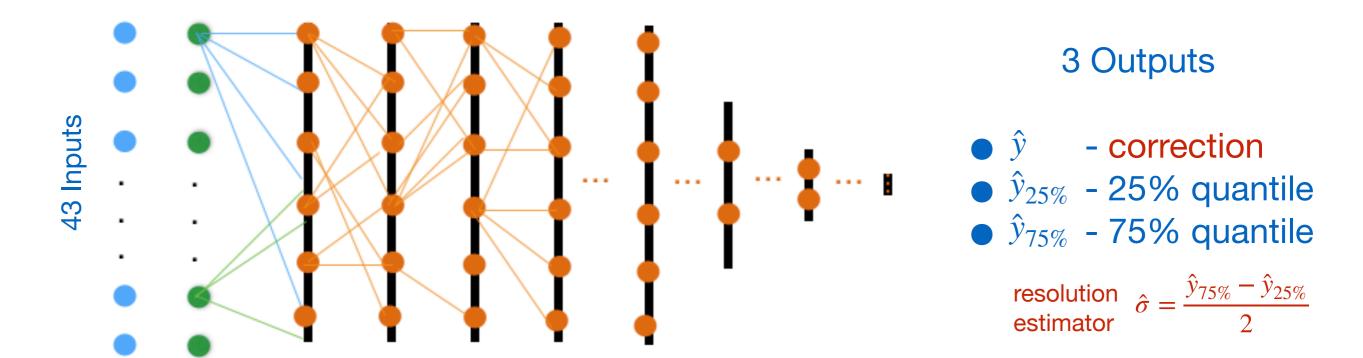
median - 50% quantile : $\tau = 0.5$ 25% quantile : $\tau = 0.25$

Joint loss function for correction (Huber) and resolution (quantiles):

$$Loss = Huber(y, F(x)) + \rho_{0.75}(y - F(x)) + \rho_{0.25}(y - F(x))$$

DNN architecture

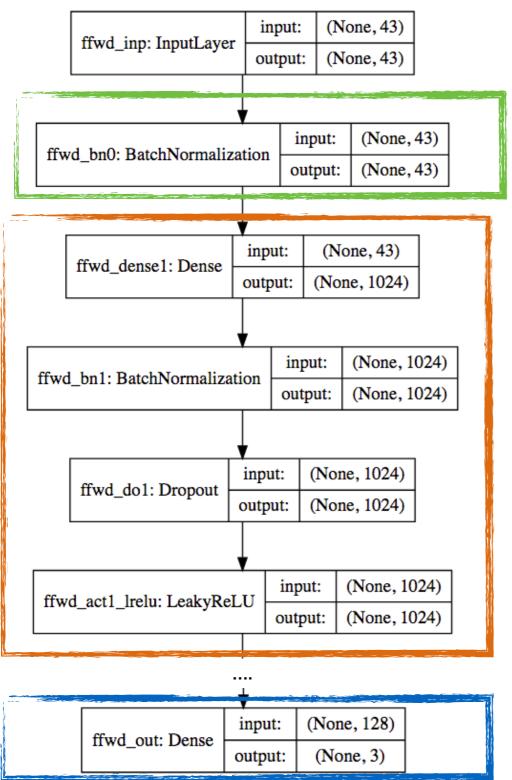
DNN architecture: Feed-forward fully connected NN



- DNN is implemented in Keras with TensorFlow backend
- Back-propagation using stochastic gradient descent with Adam optimizer
- Hyperparameters and architectures were optimized using randomized grid search
- 6 layers with # neurons : [1024, 1024, 1024, 512, 256, 128]
- The network was trained on a single NVIDIA GeForce GTX 1080 Ti

DNN architecture

DNN architecture: Feed-forward fully connected NN



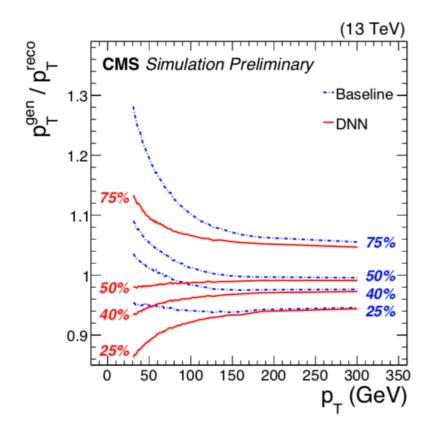
- Input layer
- Batch normalization → internal data standardization
- Each hidden layer has 4 operations:
 - Linear transformation
 - Batch normalization
 - Dropout
 - Non-linear activation function
 - Leaky ReLU activation with $\alpha = 0.2$

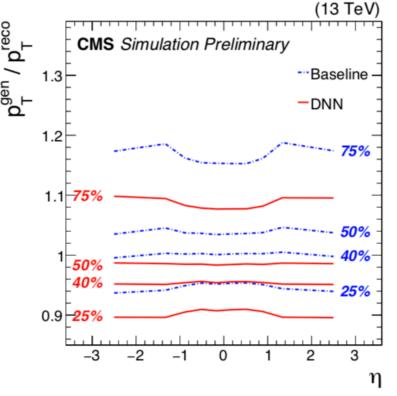
• • • •

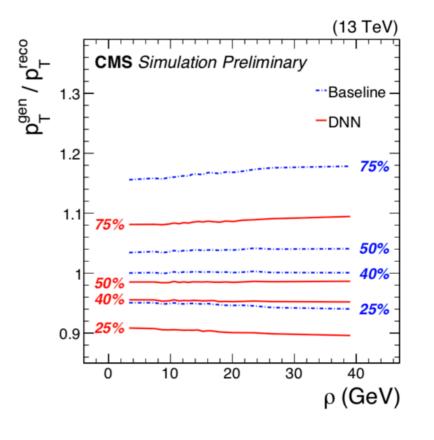
 Output: target is standardized (to zero-mean unit-variance)

Results

- Evaluate b-jet energy scale p_T^{gen}/p_T^{eco} after the application of the regression correction as a function of jet p_T , η and average event energy density ρ (quantiles 25%, 40%, 50%, 75%)
- Compare to baseline before-regression p_Tgen/p_Treco
 - narrower distributions
 - flatter response







Results

The regression energy correction:

- Helps recovering the neutrino missing energy
- Improves the resolution for all jets

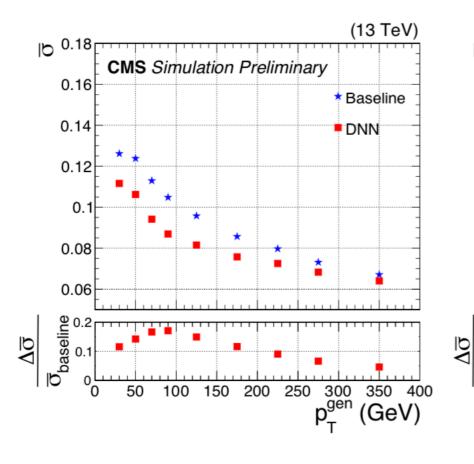
Quantify relative resolution improvement:

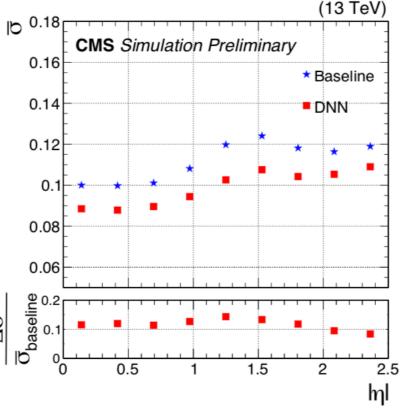
- Relative resolution estimated as $\bar{\sigma} = \frac{\sigma}{q_{40\%}} = \frac{q_{75\%} q_{25\%}}{2q_{40\%}}$
- After regression per-jet relative resolution is improved by ~13%
- Very similar performance achieved for b jets arising from different physics processes

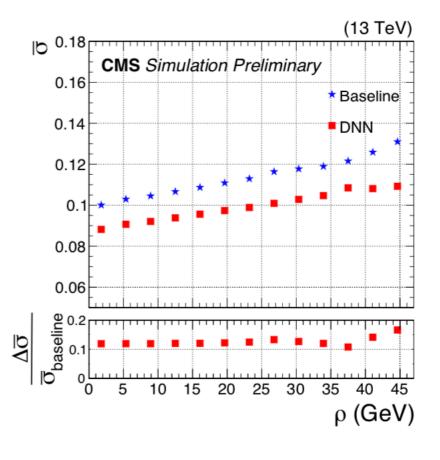
MC sample	Improvement
tt	12.2%
$Z(o \ell^+\ell^-)H(o b\overline{b})$	12.8%
$\mathrm{H}(\rightarrow\mathrm{b}\mathrm{\overline{b}})\mathrm{H}(\rightarrow\gamma\gamma)\mathrm{SM}$	13.1%
$H(\rightarrow b\overline{b})H(\rightarrow \gamma\gamma)$ resonant 500 GeV	14.5%
$\mathrm{H}(\rightarrow\mathrm{b}\overline{\mathrm{b}})\mathrm{H}(\rightarrow\gamma\gamma)$ resonant 700 GeV	13.1%

Results

- Improved relative resolution as a function of jet ${\bf p_T}$, ${\bf \eta}$ and ${\bf p}$ and for simulated $t\bar t$
- For all physics processes considered, the per jet relative resolution improvement is around 12-18% for $p_T < 100$ GeV and down to around 5-9% for $p_T > 200$ GeV





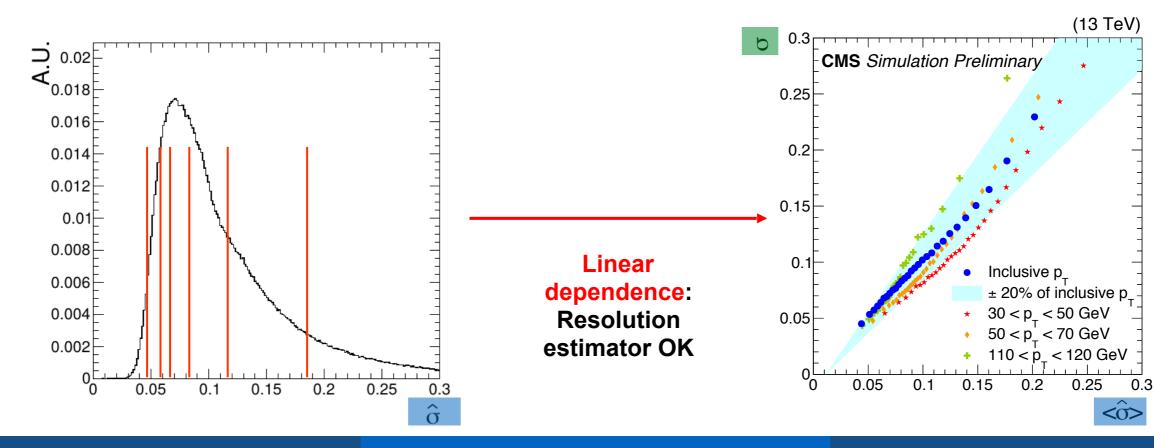


Resolution estimator

- For each jet a resolution estimator is provided as an output of DNN
 - How does it map to the actual resolution of the b jets σ ? $\sigma = \frac{q_{75\%} q_{25\%}}{2}$

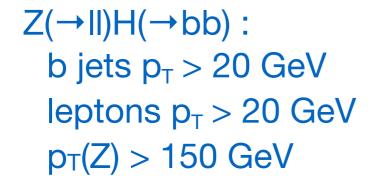
Cross-check:

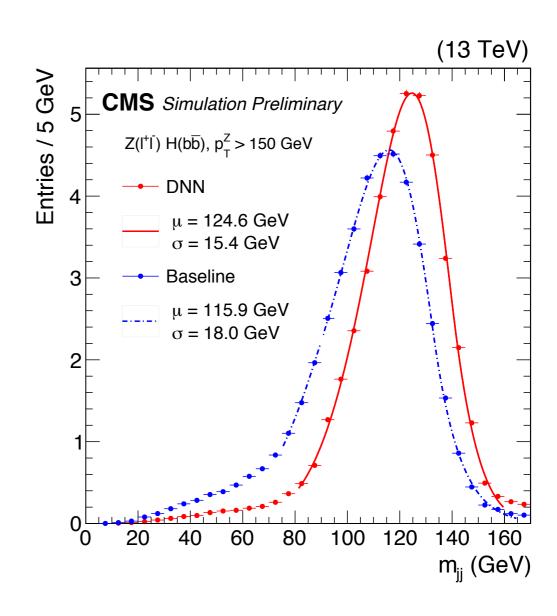
- Split the sample of jets into several equidistant quantiles of jet resolution estimator $\hat{\sigma}$
- In each bin quantify the resolution σ using gen-level information
- Check if the two correspond to each other
- Repeat the same test in bins of jet p_T. Deviations from linear behavior do not exceed 20%



Dijet resolution improvement

- Improvements so far are quoted at singlejet level, however many analyses use invariant mass of b jets as a discriminating variable
- Resolution improvement for dijet inv.
 mass is larger than for a single jet
- Improvements to dijet mass resolution come from 2 factors :
 - improvement in jet resolution
 - effective equalization of the energy scale in all regions of phase space



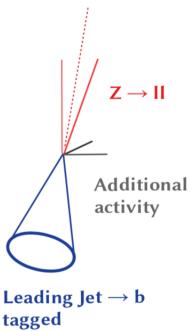


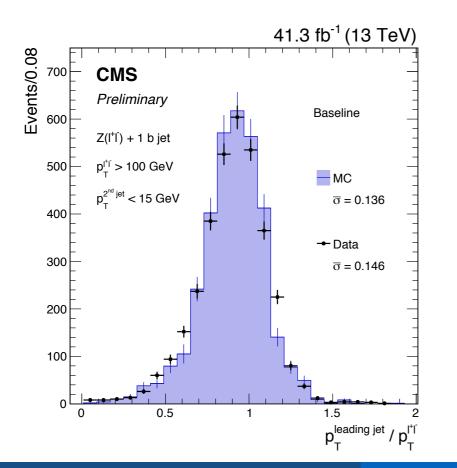
20% improvement in dijet mass resolution

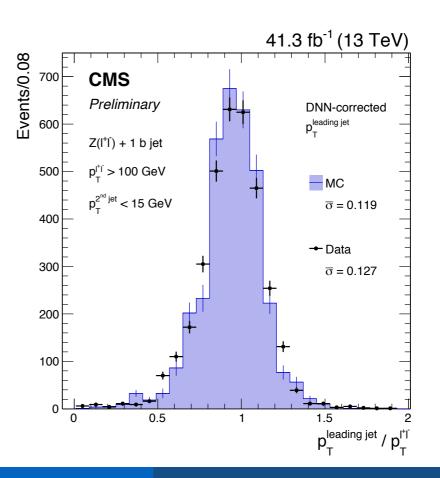
Validation on data

- Performance in data evaluated with p_T balance in $Z \rightarrow \mu\mu/ee + b$ jet topology
- **Resolution improvement** is consistent for MC and data, and is 13 %

Resolution improvement achieved in MC is successfully transferred to the data domain!







Summary

- DNN based b-jet energy regression was developed for the CMS analyses with b jets in final states
- b-jet regression was trained using jet composition information
- Both energy correction and jet resolution estimator are provided
- The technique was validated on data, and the regression was successfully applied to reach the observation of H→bb
- Resolution improvements are ~13% per-jet inclusively, and phase space dependent for the dijet mass (20-25% for H → bb)
- CMS-PAS-HIG-18-027
- Paper is in the final steps of CMS approval

Additional Material