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INTRODUCTION
Machine learning (ML) can provide powerful tools for particle physics 
experiments 

Trend in recent years: deep learning (DL) + low-level inputs 

A variety of new DL algorithms have been developed in CMS 
b-tagging 

boosted jet tagging 

tau identification 

b-jet energy regression 

…
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DEEPJET (DEEPFLAVOUR)
AK4 jet flavour tagger
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Charged (16 features) x25

Secondary Vtx (12 features) x4

Global variables (6 features)

Dense
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https://cds.cern.ch/record/2627468?ln=en
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DeepDoubleBvL, AUC = 97.3%
double-b, AUC = 91.3%

DEEPDOUBLEX
Boosted jet flavour tagger for bb/cc
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!11

Conv1D + GRU network topology
• 27 high-level (double-b) features + 60×8 track features + 5×2 

secondary vertex features per Higgs-candidate jet  
• BatchNormalization (BN) to process inputs 

• Conv1D with kernel size 1 = Time-distributed dense = apply same 
dense network to each PF candidate / track / SV 

• GRU = Gated Recurrent Unit = Recurrent network to reduce 
dimensionality of output from Conv1D layers 
(60×32, 5×32) → (50, 50)

SV
features

Output

Higgs
QCD

Conv1D 
(2 layers, 

32+32 units, 
dropout = 0.1)

Conv1D 
(2 layers, 

32+32 units, 
dropout = 0.1)

track
features

GRU
(50 units,

dropout = 0.1)

GRU
(50 units,

dropout = 0.1)

Double-b 
features

Fully 
connected 

(1 layer, 
100 units, 

dropout = 0.1)

(60, 32)

(5, 32)

(50)(60, 8)

(5, 2)

(27)

(50)

(100)BN

BN

BN

Mass Sculpting
DeepDoubleBvL
Figure 4. Effect on the jet soft-drop mass
distribution of misidentified events by the
DeepDoubleBvL identification algorithm
demonstrating the degree to which the
algorithm is dependent on the mass of the
jet. These histograms are obtained for a fixed
overall mistagging rate from a QCD sample.

7/5/2018 10

CMS-DP-2018-046

H→bb vs QCD H→cc vs QCD

better better

https://cds.cern.ch/record/2630438?ln=en
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DEEPAK8

5

Particles
• Up to 100 PF candidates(*)

• Sorted in descending pT order

• Uses basic kinematic variables, 
Puppi weights, and track 
properties (quality,  covariance, 
displacement, etc.)

Secondary vertices
• Up to 7 SVs(*) (inside jet cone)

• Sorted in descending SIP2D order

• Uses SV kinematics and properties 
(quality, displacement, etc.)

(*) Number chosen to include all candidates for ≥ 90% of the events

���
�	����	� ���
��	

Inputs

Architecture

Category Label

Higgs
H (bb)
H (cc)

H (VV*→qqqq)

Top

top (bcq)
top (bqq)
top (bc)
top (bq)

W
W (cq)
W (qq)

Z
Z (bb)
Z (cc)
Z (qq)

QCD

QCD (bb)
QCD (cc)
QCD (b)
QCD (c)

QCD (others)

Output

………

 particles, ordered by pT

fe
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es

Particles

1D CNN
(10 layers)

………

 SVs, ordered by SIP2D
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Secondary Vertices

Fully 
connected

(1 layer)

Output

1D CNN
(14 layers)

filter

filter

DeepAK8-MD: mass decorrelation w/ adversarial training

Feature extractor Classifier

1D CNN Fully Connected
Classification

output

back propagation

Fully Connected

Mass predictor

Mass  
prediction

Joint loss  
L = LC − λLMP

back propagation

Loss  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Multi-class boosted jet tagger for top / W / Z / H
top vs QCD
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H→bb vs QCD

CMS-DP-2017-049

http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/JME-18-002/index.html
https://cds.cern.ch/record/2295725?ln=en
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DEEPTAU
CNN-based hadronic tau identification algorithm

6

2019-09-27 Physics Plenary Status of DeepTau ID  - K. Androsov

Network inputs

6

v Candidate = PF candidate OR reco::Electron
OR reco::Muon

v Candidates belonging to the inner and outer 

cones are separated and split into two grids 

with H×M cell size of 0.02×0.02 (0.05×0.05) 

for the inner (outer) cone

v If there are more than one object of the given 

type that belong to the same cell, the object 

with the highest ?@ is chosen

v To reduce the NN size, within input variables 

are split into 3 blocks: e-gamma, muon, 

hadrons.

Inner cone = signal cone

∆P < max min 0.1,
3
?@
V , 0.05

Outer cone = signal & isolation cones

∆P < 0.5

Total number of inputs:

101160 (from grids) + 46 (high level)

Average number of non-empty 

cells per tau candidate

Inner grid 2.019 (1.7%)

Outer grid 31.14 (7.1%)

Input cells

muon block

64 variables per cell

hadrons block

38 variables per cell

e-gamma block

86 variables per cell

2019-09-27 Physics Plenary Status of DeepTau ID  - K. Androsov

Network architecture

7

Total number of trainable parameters (TP) in the DeepTau network  = 1 155 353

Pre-processing 

each inner cell 

separately

Pre-processing 

each outer cell 

separately

Pre-processing 

of high level 

features

5 dense 

layers

?'
?(
?V
?&

5 convolution of 

inner cells with 

3×3 windows

10 convolutions 

of outer cells with 

3×3 windows

Inner cells

Outer cells

High level features

208 819 TP

208 819 TP

185 600 TP

371 200 TP

19 911 TP

161 004 TP

After each layer a regularization is applied

2019-09-27 Physics Plenary Status of DeepTau ID  - K. Androsov

Network inputs

6

v Candidate = PF candidate OR reco::Electron
OR reco::Muon

v Candidates belonging to the inner and outer 

cones are separated and split into two grids 

with H×M cell size of 0.02×0.02 (0.05×0.05) 

for the inner (outer) cone

v If there are more than one object of the given 

type that belong to the same cell, the object 

with the highest ?@ is chosen

v To reduce the NN size, within input variables 

are split into 3 blocks: e-gamma, muon, 

hadrons.

Inner cone = signal cone

∆P < max min 0.1,
3
?@
V , 0.05

Outer cone = signal & isolation cones

∆P < 0.5

Total number of inputs:

101160 (from grids) + 46 (high level)

Average number of non-empty 

cells per tau candidate

Inner grid 2.019 (1.7%)

Outer grid 31.14 (7.1%)

Input cells

muon block

64 variables per cell

hadrons block

38 variables per cell

e-gamma block

86 variables per cell
DeepTau discrimination against jets from , ̅,

• The performance is evaluated using Monte Carlo (MC) simulation, applying the following preselection on the 
reconstructed tau candidates: ./ ∈ (20, 1000) GeV, $ < 2.3, 67 < 0.2 cm, where 67 is the longitudinal impact 
parameter of the tau with respect to the primary vertex

• Tau ID efficiency is estimated from 8 → :: MC using reconstructed tau candidates that match hadronically decaying 
taus at the generator level

• Jet misidentification probability is estimated from , ̅, MC using reconstructed tau candidates that don’t match prompt 
electrons, muons or products of hadronic tau decays at the generator level

• Plots below show DeepTau performance on 2017 MC
• Working points of the discriminators are indicated by the dots

DeepTau performance for Run 2 4

DeepTau discrimination against electrons
• The performance is evaluated using Monte Carlo (MC) simulation, applying the following preselection 

on the reconstructed tau candidates: ./ ∈ (20, 1000) GeV, $ < 2.3, 67 < 0.2 cm
• Tau ID efficiency is estimated from 8 → :: MC using reconstructed tau candidates that match 

hadronically decaying taus at the generator level
• Electron misidentification probability is estimated from Drell-Yan MC using reconstructed tau 

candidates that match electrons at the generator level
• Plots below show DeepTau performance on 2017 MC
• Working points of the discriminators are indicated by the dots

DeepTau performance for Run 2 6
CMS-DP-2019-033

τh vs jet τh vs electron

https://cds.cern.ch/record/2694158?ln=en
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B-JET ENERGY REGRESSION
Simultaneous estimation of the b-jet energy and its resolution

7

CMS-PAS-HIG-18-027 

More details in  
N. Chernyavskaya’s talk
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 (GeV)jjm
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es
 / 
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G

eV

DNN

 = 15.4 GeVσ
 = 124.6 GeVµ 

Baseline

 = 18.0 GeVσ
 = 115.9 GeVµ 

CMS Simulation Preliminary

(13 TeV)

13% improvement in per-jet relative resolution
20% improvement in dijet mass resolution

Successfully applied to the CMS 
H→bb observation analysis

http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/HIG-18-027/index.html
https://indico.cern.ch/event/844092/contributions/3632224/
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FROM DEVELOPMENT TO DEPLOYMENT
The development of a DL model takes lots of effort 

a good DL model = input feature selection + training dataset preparation + network 
architecture design + hyperparameter optimization + … 

Next step: deploying to production! 
but…

8
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FROM DEVELOPMENT TO DEPLOYMENT
The development of a DL model takes lots of effort 

a good DL model = input feature selection + training dataset preparation + network 
architecture design + hyperparameter optimization + … 

Next step: deploying to production! 
but…

9
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TRAINING VS INFERENCE
Training 

python based 

typically on GPU 

large batch size 

O(100) to O(1000) 

standalone environment 

weak constraints on timing/
memory 

multi-threading managed by the 
DL framework (e.g., TensorFlow)

10

Inference 

C/C++ based 

on CPU 

small batch size 

O(1) to O(10), often just 1 

integrated in the experimental 
software (e.g., CMSSW) 

tight constraints on timing/memory 

multi-threading managed by the 
experimental software

Training script

DL framework

thread 
#1

thread 
#2

thread 
#3

thread 
#N

…

CMSSW

thread 
#1

thread 
#2

thread 
#3

thread 
#N

…

DNN 
inference

DNN 
inference

DNN 
inference

DNN 
inference
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ML INFERENCE ENGINES IN CMSSW
A number of DL frameworks have been integrated into CMSSW to 
support the new DNN-based algorithms 

TensorFlow 

DeepJet 

DeepDoubleX 

DeepTau 

b-jet energy regression 

MXNet 

DeepAK8 

ONNX Runtime 

new development 

can support all these models by converting  
to ONNX format 

Modifications are needed for all of them to work nicely with CMSSW
11
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TENSORFLOW
TensorFlow 

most widely used framework (together with Keras) 

complicated to build and integrate (requires Google’s build system bazel, etc.) 

Issue 1: Multi-Threading 

upon startup, TF creates lots of threads in its thread pool for parallel data loading and parallelism 
within/between operators  

good for end-users who runs only 1 thread to call TF, but not good for HEP frameworks that 
typically manage their own threading schemes (CMSSW uses TBB) 

solved with the implementation of two custom sessions 

NTSession (default in CMSSW): disable multi-threading 

TBBSession: threads scheduled by Intel’s TBB 

Issue 2: Memory Consumption 

TF Graphs obtained after training can be quite large (e.g., 150 MB for DeepJet) 

memory footprint can be reduced by a factor of O(10-100) by: 

converting variables to constant tensors (freeze_graph) 

removing ancillary information needed only for training 

a number of tools available online, e.g., keras_to_tensorflow 

further reduction: load TF graph only once and share it among all threads (sessions)

12

https://github.com/cms-sw/cmssw/blob/master/PhysicsTools/TensorFlow/src/NTSession.h
https://github.com/cms-sw/cmssw/blob/master/PhysicsTools/TensorFlow/src/TBBSession.h
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/tools/freeze_graph.py
https://github.com/amir-abdi/keras_to_tensorflow
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MXNET
MXNet 

a DL framework focused on efficiency and scalability 

relatively straightforward to build and integrate (cmake build system, standard BLAS library) 

exported models are ready-to-use for inference (model json + binary parameter file) 

Issue 1: multi-threading 

similar problem as TF: MXNet creates and manages its own thread pool 

solution: use MXNet’s “NaiveEngine” (no threading) and make it “thread_local” (so each thread 
can call it independently) 

need to re-assign the resources (workspace) in each run to ensure thread-safety (more details in 
M. Verzetti’s talk last year) 

Issue 2: BLAS library 

DeepAK8 inference runs 4-5x slower in CMSSW than w/ standalone MXNet 

the problem was tracked to the use of the BLAS library 

the standalone MXNet links to OpenBLAS statically 

MXNet in CMSSW is built to link with OpenBLAS dynamically, but a slower BLAS library (glsblas) is 
used by other softwares (e.g., ROOT) and loaded first, thus providing the BLAS symbols to MXNet 

solved by linking to OpenBLAS consistently in all CMS softwares

13

https://github.com/apache/incubator-mxnet/compare/75a9e187d00a8b7ebc71412a02ed0e3ae489d91f...cms-externals:1.5.0-cms-mod
https://en.cppreference.com/w/cpp/keyword/thread_local
https://github.com/apache/incubator-mxnet/commit/85c2f34c7c28fb91e593534865c78d8238a9c801
https://indico.cern.ch/event/735932/contributions/3159734/attachments/1735429/2806733/ATLAS_MLWorkshop.pdf
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ONNX RUNTIME
 Open Neural Network Exchange (ONNX) 

an open source format for ML models w/ increasing adoption 

supports most of the main-stream DL operators 

conversion tools available for most of the DL frameworks: Keras/TF, PyTorch, 
MXNet, etc. 

ONNX Runtime 

“a performance-focused complete scoring engine for ONNX models” 

advantages: 

flexibility: can support a wide range of models via ONNX 

speed: optimized for inference (including on CPUs), rather than training (TF/
MXNet/PyTorch etc.) 

thread-safety: “Multiple threads can invoke the Run() method on the same 
inference session object.” 

caveats: 

ONNX may not support all, especially novel ML models
14

https://onnx.ai/
https://github.com/onnx/onnx/blob/master/docs/Operators.md
https://github.com/onnx/tutorials#converting-to-onnx-format
https://github.com/microsoft/onnxruntime
https://github.com/Microsoft/onnxruntime/blob/master/docs/HighLevelDesign.md#key-design-decisions
https://github.com/Microsoft/onnxruntime/blob/master/docs/HighLevelDesign.md#key-design-decisions
https://github.com/Microsoft/onnxruntime/blob/master/docs/HighLevelDesign.md#key-design-decisions


M
L 

In
fe

re
nc

e 
in

 C
M

SS
W

 - 
N

ov
em

be
r 1

5,
 2

01
9 

- H
ui

lin
 Q

u 
(U

CS
B)

ONNX RUNTIME INTEGRATION
A few modifications to make it work better w/ CMSSW 

configured it to run in a “no-threading” mode  

i.e., each CMSSW thread uses the global inference session  
object to run inference concurrently with no extra threads 

setting intra_op_num_threads and inter_op_num_threads  
to 1 gives the desired behavior (i.e., it does not create  
any new threads) 

however, need to remove a hard-coded thread pool  
for the LSTM operator 

likely will be fixed officially in the future 

introduced an environment variable to control the runtime kernel selection 

ONNX Runtime's math library (MLAS) selects the fastest compute kernel dynamically based on 
the available CPU instruction sets 

outputs are not bitwise equal on different CPU architectures as different instructions (SSE/AVX/
AVX2/etc.) will be used — causes trouble for PR validation 

added an environment variable to control the allowed instruction sets 

default to using only SSE: not attempting to use more advanced instructions (like AVX) 

ensures bitwise reproducibility across different CPU architectures 

dynamic kernel selection can be switched on for production to save run time

15

CMSSW

thread 
#1

thread 
#2

thread 
#N

…

inference inference inference

ONNXRuntime session

https://github.com/hqucms/onnxruntime/commit/04f3c766dc4b0cba097ac48af9c8771beb37f3d8
https://github.com/hqucms/onnxruntime/commit/7222aeadaa2731f858e18b555e23e464a6363645
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ONNX RUNTIME: TIMING
Significant speed-up w/ ONNX Runtime compared to the TF/MXNet based 
implementation (cms-sw/cmssw#28112) 

depending on the network architecture, the speed-up varies from 10-15% to ~10x 

the use of newer vector instructions (e.g., AVX) can bring further improvements 

Another observation: batch evaluation can  
bring substantial speed-up in some cases 

right: DeepJet inference w/ and w/o batching 
 
 

16

Time (s) / event Baseline ONNX Runtime (SSE) Speed-up w.r.t baseline ONNX Runtime (AVX) Speed-up w.r.t baseline
DeepTau 0.039245 0.053057 0.74 0.024901 1.58
DeepJet 0.058576 0.009333 6.28 0.006735 8.70
DeepAK8 0.003538 0.003222 1.10 0.002107 1.68
DeepAK8-MD 0.003598 0.003153 1.14 0.002078 1.73
DeepDoubleBvL 0.004457 0.000451 9.88 0.000363 12.28
DeepDoubleCvB 0.004514 0.000445 10.14 0.000355 12.72
DeepDoubleCvL 0.004997 0.000478 10.45 0.000398 12.56

0
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80

0 5 10 15

Ti
m

e 
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# jets

TF (batching)
TF (no batching)
ORT (batching)
ORT (no batching)

https://github.com/cms-sw/cmssw/pull/28112
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SUMMARY
A number of DL-based object reconstruction and identification 
algorithms have been developed in CMS over the past few years 

significant improvement in performance 

successfully applied to several challenging analyses and led to very 
competitive results 

The integration of DL frameworks into CMSSW is often a 
challenging task 

multi-threading schemes 

resource constraints (CPU time/memory) 

ML inference starts to become a sizable fraction of the event 
processing time 

crucial to investigate how to accelerate ML inference 

e.g., new frameworks, new DNN architectures, new hardware, etc…

17
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DEEPAK8: ARCHITECTURE

19

Particles

Conv1D
3, /1, 32

Conv1D
3, /1, 64

Conv1D
3, /1, 64

+

Conv1D
3, /1, 64

Conv1D
3, /1, 64

+

Conv1D
3, /2, 64

Conv1D
3, /1, 64

+

Conv1D
3, /1, 64

Conv1D
3, /1, 64

+

Conv1D
3, /2, 128

Conv1D
3, /1, 128

+

Conv1D
3, /1, 128

Conv1D
3, /1, 128

+

Global
 average pool

SV

Conv1D
3, /1, 32

Conv1D
3, /1, 32

Conv1D
3, /1, 32

+

Conv1D
3, /1, 32

Conv1D
3, /1, 32

+

Conv1D
3, /2, 64

Conv1D
3, /1, 64

+

Conv1D
3, /1, 64

Conv1D
3, /1, 64

+

Global
 average pool

Concatenate

FC
256, SeLU

FC
256, SeLU

FC
256, SeLU

FC
17, Softmax

Truth
label

Cross-entropy
loss

FC
256, SeLU

FC
256, SeLU

FC
256, SeLU

FC
��, Softmax

Mass
label

Cross-entropy
loss

Particles

Conv1D
3, /1, 32

Conv1D
3, /1, 64

Conv1D
3, /1, 64

+

Conv1D
3, /1, 64

Conv1D
3, /1, 64

+

Conv1D
3, /2, 64

Conv1D
3, /1, 64

+

Conv1D
3, /1, 64

Conv1D
3, /1, 64

+

Conv1D
3, /2, 128

Conv1D
3, /1, 128

+

Conv1D
3, /1, 128

Conv1D
3, /1, 128

+

Global
 average pool

SV

Conv1D
3, /1, 32

Conv1D
3, /1, 32

Conv1D
3, /1, 32

+

Conv1D
3, /1, 32

Conv1D
3, /1, 32

+

Conv1D
3, /2, 64

Conv1D
3, /1, 64

+

Conv1D
3, /1, 64

Conv1D
3, /1, 64

+

Global
 average pool

Concatenate

FC
512, ReLU

DropOut
p=0.2

FC
17, Softmax

Truth
label

Cross-entropy
loss

(a) (b)

Feature extraction

Category prediction

Mass prediction

CMS-PAS-JME-18-002

http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/JME-18-002/index.html


M
L 

In
fe

re
nc

e 
in

 C
M

SS
W

 - 
N

ov
em

be
r 1

5,
 2

01
9 

- H
ui

lin
 Q

u 
(U

CS
B)

ABLATION STUDY OF DEEPAK8
DeepAK8 shows substantial gain compared to traditional approaches 

To understand the main sources of the improvement, alternative versions of 
DeepAK8 were trained using a subset of the input features 

Particle (kinematics): only kinematic info of PF candidates 

four momenta, distances to the jet and subjet axes, etc. 

Particle (w/o Flavour): adding experimental info 

charge, particle identification, track quality, etc. 

Particle Full + SV (the full DeepAK8): adding features related to heavy-flavour tagging 

track displacement, track-vertex association, SV features, etc.
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MASS DECORRELATION
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DEEPTAU: ALGORITHM

22

DeepTau algorithm
• Input variables

• 1 global event variable: the average energy deposition density (#)
• 42 high-level variables that are used during tau reconstruction or proven to provide 

discriminating power by previous tau POG studies
• For each candidate reconstructed within the tau signal or isolation cones, information 

about 4-momentum, track quality, relation with the primary vertex, calorimeter 
clusters, and muon stations is used, if available:
• From 7 to 27 variables (depending on the candidate type) for each particle flow candidate
• 37 variables for each fully reconstructed electron candidate
• 37 variables for each fully reconstructed muon candidate

• Candidates belonging to the inner and outer cones are separated and split into 
two grids with $×& cell size of 0.02×0.02 (0.05×0.05) for the inner (outer) cone

• Network architecture:
• High level variables and each input cell are pre-processed by a few fully connected dense layers
• For the inner (outer) grid, the pre-processed cell data are fed into 5 (10) 2D convolutional layers 

with 3×3 window size, which result in 64 features that are passed to the next step
• All features from previous steps are combined and passed through 5 dense layers 
• Probabilities of the reconstructed tau candidate being electron, muon, quark or gluon jet, or 

hadronic tau are estimated by the 4 NN outputs

DeepTau performance for Run 2 3
CMS-DP-2019-033

https://cds.cern.ch/record/2694158?ln=en
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DEEPTAU: PERFORMANCE IN DATA
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CMS-DP-2019-033

In both plots 
modelled 

contributions are fit 
to the data

Distribution of the visible ;: mass for 2018 data
• Contribution from all SM processes 

(except QCD) are modelled by MC 
simulation
• QCD estimated from a sideband 

region in data

DeepTau performance for Run 2 8
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Selection using DeepTau IDs:
• Tight WP against jets
• VVLoose WP against electrons
• VLoose against muons

Event selection:
• well identified and isolated muon with ./ > 25 GeV,

$ < 2.4, 67 < 0.2 cm
• tau candidates with ./ > 20 GeV, $ < 2.3, 67 < 0.2 cm
• ;: pair with an opposite charge and Δ? ;, : > 0.5
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Selection using discriminators from 
JINST 13 (2018) P10005:

• Tight WP against jets
• VLoose WP against electrons
• Tight WP against muons

With DeepTau 
selection, the yield 
from genuine @A

increases by ≈ 20%, 
while yield from fakes

decreases by ≈ 23% 

https://cds.cern.ch/record/2694158?ln=en

