MACHINE LEARNING INFERENCE IN CMSSW

Huilin Qu on behalf of the CMS collaboration

ATLAS Machine Learning Workshop November 15, 2019

INTRODUCTION

- Machine learning (ML) can provide powerful tools for particle physics experiments
- Trend in recent years: deep learning (DL) + low-level inputs

- A variety of new DL algorithms have been developed in CMS
 - b-tagging
 - boosted jet tagging
 - tau identification
 - b-jet energy regression
 - •

DEEPJET (DEEPFLAVOUR)

AK4 jet flavour tagger

DEEPDOUBLEX

Boosted jet flavour tagger for bb/cc

DEEPAK8

Multi-class boosted jet tagger for top / W / Z / H

DeepAK8-MD: mass decorrelation w/ adversarial training

DEEPTAU

CNN-based hadronic tau identification algorithm

B-JET ENERGY REGRESSION

Simultaneous estimation of the b-jet energy and its resolution

More details in N. Chernyavskaya's talk

Joint loss function for correction (Huber) and resolution (quantiles):

$$Loss = Huber(y, F(x)) + \rho_{0.75}(y - F(x)) + \rho_{0.25}(y - F(x))$$

13% improvement in per-jet relative resolution 20% improvement in dijet mass resolution

Successfully applied to the CMS H→bb observation analysis

CMS-PAS-HIG-18-027

FROM DEVELOPMENT TO DEPLOYMENT

- The development of a DL model takes lots of effort
 - a good DL model = input feature selection + training dataset preparation + network architecture design + hyperparameter optimization + ...
- Next step: deploying to production!
 - but...

FROM DEVELOPMENT TO DEPLOYMENT

- The development of a DL model takes lots of effort
 - a good DL model = input feature selection + training dataset preparation + network architecture design + hyperparameter optimization + ...
- Next step: deploying to production!
 - but...

TRAINING VS INFERENCE

- Training
 - python based
 - typically on GPU
 - large batch size
 - O(100) to O(1000)
 - standalone environment
 - weak constraints on timing/ memory
 - multi-threading managed by the DL framework (e.g., TensorFlow)

- Inference
 - C/C++ based
 - on CPU
 - small batch size
 - O(1) to O(10), often just 1
 - integrated in the experimental software (e.g., CMSSW)
 - tight constraints on timing/memory
 - multi-threading managed by the experimental software

ML Inference Engines in CMSSW

- A number of DL frameworks have been integrated into CMSSW to support the new DNN-based algorithms
 - TensorFlow
 - Deeplet
 - DeepDoubleX
 - DeepTau
 - b-jet energy regression
 - MXNet
 - DeepAK8
 - ONNX Runtime
 - new development
 - can support all these models by converting to ONNX format

Modifications are needed for all of them to work nicely with CMSSW

TENSORFLOW

TensorFlow

- most widely used framework (together with Keras)
- complicated to build and integrate (requires Google's build system bazel, etc.)

Issue 1: Multi-Threading

- upon startup, TF creates lots of threads in its thread pool for parallel data loading and parallelism within/between operators
- good for end-users who runs only 1 thread to call TF, but not good for HEP frameworks that typically manage their own threading schemes (CMSSW uses TBB)
- solved with the implementation of two custom sessions
 - NTSession (default in CMSSW): disable multi-threading
 - TBBSession: threads scheduled by Intel's TBB

Issue 2: Memory Consumption

- TF Graphs obtained after training can be quite large (e.g., 150 MB for DeepJet)
- memory footprint can be reduced by a factor of O(10-100) by:
 - converting variables to constant tensors (<u>freeze_graph</u>)
 - removing ancillary information needed only for training
 - a number of tools available online, e.g., <u>keras_to_tensorflow</u>
- further reduction: load TF graph only once and share it among all threads (sessions)

MXNET

MXNet

- a DL framework focused on efficiency and scalability
- relatively straightforward to build and integrate (cmake build system, standard BLAS library)
- exported models are ready-to-use for inference (model json + binary parameter file)

Issue 1: multi-threading

- similar problem as TF: MXNet creates and manages its own thread pool
- solution: use MXNet's "NaiveEngine" (no threading) and make it "thread_local" (so each thread can call it independently)
 - need to <u>re-assign the resources</u> (workspace) in each run to ensure thread-safety (more details in <u>M. Verzetti's talk</u> last year)

Issue 2: BLAS library

- DeepAK8 inference runs 4-5x slower in CMSSW than w/ standalone MXNet
- the problem was tracked to the use of the BLAS library
 - the standalone MXNet links to OpenBLAS statically
 - MXNet in CMSSW is built to link with OpenBLAS dynamically, but a slower BLAS library (glsblas) is used by other softwares (e.g., ROOT) and loaded first, thus providing the BLAS symbols to MXNet
 - solved by linking to OpenBLAS consistently in all CMS softwares

ONNX RUNTIME

- Open Neural Network Exchange (ONNX)
 - an open source format for ML models w/ increasing adoption
 - supports most of the main-stream DL operators
 - <u>conversion tools</u> available for most of the DL frameworks: Keras/TF, PyTorch, MXNet, etc.

ONNX Runtime

- "a performance-focused complete scoring engine for ONNX models"
- advantages:
 - flexibility: can support a wide range of models via ONNX
 - speed: optimized for inference (including on CPUs), rather than training (TF/ MXNet/PyTorch etc.)
 - thread-safety: "Multiple threads can invoke the Run() method on the same inference session object."

caveats:

ONNX may not support all, especially novel ML models

ONNX RUNTIME INTEGRATION

- A few modifications to make it work better w/ CMSSW
 - configured it to run in a "no-threading" mode
 - i.e., each CMSSW thread uses the global inference session object to run inference concurrently with no extra threads
 - setting intra_op_num_threads and inter_op_num_threads to 1 gives the desired behavior (i.e., it does not create any new threads)
 - however, need to <u>remove a hard-coded thread pool</u> for the LSTM operator
 - likely will be fixed officially in the future

- ONNX Runtime's math library (MLAS) selects the fastest compute kernel dynamically based on the available CPU instruction sets
 - outputs are not bitwise equal on different CPU architectures as different instructions (SSE/AVX/AVX2/etc.) will be used causes trouble for PR validation
- added an environment variable to control the allowed instruction sets
 - default to using only SSE: not attempting to use more advanced instructions (like AVX)
 - ensures bitwise reproducibility across different CPU architectures
 - dynamic kernel selection can be switched on for production to save run time

ONNX RUNTIME: TIMING

- Significant speed-up w/ ONNX Runtime compared to the TF/MXNet based implementation (cms-sw/cmssw#28112)
 - depending on the network architecture, the speed-up varies from 10-15% to ~10x
 - the use of newer vector instructions (e.g., AVX) can bring further improvements

Time (s) / event	Baseline	ONNX Runtime (SSE)	Speed-up w.r.t baseline	ONNX Runtime (AVX)	Speed-up w.r.t baseline
DeepTau	0.039245	0.053057	0.74	0.024901	1.58
DeepJet	0.058576	0.009333	6.28	0.006735	8.70
DeepAK8	0.003538	0.003222	1.10	0.002107	1.68
DeepAK8-MD	0.003598	0.003153	1.14	0.002078	1.73
DeepDoubleBvL	0.004457	0.000451	9.88	0.000363	12.28
DeepDoubleCvB	0.004514	0.000445	10.14	0.000355	12.72
DeepDoubleCvL	0.004997	0.000478	10.45	0.000398	12.56

- Another observation: batch evaluation can bring substantial speed-up in some cases
 - right: DeepJet inference w/ and w/o batching

SUMMARY

- A number of DL-based object reconstruction and identification algorithms have been developed in CMS over the past few years
 - significant improvement in performance
 - successfully applied to several challenging analyses and led to very competitive results
- The integration of DL frameworks into CMSSW is often a challenging task
 - multi-threading schemes
 - resource constraints (CPU time/memory)
- ML inference starts to become a sizable fraction of the event processing time
 - crucial to investigate how to accelerate ML inference
 - e.g., new frameworks, new DNN architectures, new hardware, etc...

BACKUPS

DEEPAK8: ARCHITECTURE

CMS-PAS-JME-18-002

ABLATION STUDY OF DEEPAK8

DeepAK8 shows substantial gain compared to traditional approaches

<u>CMS-PAS-JME-18-002</u>

- To understand the main sources of the improvement, alternative versions of DeepAK8 were trained using a subset of the input features
 - Particle (kinematics): only kinematic info of PF candidates
 - four momenta, distances to the jet and subjet axes, etc.
 - Particle (w/o Flavour): adding experimental info
 - charge, particle identification, track quality, etc.
 - Particle Full + SV (the full DeepAK8): adding features related to heavy-flavour tagging
 - track displacement, track-vertex association, SV features, etc.

MASS DECORRELATION

DEEPTAU: ALGORITHM

- Input variables
 - 1 global event variable: the average energy deposition density (ρ)
 - 42 high-level variables that are used during tau reconstruction or proven to provide discriminating power by previous tau POG studies
 - For each candidate reconstructed within the tau signal or isolation cones, information about 4-momentum, track quality, relation with the primary vertex, calorimeter clusters, and muon stations is used, if available:
 - From 7 to 27 variables (depending on the candidate type) for each particle flow candidate
 - 37 variables for each fully reconstructed electron candidate
 - 37 variables for each fully reconstructed muon candidate
- Candidates belonging to the inner and outer cones are separated and split into two grids with $\eta \times \varphi$ cell size of 0.02×0.02 (0.05×0.05) for the inner (outer) cone
- Network architecture:
 - High level variables and each input cell are pre-processed by a few fully connected dense layers
 - For the inner (outer) grid, the pre-processed cell data are fed into 5 (10) 2D convolutional layers with 3×3 window size, which result in 64 features that are passed to the next step
 - All features from previous steps are combined and passed through 5 dense layers
 - Probabilities of the reconstructed tau candidate being electron, muon, quark or gluon jet, or hadronic tau are estimated by the 4 NN outputs

DEEPTAU: PERFORMANCE IN DATA

Distribution of the visible $\mu\tau$ mass for 2018 data

Event selection:

- well identified and isolated muon with $p_T > 25$ GeV, $|\eta| < 2.4, |dz| < 0.2$ cm
- tau candidates with $p_T > 20$ GeV, $|\eta| < 2.3$, |dz| < 0.2 cm
- $\mu \tau$ pair with an opposite charge and $\Delta R(\mu, \tau) > 0.5$

- Contribution from all SM processes (except QCD) are modelled by MC simulation
- QCD estimated from a sideband region in data

Selection using discriminators from JINST 13 (2018) P10005:

- Tight WP against jets
- VLoose WP against electrons
- Tight WP against muons

With DeepTau selection, the yield from **genuine** τ_h increases by $\approx 20\%$, while yield from **fakes** decreases by $\approx 23\%$

In both plots modelled contributions are fit to the data

Selection using DeepTau IDs:

- Tight WP against jets
- VVLoose WP against electrons
- VLoose against muons

CMS-DP-2019-033