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INTRODUCTION

Machine learning (ML) can provide powerful tools for particle physics
experiments

Trend in recent years: deep learning (DL) + low-level inputs

Scale drives deep learning progress
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A variety of new DL algorithms have been developed in CMS
b-tagging
boosted jet tagging
tau identification

b-jet energy regression
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Boosted jet flavour tagger for bb/cc
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CNN-based hadronic tau identification algorithm
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B-JET ENERGY REGRESSION

Simultaneous estimation of the b-jet energy and its resolution
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Successfully applied to the CMS
H— bb observation analysis
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http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/HIG-18-027/index.html
https://indico.cern.ch/event/844092/contributions/3632224/

FROM DEVELOPMENT TO DEPLOYMENT

The development of a DL model takes lots of effort

a good DL model = input feature selection + training dataset preparation + network
architecture design + hyperparameter optimization + ...

Next step: deploying to production!
but...
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Tensorflow-based integration of new DeepFlavour tagger
53V Cl cmsbuild merged 150 commits into  cms-sw:master from pablodecm:deep_flavour_tf_rebased_20_07 [, on Jan 25, 2018
@onversation 830 -0- Commits 150 &/ Checks 0 Files changed 54 +6,293 -290 EEENE
pablodecm commented ed - Contributor | +(&) = Reviewers
makortel 3
This pull request integrates the new DeepFlavour tagger, using the library CMSSW-DNN by @riga (the
required part is also included) and adds it to the standard sequences. You can find an overview of the ’ rga =
reason and design behind this PR in this BTV WG presentation. mverzett ]
. . & Dr15Jones 3
PAT vs reference training framework (latest version)
. smuzaffar 3
Here are some checks of compatibility of CMSSW pat-based discriminators computed using the lava77 o
producers develop for this PR with the output from the training framework (DeepJet) as 2D histograms for sava
1000 of a ttbar RelVal sample

DeepAKS8 tagger integration #23/68 calt
cmsbuild merged 29 commits into cms-sw:master from hqucms:deep-boosted-jets [

& JConversation 195 - Commits 29 > B, Checks 0 Files changed 57 +2,380 -340 mEENE
* hgucms commented §n Jul 9, 2018 Contributor | +(@@) *** Reviewers
& Dr15Jones [
Introduction
i kpedro88 (J
This PR is to integrate the DeepAK8 tagger into CMSSW. The DeepAK8 tagger is a multi-class tagger for slava77 -

identifying boosted hadronic top, W, Z, Higgs using AK8 jets. It uses low-level inputs (jet constituent
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TRAINING VS INFERENCE

Training
python based
typically on GPU
large batch size
0(100) to O(1000)
standalone environment

weak constraints on timing/
memory

multi-threading managed by the
DL framework (e.g., TensorFlow)

¥

DL framework

thread thread @ thread thread
Hl H2 #3 o H#N

Inference

C/C++ based
on CPU
small batch size
O(1) to O(10), often just 1

integrated in the experimental
software (e.g., CMSSW)

tight constraints on timing/memory

multi-threading managed by the
experimental software

thread thread thread thread

#I H2 #3 #N

DNN DNN DNN . DNN
inference inference inference inference




ML INFERENCE ENGINES IN CMSSVWVY

A number of DL frameworks have been integrated into CMSSW to
support the new DNN-based algorithms

TensorFlow

Deeplet 1| TensorFlow
DeepDoubleX

DeepTau

b-jet energy regression
MXNet

DeepAKS

@Xnet
ONNX Runtime

new development O N N X

can support all these models by converting RUNTIME
to ONNX format

Modifications are needed for all of them to work nicely with CMSSW



TENSORFLOW

TensorFlow

I TensorFlow

most widely used framework (together with Keras)

complicated to build and integrate (requires Google’s build system bazel, etc.)

Issue 1: Multi-Threading

upon startup, TF creates lots of threads in its thread pool for parallel data loading and parallelism
within/between operators

good for end-users who runs only 1 thread to call TF, but not good for HEP frameworks that
typically manage their own threading schemes (CMSSW uses TBB)

solved with the implementation of two custom sessions
NTSession (default in CMSSW): disable multi-threading
TBBSession: threads scheduled by Intel’s TBB

Issue 2: Memory Consumption
TF Graphs obtained after training can be quite large (e.g., 150 MB for Deeplet)
memory footprint can be reduced by a factor of O(10-100) by:

converting variables to constant tensors (freeze graph)
removing ancillary information needed only for training

a number of tools available online, e.g., keras_to_tensorflow

further reduction: load TF graph only once and share it among all threads (sessions)


https://github.com/cms-sw/cmssw/blob/master/PhysicsTools/TensorFlow/src/NTSession.h
https://github.com/cms-sw/cmssw/blob/master/PhysicsTools/TensorFlow/src/TBBSession.h
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/tools/freeze_graph.py
https://github.com/amir-abdi/keras_to_tensorflow

MXNET

o @oxnet

a DL framework focused on efficiency and scalability

relatively straightforward to build and integrate (cmake build system, standard BLAS library)

exported models are ready-to-use for inference (model json + binary parameter file)
Issue 1: multi-threading

similar problem as TF: MXNet creates and manages its own thread pool

solution: use MXNet’s “NaiveEngine” (no threading) and make it “thread _local” (so each thread
can call it independently)

need to re-assign the resources (workspace) in each run to ensure thread-safety (more details in
M. Verzetti’s talk last year)

Issue 2: BLAS library

DeepAKS8 inference runs 4-5x slower in CMSSW than w/ standalone MXNet
the problem was tracked to the use of the BLAS library
the standalone MXNet links to OpenBLAS statically

MXNet in CMSSW is built to link with OpenBLAS dynamically, but a slower BLAS library (glsblas) is
used by other softwares (e.g.,ROOT) and loaded first, thus providing the BLAS symbols to MXNet

solved by linking to OpenBLAS consistently in all CMS softwares


https://github.com/apache/incubator-mxnet/compare/75a9e187d00a8b7ebc71412a02ed0e3ae489d91f...cms-externals:1.5.0-cms-mod
https://en.cppreference.com/w/cpp/keyword/thread_local
https://github.com/apache/incubator-mxnet/commit/85c2f34c7c28fb91e593534865c78d8238a9c801
https://indico.cern.ch/event/735932/contributions/3159734/attachments/1735429/2806733/ATLAS_MLWorkshop.pdf

ONNX RUNTIME ANNX

Open Neural Network Exchange (ONNX) RUNTIME

an open source format for ML models w/ increasing adoption

supports most of the main-stream DL operators

conversion tools available for most of the DL frameworks: Keras/TF, PyTorch,
MXNet, etc.

ONNX Runtime

“a performance-focused complete scoring engine for ONNX models”

advantages:

flexibility: can support a wide range of models via ONNX

speed: optimized for inference (including on CPUs), rather than training (TF/
MXNet/PyTorch etc.)

thread-safety: "Multiple threads can invoke the Run() method on the same
inference session object”

caveats:

ONNX may not support all, especially novel ML models


https://onnx.ai/
https://github.com/onnx/onnx/blob/master/docs/Operators.md
https://github.com/onnx/tutorials#converting-to-onnx-format
https://github.com/microsoft/onnxruntime
https://github.com/Microsoft/onnxruntime/blob/master/docs/HighLevelDesign.md#key-design-decisions
https://github.com/Microsoft/onnxruntime/blob/master/docs/HighLevelDesign.md#key-design-decisions
https://github.com/Microsoft/onnxruntime/blob/master/docs/HighLevelDesign.md#key-design-decisions
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ONNX RUNTIME INTEGRATION

A few modifications to make it work better w/ CMSSW

configured it to run in a “‘no-threading” mode

l.e.,each CMSSW thread uses the global inference session

object to run inference concurrently with no extra threads

L . thread
setting intra_op_num_threads and inter_op_num_threads HN

to 1 gives the desired behavior (i.e., it does not create
any new threads)

however, need to remove a hard-coded thread pool : :
for the LSTM operator ONNXRuntime session

likely will be fixed officially in the future

introduced an environment variable to control the runtime kernel selection

ONNX Runtime’s math library (MLAS) selects the fastest compute kernel dynamically based on
the available CPU instruction sets

outputs are not bitwise equal on different CPU architectures as different instructions (SSE/AVX/
AVX2/etc.) will be used — causes trouble for PR validation

added an environment variable to control the allowed instruction sets

default to using only SSE: not attempting to use more advanced instructions (lLike AVX)
ensures bitwise reproducibility across different CPU architectures

dynamic kernel selection can be switched on for production to save run time


https://github.com/hqucms/onnxruntime/commit/04f3c766dc4b0cba097ac48af9c8771beb37f3d8
https://github.com/hqucms/onnxruntime/commit/7222aeadaa2731f858e18b555e23e464a6363645

ONNX RUNTIME: TIMING

Significant speed-up w/ ONNX Runtime compared to the TF/MXNet based

implementation (cms-sw/cmssw#28112)

depending on the network architecture, the speed-up varies from 10-15% to ~10x

the use of newer vector instructions (e.g.,AVX) can bring further improvements

Time (s) / event

Baseline ONNX Runtime (SSE) Speed-up w.r.t baseline ONNX Runtime (AVX) Speed-up w.r.t baseline

DeepTau 0.039245 0.053057 0.74 0.024901 1.58
DeepJet 0.058576 0.009333 6.28 0.006735 8.70
DeepAKS8 0.003538 0.003222 1.10 0.002107 1.68
DeepAK8-MD 0.003598 0.003153 1.14 0.002078 1.73
DeepDoubleBvL 0.004457 0.000451 9.88 0.000363 12.28
DeepDoubleCvB 0.004514 0.000445 10.14 0.000355 12.72
DeepDoubleCvL 0.004997 0.000478 10.45 0.000398 12.56
80
Another observation: batch evaluation can
bring substantial speed-up in some cases @« .
\03,40 TF (batching)
. . . TF (no batching)
right: Deeplet inference w/ and w/o batching &» .~ - e ORT (batching)
0 b e ===-ORT (no batching)
0 et - e
0 Lo ———
0 5 10 15
# jets


https://github.com/cms-sw/cmssw/pull/28112

SUMMARY

A number of DL-based object reconstruction and identification
algorithms have been developed in CMS over the past few years

significant improvement in performance

successfully applied to several challenging analyses and led to very
competitive results

The integration of DL frameworks into CMSSW is often a
challenging task

multi-threading schemes

resource constraints (CPU time/memory)

ML inference starts to become a sizable fraction of the event
processing time

crucial to investigate how to accelerate ML inference

e.g., new frameworks, new DNN architectures, new hardware, etc...
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http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/JME-18-002/index.html

ABLATION STUDY OF DEEPAKS8

DeepAKS8 shows substantial gain compared to traditional approaches

Background efficiency

107"k

1072

1073

1074

To understand the main sources of the improvement, alternative versions of
DeepAKS8 were trained using a subset of the input features

Particle (kinematics): only kinematic info of PF candidates

four momenta, distances to the jet and subjet axes, etc.

Particle (w/o Flavour): adding experimental info

charge, particle identification, track quality, etc.

Particle Full + SV (the full DeepAK8): adding features related to heavy-flavour tagging

track displacement, track-vertex association, SV features, etc.
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http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/JME-18-002/index.html

MASS DECORRELATION
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http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/JME-18-002/index.html

DEEPT AU: ALGORITHM

* Input variables
* 1 global event variable: the average energy deposition density (p)
* 42 high-level variables that are used during tau reconstruction or proven to provide

discriminating power by previous tau POG studies

* For each candidate reconstructed within the tau signal or isolation cones, information

about 4-momentum, track quality, relation with the primary vertex, calorimeter
clusters, and muon stations is used, if available:

* From 7 to 27 variables (depending on the candidate type) for each particle flow candidate

» 37 variables for each fully reconstructed electron candidate
e 37 variables for each fully reconstructed muon candidate

* Candidates belonging to the inner and outer cones are separated and split into
two grids with nX @ cell size of 0.02%0.02 (0.05X%0.05) for the inner (outer) cone

e Network architecture:

High level variables and each input cell are pre-processed by a few fully connected dense layers

For the inner (outer) grid, the pre-processed cell data are fed into 5 (10) 2D convolutional layers
with 3X3 window size, which result in 64 features that are passed to the next step

All features from previous steps are combined and passed through 5 dense layers

Probabilities of the reconstructed tau candidate being electron, muon, quark or gluon jet, or
hadronic tau are estimated by the 4 NN outputs
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DEEP [ AU: PERFORMANCE IN DATA

Distribution of the visible ut mass for 2018 data
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