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The Likelihood function
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The Likelihood function is a central object in statistical inference

Bayes Theorem:

Frequentist inference Bayesian inference

Likelihood function Prior probability Posterior probability Bayesian evidence

e.g. Maximum Likelihood Estimation (MLE) e.g. Maximum A Posteriori (MAP)

Pros:

• Does not require assumptions on the

a-priori distribution of parameters

• Neyman-Pearson likelihood ratio
• Asymptotic formulae

Cons:

• Violates Likelihood principle

• Difficult (conceptually) to deal with 

nuisance parameters
• Coverage (pseudo-experiments)

Pros:

• Direct outcome of Bayes theorem

• When prior is known this is “the 

correct” inference procedure
• Simpler treatment of nuisance pars

Cons:

• Prior almost never known

• No reparametrization invariant 
uninformative priors



Distributing likelihoods
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Different approaches (and frameworks) in presenting and distributing experimental information

Examples are:

1. Present just the results of the analysis (this was the approach until recent years)

2. Cross section measurements with uncertainties and possibly correlations 

3. Measurements in (possibly uncorrelated) bins for several different signal regions, as, for instance 

Higgs Simplified Template Cross Sections (STXS)

4. Simplified Likelihood: parametrize the likelihood in terms of “combined” nuisance parameters 

using Gaussian approximation up to 3rd moment

5. HistFactory framework (ATLAS): this is going towards publishing all information that allows to

reconstruct the full likelihood

Our approach: encode the full likelihood with all the dependence on elementary nuisance parameters

into a DNN predictor. This allows for:

1. Encoding also unbinned likelihoods (especially, but not only, used in Flavor physics)

2. Re-sampling with custom priors to study the impact of different hypotheses on systematic unc.

3. Efficient combination of different likelihoods (when correlations are known)

4. Interpretation of results within different statistical approaches (Frequentist vs Bayesian)

5. Simple framework independent distribution through the ONNX format (this allows inference in any 

software environment (Python, R, Matlab, Mathematica, etc..)



A toy LHC-like New Physics search
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Toy experiment already considered in the literature

• One physical parameter (signal strength    )

• 94 nuisance parameters (90 fully uncorrelated, two fully correlated, two normalizations)

• Non Gaussian (and not satisfying Wilks’ hypotheses!)

Buckley, Citron, Fichet, Kraml, Waltenberger, Wardle, 1809.05548 [hep-ph]



Sampling
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Supervised learning problem (interpolation) where high precision is needed

If we want to allow for both Frequentist and Bayesian inference, we need to know the LF well in very

different regions (where prior volume is large and close to local maxima of the LF)

We sample with the emcee3 (ensemble sampling method) Python package (checking convergence with

several different techniques)



Inference: Frequentist
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For frequentist inference we construct the test statistics



Inference: Frequentist
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For frequentist inference we construct the test statistics

Pay attention with asymptotic statistics!

“true” 68%

“true” 95%



Inference: Bayesian
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Bayesian inference is based on (marginal) posterior probability distributions

We quote results as marginalized Highest Posterior Density Intervals (HPDI)



The DNNLikelihood
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We build and train a simple MLP model with Keras+TensorFlow with the following configurations (after a

long phase of optimization):

• Size of training set: we consider 100K, 200K,and 500K training sets

• Loss function: mean squared error (mse)

• Number of hidden layers: usually 2 are enough, more complex problems can need more layers

• Number of nodes per layer: we consider 500, 1000, 2000, and 5000 nodes per layer

• Activation functions: Scaled Exponential Linear Unit (SELU)

• Batch size: we keep fixed the number of batches to around 200, and therefore vary batch size

with training sample size: 512, 1024, 2048

• Optimizer: Adam with starting Learning Rate 0.001. Learning rate is decreased by a factor 0.2

every 40 epochs with no improvement in the validation loss within a tolerance of 1/N with N

number of training events

• Regularizer: we do not need regularization! We cannot overfit, since we are doing interpolation

and not regression. We just use early stopping to shorten training time. We stop after 48 epochs

with no improvement in validation loss within a tolerance of 1/N with N number of training events

• Ensembling: for each architecture we train 5 identical models with randomly extracted training

sets and take the best one to show results. We have experimented ensemble techniques, such

as stacking, which are very promising but were not needed in this “relatively simple” case



The DNNLikelihood
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Results: Bayesian DNNLikelihood
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Train with unbiased sampling S1

Results
Metrics



9Riccardo Torre The DNNLikelihood framework

Results: Bayesian DNNLikelihood



Results: full DNNLikelihood
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Train with mixed sampling S3

Results

Metrics



Results: full DNNLikelihood
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Train with mixed sampling S3



Results: full DNNLikelihood
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Conclusions
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• We introduced the DNNLikelihood, a framework to encode, distribute, combine, and

analyze likelihood functions

• In the realistic example we studied it seems to work extremely well without the need of

too much hyperparameters tuning or advanced techniques (which may be necessary

for very complicated multimodal function)

• All code used to produce the paper and all results are available on GitHub

• Together with the models our code always produces many auxiliary files keeping track

of all parameters, metrics, results, etc. so that each model is carefully self documented

• We are preparing a more comprehensive Python module that will allow to sample

likelihoods, build models (and ensembles of models), optimize, and analyze the results

within different statistical frameworks. It is now in the phase of testing and we plan to

release it by the end of the year

• Future plans are to present a few more example for real likelihoods (HepFit, Flavor)

• We got in touch with Zenodo group to identify the best strategy to store results on

Zenodo

https://github.com/riccardotorre/DNNLikelihood


THANK YOU!
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