
Neural Network Distributed
Training and Optimization

Jean-Roch Vlimant, with many others

4th ATLAS Machine Learning Workshop
Nov 11-15, 2019

11/14/19
Fast ML, Distributed Training, J-R Vlimant

2

Outline

 Motivations
 Training-workload parallelism
 Hyper-parameters optimization
 Interface overview
 Discussion on Performance
 Summary and Outlooks

11/14/19
Fast ML, Distributed Training, J-R Vlimant

3

 Training & Optimization

P a ra me t e r s o f t h e mo d e l s
(weights, bias, ...) are learning with
respect to a loss that is optimized
with (stochastic) gradient descent.
Only tractable if gradients can be
computed analytically.

Models also contains parameters
that are best optimized otherwise
(stride, number of neurons, number
of layers, …).
Commonly optimized by grid scan,
or with bayesian optimization using
gaussian processes (Or by grad-
student descent ...)
Other evolutionary methods with
transfer learning out there.

?

training

optimization

11/14/19
Fast ML, Distributed Training, J-R Vlimant

4

Motivations

● Large models on large dataset can take days-
week to converge on single GPU.

● Simpler models can take as long to converge,
on CPU-only hosts.

● Prototyping with model architecture is like
testing a new idea for analysis, you want to
have the answer “fast”

● Dismissing large model, large dataset because
of train time ?

11/14/19
Fast ML, Distributed Training, J-R Vlimant

5

Community Interest
● E4/Nvidia/Openlab project

➢ M. Girone, M. Pierini, V. Loncar, …
➢ https://indico.cern.ch/event/784202/
➢ Access to Flatiron/SDSC cluster

● Exa.TrkX DOE: scaling tracking GNN training at NERSC
➢ S. Farrell, P. Calafiura, J. Kowalkowski, ...
➢ Allocations on Cory, Cory GPU, Summit

● HEPGan NESAP: scaling/developing calorimeter GAN
➢ B. Nachman, W. Bhimji, S. Vallecorsa, ...
➢ Allocation on Cory, Cory GPU
➢ Pending hiring a postdoc at NERSC

https://inspirehep.net/record/1733162
● BNL: study scaling of various training frameworks

➢ A. Malik, ...
➢ Allocation on summit

● IRIS-HEP:
➢ FastML workshop https://indico.cern.ch/event/822126
➢ “Industry tools vs in-house development” dilemna

● ATLAS & CMS ML groups:
● Interest in training as a service, integration of training in

experiment workflow management

https://indico.cern.ch/event/784202/
https://inspirehep.net/record/1733162
https://indico.cern.ch/event/822126

11/14/19
Fast ML, Distributed Training, J-R Vlimant

6

Project History
● Started with RNN acceleration: easgd, downpour.

https://arxiv.org/abs/1712.05878
https://github.com/vlimant/mpi_learn

● Included Horovod with multiple rings
https://github.com/horovod/horovod/pull/394

● Extended to hyper optimization
https://github.com/vlimant/mpi_opt

● Incorporated torch backend
● Integrated GEM

from https://arxiv.org/abs/1805.08469
● Interface for GAN

https://doi.org/10.1051/epjconf/201921406025
● ANN python model interface
● Repository consolidation

https://github.com/vlimant/NNLO
● Complete checkpointing for short HPC queues
● ...

https://arxiv.org/abs/1712.05878
https://github.com/vlimant/mpi_learn
https://github.com/horovod/horovod/pull/394
https://github.com/vlimant/mpi_opt
https://arxiv.org/abs/1805.08469
https://doi.org/10.1051/epjconf/201921406025
https://github.com/vlimant/NNLO

11/14/19
Fast ML, Distributed Training, J-R Vlimant

7

Goal

● Aiming for a “plug and play”
software for model optimization
➔Training as a service
➔HPC as a service
➔Workflow management system
integration

➔Deploy on system with mpi

11/14/19
Fast ML, Distributed Training, J-R Vlimant

8

Package Features
● Provide model in Torch or Keras (TF upcoming)
● Data caching (also used with ec3) , pre-loading
● Data adaptor (from stored tensors to model input)
● Distributed training engine : easgd, downpour, gem
● Early stopping mechanism
● Model parallelism : limited, only with keras
● Hyper-optimization engine : GP-opt, evolutionary algo
● Cross-validated hyper-optimzation
● Tracking CPU/GPU utilization
● Profiling with tracing function calls
● Checkpointing (save/restore) for long optimization

● Some limitations (# of gpu per process, node/rank
association, process crash on gpu memory, ...)

11/14/19
Fast ML, Distributed Training, J-R Vlimant

9

Distributed Training

11/14/19
Fast ML, Distributed Training, J-R Vlimant

10

Parallelism Overview
➔Data distribution

Compute the gradients on several batches
independently and update the model synchronously or
not. Applicable to large dataset

➔Gradient distribution
Compute the gradient of one batch in parallel and
update the model with the aggregated gradient.
Applicable to large sample ≡ large event

➔Model distribution
Compute the gradient and updates of part of the
model separately in chain. Applicable to large model

11/14/19
Fast ML, Distributed Training, J-R Vlimant

11

Data
Distribution

11/14/19
Fast ML, Distributed Training, J-R Vlimant

12

Data Distribution

https://arxiv.org/abs/1712.05878

● Master node operates as parameter server
● Work nodes compute gradients
● Master handles gradients to update the central model

➔ downpour sgd https://tinyurl.com/ycfpwec5
➔ Elastic averaging sgd https://arxiv.org/abs/1412.6651
➔ Gradient energy matching https://arxiv.org/abs/1805.08469

https://arxiv.org/abs/1712.05878
https://tinyurl.com/ycfpwec5
https://arxiv.org/abs/1412.6651
https://arxiv.org/abs/1805.08469

11/14/19
Fast ML, Distributed Training, J-R Vlimant

13

Basic Layout

Training master
group 0, subrank 0

Training worker
group 0, subrank 1

Training master
group 0, subrank2

Training master
group 0, subrank N

W

11/14/19
Fast ML, Distributed Training, J-R Vlimant

14

Performance with ANN

● Speed up in training recurrent neural networks on Piz
Daint CSCS supercomputer

➔ Linear speed up with up to ~20 nodes.
➔ Needs to compensate for staleness of gradients

(see GEM https://arxiv.org/abs/1805.08469)
➔ Linear scaling on servers with 8 GPUs

 https://arxiv.org/abs/1712.05878

NVIDA P100 on Piz Daint, CSCS

https://arxiv.org/abs/1805.08469
https://arxiv.org/abs/1712.05878

11/14/19
Fast ML, Distributed Training, J-R Vlimant

15

Performance with GAN

● Speed up in training generative
adversarial networks on Piz Daint CSCS
and Titan ORNL supercomputers

➔ Using easgd algorithm with rmsprop
➔ Speed up is not fully efficient.

Bottlenecks to be identified

NVIDA K20 at Titan, ORNL

NVIDA P100 on Piz Daint, CSCS

11/14/19
Fast ML, Distributed Training, J-R Vlimant

16

Performance with GNN
JEDI-net Graph network for jet identification
https://arxiv.org/abs/1908.05318

➢ 33625 parameters over three ANN
➢ 116M FLOP per forward pass
➢ Speedup shown with respect to using 1master+1worker
➢ Standalone training reference
➢ EASG (master) + adam (worker)

NVIDA V100 on FlatIron cluster

https://arxiv.org/abs/1908.05318

11/14/19
Fast ML, Distributed Training, J-R Vlimant

17

Gradient
Distribution

11/14/19
Fast ML, Distributed Training, J-R Vlimant

18

TW1
GPU2

TW1
GPU2

TWN
W

GPU2

Training master
group 0, subrank 0

TW1
GPU1

TW2
GPU1

TWN
W

GPU1

TW1
GPUN

GPU

TW2
GPUN

GPU

TWN
W

GPUN
GPU

● A logical worker is spawn over multiple processes
● Communicator passed to horovod https://github.com/uber/horovod
● Nvidia NCCL enabled for fast GPU-GPU communication

Horovod Layout

https://github.com/uber/horovod

11/14/19
Fast ML, Distributed Training, J-R Vlimant

19

https://sites.google.com/nvidia.com/ai-hpc
Slide S. Vallecorsa

Intel MKL-DNN

Not with the
NNLO package

https://sites.google.com/nvidia.com/ai-hpc

11/14/19
Fast ML, Distributed Training, J-R Vlimant

20

Model
Distribution

11/14/19
Fast ML, Distributed Training, J-R Vlimant

21

Intra-Node Model Parallelism

GPU2GPU1

● Perform part of the forward and backward pass on different devices
● Require good device to device communication
● Utilize native tensorflow multi-device manager
● Aiming for machines with multi-gpu per node topology (e.g summit)

11/14/19
Fast ML, Distributed Training, J-R Vlimant

22

Hyper-Parameters
Optimization

11/14/19
Fast ML, Distributed Training, J-R Vlimant

23

Hyper-Parameters
● Various parameters of the model cannot be learned by gradient

descent
➢ Learning rate, batch size, number of layers, size of kernels, …

● Tuning to the right architecture is an “art”. Can easily spend a lot
of time scanning many directions

● Full parameter scan is resource/time consuming.

➔ Hence looking for a way to reach the optimum hyper-parameter
set for a provided figure of merit (the loss by default, but any
other fom may work)

➔ Possible optimization engine
➢ Bayesian optimization with gaussian processes prior
➢ Evolutionary algorithm

11/14/19
Fast ML, Distributed Training, J-R Vlimant

24

K-Folding Cross Validation

● Estimate the performance of multiple model training over
different validation part of the training dataset

● Allows to take into account variance from multiple source
(choice of validation set, choice of random initialization, ...)

● Crucial when comparing models performance
● Training on folds can proceed in parallel

11/14/19
Fast ML, Distributed Training, J-R Vlimant

25

K-Folding Layout

H-opt
master
Rank 0

P
ar

am
et

er
-s

et
 g

ro
up

 0

P
ar

am
et

er
-s

et
 g

ro
up

 1

P
ar

am
et

er
-s

et
 g

ro
up

 N
G

Training master
group 0, subrank 0

Training worker
group 0, subrank 1

Training worker
group 0, subrank2

Training worker
group 0, subrank N

W

Fast ML, Distributed Training, J-R Vlimant

N
nodes

 = 1+ N
G
 x N

F
 x (N

M
 x N

W
x N

P
)

N
G
 : # of concurrent hyper-parameter set

N
F
 : # of folds

N
M
 : # of masters

N
W
 : # of workers per master

N
P
 : # of process per worker

Reaches hundreds/thousands
of processes quickly

Putting all Features Together

11/14/19
Fast ML, Distributed Training, J-R Vlimant

27

Interfaces

11/14/19
Fast ML, Distributed Training, J-R Vlimant

28

Training Command

mpirun -np 7 python3 TrainingDriver.py
--model examples/example_mnist.py
--loss categorical_crossentropy
--epochs 1000
--early "val_loss,~<,4"
--mode gem
--worker-optimizer sgd
--checkpoint mnist-chkp
--n-processes 2

1 master and 3 workers each in a 2
processes Horovod ring : 1+(3 x 2)

Finish when the validation
loss averaged over the last 4
epochs stopped decreasing,
or 1000 epochs

Provide the model, the data
files, and data adaptor

Training over mpi

11/14/19
Fast ML, Distributed Training, J-R Vlimant

29

Model Interface

The input for training can be provided in a single python file
implementing the following (can also be defined on command line)

● get_model
takes hyper-parameters as wild arguments, returns a Keras
Model, or Torch nn.Module
● get_model.parameter_range

defines the list of hyper-parameters to be optimized
● get_train

returns a list of files for training
● get_val

returns a list of files for validation
● get_features

the name of the input dataset/group in the files, with a function to
adapt to the model input

● get_labels
the name of the target dataset/group in the files, with a function to
adapt to the model output

https://github.com/vlimant/NNLO/blob/master/examples/example_jedi_torch.py

https://github.com/vlimant/NNLO/blob/master/examples/example_jedi_torch.py

11/14/19
Fast ML, Distributed Training, J-R Vlimant

30

Optimization Command

mpirun -np 141 python3 OptimizationDriver.py
--model examples/example_mnist.py
--loss categorical_crossentropy
--epochs 1000
--early "val_loss,~<,4"
--mode gem
--worker-optimizer sgd
--checkpoint mnist-chkp
--n-processes 2
--hyper-opt bayesian
--n-fold 5
--block-size 35

Optimization over mpi

Same as for training

Number of mpi processes per
hyper-parameter set : 5x(1+(3x2))Implicit number (4) of hyper-parameter

set tested in parallel : 140 = 4x35
Plus 1 process for the optimization
coordinator

11/14/19
Fast ML, Distributed Training, J-R Vlimant

31

Discussion on
performance

11/14/19
Fast ML, Distributed Training, J-R Vlimant

32

Data Distribution

● Parameter Server setup has its limitations
● Gradient staleness with large number of workers : GEM

issue with convergence of GEM/JEDI-net to be understood
● Any speedup has a cut off because of synchronization with

the master weights
● Burn-in inefficiency to desynchronize workers
● The maximum number of workers with efficient scaling

should be related to
(time per worker batch) / (time per master update)

11/14/19
Fast ML, Distributed Training, J-R Vlimant

33

Gradient Distribution

● Using Horovod, with no further tweak
● Where to expect speed-up

➢ If one batch does not fit in memory, spreading on
multiple process will help (∞ speed up)

➢ Training on CPU: Parallelizing computation. Linear
speed up expected up ~ to

(# of processes) = (batch size)
 as long as processes are not interfering in memory.

➢ Training on GPU: Linear speed up expected with
(batch size) α (# of processes)

as long as GPU-GPU communication is good.

11/14/19
Fast ML, Distributed Training, J-R Vlimant

34

Scaling Bottleneck

● Possible ways to idle processes and loose speedup factors
➢ Not enough time spend per batch
➢ Slow update on the master
➢ Large number of weights to be communicated
➢ Slow communication between processes
➢ Processes sharing RAM
➢ Processes sharing a GPU
➢ ...

11/14/19
Fast ML, Distributed Training, J-R Vlimant

35

Summary & Outlook
● Distributed training is not always necessary (short training time?)
● Several aspects to distributed training to consider
● Several x-factor speedup for ANN, efficient at low number of

nodes. Bottleneck on master/node load balance.
● Several inefficient x-factors to be gained for GAN training
● Distributed training over CPU facilities is efficient (but not

necessarily cost effective)
● Cross validation is a must and can be done in parallel
● Hyper-parameter optimization is almost mandatory, but not fully

parallelizable

➢ Interest in the community to have a such (common?) software
➢ “in-house development”, or use “industry provided software” ?
➢ speed-up is a moving target, hard to get a one-for-all solution

➔ You have access to an HPC (or any cluster with mpi), and a slow
training problem ; get in touch ! jvlimant@caltech.edu

mailto:jvlimant@caltech.edu

11/14/19
Fast ML, Distributed Training, J-R Vlimant

36

Extra Slides

11/14/19
Fast ML, Distributed Training, J-R Vlimant

37

Artificial Neural Network
http://www.asimovinstitute.org/neural-network-zoo

● Large number of parameters
● Efficiently adjusted with stochastic gradient descent
● The more parameters, the more data required
● Training to convergence can take minutes to several days, ...

http://www.asimovinstitute.org/neural-network-zoo

11/14/19
Fast ML, Distributed Training, J-R Vlimant

38

Training Artificial Neural
Networks

● ANN and associated loss function have fully analytical
formulation and are differentiable with respect to model
parameters

● Gradient evaluated over batch of data
➢ Too small : very noisy and scattering
➢ Too large : information dilution and slow convergence

11/14/19
Fast ML, Distributed Training, J-R Vlimant

39

P
ar

am
et

er
-s

et
 g

ro
up

 0 TM2

TW0

TWN
W

Training master
group 0, subrank 0

TM1

TW0

TWN
W

TMN
M

TW0

TWN
W

● Putting workers in several groups
● Aim at spreading communication to the main master
● Need to strike a balance between staleness and

update frequency

Sub-master Layout

11/14/19
Fast ML, Distributed Training, J-R Vlimant

40

H-opt
master
Rank 0

P
ar

am
et

er
-s

et
 g

ro
up

 0

P
ar

am
et

er
-s

et
 g

ro
up

 1

P
ar

am
et

er
-s

et
 g

ro
up

 N
G

TM2

TW0

TWN
W

Training master
group 0, subrank 0

TM1

TW0

TWN
W

TMN
M

TW0

TWN
W

● One master running the bayesian optimization
● N

G
 groups of nodes training on a parameter-set on simultaneously

● One training master
● N

M
 training sub-masters

● N
W
 training workers

Sub-Master Layout
mpi-opt

11/14/19
Fast ML, Distributed Training, J-R Vlimant

41

H-opt
master
Rank 0

P
ar

am
et

er
-s

et
 g

ro
up

 0

P
ar

am
et

er
-s

et
 g

ro
up

 1

P
ar

am
et

er
-s

et
 g

ro
up

 N
G

TW0
GPU2

TW1
GPU2

TWN
W

GPU2

Training master
group 0, subrank 0

TW1
GPU1

TW2
GPU1

TWN
W

GPU1

TW1
GPUN

GPU

TW2
GPUN

GPU

TWN
W

GPUN
GPU

● One master running the bayesian optimization
● N

G
 groups of nodes training on a parameter-set on simultaneously

● One training master
● N

W
 training worker groups

● N
GPU

 used for each worker group (either nodes or gpu)

all-reduce Layout
mpi-opt

11/14/19
Fast ML, Distributed Training, J-R Vlimant

42

skopt
worker 2

com
master
Rank 0

P
ar

am
et

er
-s

et
 g

ro
up

 0

P
ar

am
et

er
-s

et
 g

ro
up

 1

P
ar

am
et

er
-s

et
 g

ro
up

 N
G

Training master
group 0, subrank 0

Training worker
group 0, subrank 1

Training master
group 0, subrank2

Training master
group 0, subrank N

W

● One master running communication of parameter set
● N

SK
 workers running the bayesian optimization

● N
G
 groups of nodes training on a parameter-set on simultaneously

● One training master
● N

W
 training workers

mpi-skopt Setup

H-opt
worker1

H-opt
worker N

SK

mpi-opt

11/14/19
Fast ML, Distributed Training, J-R Vlimant

43

H-opt
master
Rank 0

P
ar

am
et

er
-s

et
 g

ro
up

 0

P
ar

am
et

er
-s

et
 g

ro
up

 1

P
ar

am
et

er
-s

et
 g

ro
up

 N
G

Training master
group 0, subrank 0

Training worker
group 0, subrank 1

Training worker
group 0, subrank2

Training worker
group 0, subrank N

W

● One master process drives the hyper-parameter optimization
● N

G
 groups of nodes training on a parameter-set on simultaneously

● One training master
● N

W
 training workers

Basic Layout

11/14/19
Fast ML, Distributed Training, J-R Vlimant

44

H-opt
master
Rank 0

P
ar

am
et

er
-s

et
 g

ro
up

 0

P
ar

am
et

er
-s

et
 g

ro
up

 1

P
ar

am
et

er
-s

et
 g

ro
up

 N
G

TM0
G0F1

TW1
G0F1

TW2
G0F1

TWN
W

G0F1

TM0
G0F0

TW1
G0F0

TW2
G0F0

TWN
W

G0F0

TM0
G0FN

F

TW1
G0FN

F

TW2
G0FN

F

TWN
W

G0FN
F

● One master running the optimization. Receiving the average figure of
merit over N

F
 folds of the data

➢ N
G
 groups of nodes training on a parameter-set on simultaneously

➢ N
F
 groups of nodes running one fold each

K-folding Layout

11/14/19
Fast ML, Distributed Training, J-R Vlimant

45

Bayesian Optimization

● Objective function is
approximated as a multivariate
gaussian

● Measurements provided one by
one to improve knowledge of the
objective function

● Next best parameter to test is
determined from the acquisition
function

● Using the python implementation
from
https://scikit-optimize.github.io

https://tinyurl.com/yc2phuaj

https://scikit-optimize.github.io/
https://tinyurl.com/yc2phuaj

11/14/19
Fast ML, Distributed Training, J-R Vlimant

46

Evolutionary Algorithm
● Chromosomes are represented by the hyper-parameters
● Initial population taken at random in the parameter space
● Population is stepped through generations

● Select the 20% fittest solutions
● Parents of offspring selected by binary tournament based on

fitness function
● Crossover and mutate to breed offspring

● Alternative to bayesian opt. Indications that it works better for
large number of parameters and non-smooth objective function

11/14/19
Fast ML, Distributed Training, J-R Vlimant

47

Code Status
● Neural Network Learning and Optimization: NNLO

https://github.com/vlimant/NNLO
● Lots of development done over the last few months

✔ GEM https://arxiv.org/abs/1805.08469
✔ Full checkpointing of training and optimization
✔ Model interfacing with python script
✔ Streamlined repository
✔ Consolidation of options
✔ Full logging
✔ Better documentation
✔ Graph network example (torch)
✔ Data adaptor

● Upcoming
➔ Option restriction (high prio)
➔ Catching worker failure (medium/high prio)
➔ TF model adaptor (medium prio)
➔ GAN Interface (medium prio)
➔ BatchNorm support (low prio)
➔ ROOT data format adaptor (low prio)

https://github.com/vlimant/NNLO
https://arxiv.org/abs/1805.08469

11/14/19
Fast ML, Distributed Training, J-R Vlimant

48

(Past) Performance

 https://arxiv.org/abs/1712.05878

ANN/RNN
Parameter server
setup
Linear scaling
Downpour SGD
Worker SGD

NVIDA K20 at
Titan, ORNL

NVIDA P100 on Piz
Daint, CSCS

NVIDA P100 on Piz
Daint, CSCS

GAN
Parameter server setup
Linear scaling
Elastic averaging SGD
Worker rmsprop

https://doi.org/10.1051/epjconf/201921406025

https://arxiv.org/abs/1712.05878
https://doi.org/10.1051/epjconf/201921406025

11/14/19
Fast ML, Distributed Training, J-R Vlimant

49

Profiling

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

