>
A
rrrrrrr ""|

BERKELEY LAB

GPU Usage in ATLAS

Charles Leggett

ATLAS ML Workshop
November 15 2019

>
A
rrrrrrr ""|

) Why The Renewed Interest In Accelerators?

> |n the next generation of supercomputers we see extensive use of accelerator technologies

* Oak Ridge: Summit (2018) LLNL: Sierra (2018)
* 4608 IBM AC922 nodes w/ 2x Power9 CPU * 4320 IBM AC922 nodes w/ 2x Power9 CPU
« 3x NVIDIA Volta V100 + NVLink / CPU « 2x NVIDIA Volta V100 + NVLink / CPU
» LBL: NERSC-9 "Perimutter” (2020) * Argonne: Aurora A21 (2021)
« AMD EPYC "Milan" x86 only nodes + * Intel Xeon CPU + Intel X°/gen12 GPU + Optane
mixed CPU / "next gen" NVidia GPU
* Oak Ridge: Frontier (2021) . Tsukuba: Cygnus (2020)

- 1.5 exaflop
« AMD EPYC CPU + 4x AMD "Instinct" GPU

 2x Intel Xeon 6162+ 4x NVidia V100 GPU
« 2x CPU + 4x GPU + 2x Intel Stratix FPGA

4 .) . :
- Commercial clouds: Japan: Fugaku (2021)
 Brainwave / Azure FPGA « manycore ARM A64fx (48+2)
- Google Cloud TPU) * integrated "SVE" 512 bit GPU-like accelerator

> |In order to meet the HL-LHC computing requirements, we need to use all available
computing resources, or cut back physics projections

« US funding agencies have indicated that we will not be able to get allocations if
our code does not make use of accelerator hardware

e C. Leggett 2019-11-15

|| Past Usage

» Using GPUs accelerators in ATLAS is nothing new

 they’'ve been around for more than 2 decades

* a trivial search on iInSPIRE of “ATLAS"” and “GPU" results in 25 papers, going back to 2011.
 Tracking
 Trigger
 generic Algorithmic acceleration
» ML acceleration
» Event Generation
* Visualization (doesn'’t really count)

» Many other HEP experiments have dallied with GPUs
« some have chosen to use them, some not

Trigger Studies

BERKELEY LAB

» Started investigations in 2010 for using GPUs in HLT farm for Inner Detector
* significant amount of offline/HLT code ported to GPUs or developed from scratch

HLT GPU demonstrator project |
* Client-server model
» The modular HLT processing node GPU server S (APE) made less
“client-server” HLTPU | APE Server } Modules Modules are shared IMmpo rtant by
architecture Athena B T s m— — I" !ibre:ries w:ich . advances in CUDA
e — = implement specific
r Synchronous Algorithms l Done Queue ¢ - .. algorithms and can such as concurrent
e e g | e, support various streams, and nvidia-
: o EEER) Timer Tools e pccelerator2 accelerator hardware
and waits for reply <Sesuisriveincaia Config, Tools —{ worker Iﬂ'l cuda-m pS-COntrOl
server to share a
T B o text GPU between several
i E:It;nngiitge?mli?i‘??nany create | POP | PoP pun finalize | Push encapsulates all data processes
GPUs using the data | Werk - work I work [— TN fﬁL‘iﬁZ‘iZL"ﬁf: e
context queue: cecle J allocated on a GPU
work ||l B B cruxo| |crux R

from Dmitry Emeliyanov

BERKELEY LAB

The GPU-acceleratea

0 The HLT track finding is

based on the combinatorial

track following method

- two distinct phases: track
seeding and seeded track
following

ILT tracking

combinatorial track seeding T

triplets of
spacepoints

Selection

[

‘o

U
"
] Smeew

track following

e
o

g

Il CPU

bytestream spacepoint
conversion formation

ey P |
> track seeding > track following -

Spacepoints (SP) are arranged in azimuthal sectors

For each “middle” SP the algorithm finds “outer” and “inner” SPs in the same
and neighbouring sectors compatible with projected beamspot length

The GPU code implemented in CUDA includes three kernels which

2 find all “inner” and “outer” pairs for each “middle” SP

2 store the pairs in a global Structure-of-Arrays (SoA)

- combine pairs into triplets and apply selection (kinematic and quality) cuts to reject
bad combinations

'Yl f = V. N i "N pr—_
Offline/TDAQ Accele

C. Leggett

2019-11-15

~ A
(l
[y

Hardware Evolution

BERKELEY LAB

The GPU-based track fitter prototype

* The LVL2 track fitter was ported to
2011 Time / event, ms NVidia CUDA in 2009

~+-Fermi 2050 -=-Westmere 2.4 / Time / event, microseconds

/./ 200
2019

fﬂ//- g o Titan V -

i
o}
=

! 400 e

300

200

GPU kernel time, microseconds
[
)
»
[

i ’ — & 100

T r T 0
S00 1000 1500 2000 2500 3000 3300 0 5000 10000 15000 20000 25000 30000 350008
tracks / event Number of track fits per event
The hardware evolution GPU hardware Fermi C2050 Titan V
over 8 years: Time / track 1.1 us 0.02 us

24/10/2019 Offline/TDAQ Accelerator Meeting !

C. Leggett 2019-11-15

BERKELEY LAB

Performance of the accelerated tracking

* asingle GTX1080 GPU can serve up to 60 client jobs accelerating them by 40% without
any noticeable GPU saturation

Remote execution mode

25 ''''' | IIIIIIIIIIIIIIIII |I1I

2 £ “7- ATLAS Simulation Preliminary CPU cores network | GPU server
o = . Clients on gputets-1 GTX1080
- = .~ |D SeedMaker Accelerated
x 2 20 — GPU
O o 4 Pascal (Remote)
5 8 - =Kepler (Local) |_ PCl-e bus
g LE 5]
S nal T 18 = [
3 08" {t events + PU46 2 {Tevents+PU46 Local execution mode
0.6 10~ u CPU cores
[ATLAS Simulation Preliminary . [no visible GPU K80
0.4~ Clients on gputets-1 — - caturation
- 1D SeedMaker Accelerated 5 GPU
0.2- 4 Pascal (Remote) - r PCl-e bus
:I-K?pler{lrncal}l |] I R
%0 20 30 40 50 60 %10 20 30 40 50 60
No. Athena Threads No. Athena Threads — Athena client — Server process
Track seeding on GTX1080 | algorithm execution only | with data transfer overhead The 40% rate increase comes purely
Speed-up factor (w.r.t. CPU) 28 15 from offloading ~30% of the code

24/10/2019 Offline/TDAQ Accelerator Meeting 10

C. Leggett

2019-11-15

Why Isn’t The HLT Using GPUs Now?

» Ultimately, the HLT decided not to use GPUs for Run 3

» Intermediate data required too much memory
« 2MB input data — 50MB hits/doublets — 0.1MB output tracks
* not enough fast, on chip memory (shared mem is very slow)
» Reject-accept nature of pattern recognition algorithms doesn’t map well onto GPUs

« multiple levels of reduction (x2400) from cuts in eg, seed making don’t leave much work for
GPU

- memory latency can’t be hidden, performance bound to memory bandwidth
» Very large computational overheads from data conversion
* need to convert C++ style objects to SofA that can be consumed by GPU

» Cost
- what to do with big GPU farm when not taking data?

» HLT is currently re-evaluating GPU usage, looking at end-to-end solutions (hits in,
tracks out), and modifications to EDM

Current GPU Demonstrator Projects

» Several “"demonstrator” efforts are ongoing.
- small, self contained
 easy to run in different environments

» Being used as platforms to evaluate various GPU techonologies and issues
- Languages
- Ease of coding / conversion
* GPU hardware comparison
« Data structures
 Portability to different platforms

FastCaloSim

» Meifeng Lin @BNL

» Parametrized calorimeter simulation
» Aprox 6 months old
» Kernels written in CUDA

 port to SyCL now underway

FastCaloSim Normalized Timings

» Significant speedup over CPU (8x speedup ;

for full event loop for simple hit simulation) &/ﬁ\,\/\/\/\/\/\\

» Hampered by small work sizes - GPU is
not well utilized

* many concurrent CPU jobs can utilize
the same GPU 10 20 30 40 50 60

® EventLoop @ GPU ChainB Total Job

rmalized to 1 job

time no

“A Common Tracking Software”
Heather Gray, Xiaocong Ai @LBL

OpenMP hackathon to parallelize seed finder (originally targeting KNL on Cori)

Extended to use OpenMP offloading directives to target GPU

time

100

50

10

@ icctO2@KNL @ iccAVX2+03@KNL

20 40

number of threads

goc+O3+AVZERML

Event Generation

> Very old (2012) Madgraph code that uses GPUs
- parallelizing HEGET, gVEGAS, gBASES
* GPU programs were not fully integrated
* no CLI integration, event generation

» Current effort (Walter Hopkins @ ANL)
 updated GPU code (CUDA4 — CUDAD9)

« updated gVEGAS
* gVEGAS could also be used by Sherpa and other generators

» Next steps
- update gSPRING and gBASES
* benchmark performance

BERKELEY LAB

] Doublet Seeding with Numpy+Numba (+GPU)

» Paolo Calafiura + Sean Conlon @LBL + Select an inner hit

* Look at all the layers in the current and adjacent phi slices

» Apply cuts to the layers and phi slices

* Look at all the hits in the layers and phi slices that remain

* Apply cuts to this set of outer hits until the best candidates remain

» Project to parallelize track seeding with Numba . Finally. add these doublets o the set of input doublets
» Using fixed size arrays, parallelize inner loop
» Significant improvements in performance:

» original for loop: 153s

« 2-D Numpy array method: >200s
* Numpy+Numba w/ parallel inner loop: 6s

> Next step is to use CUDA backend to Numba
* projected runtime: ms??

+ still some investigation needed for best data structures to use
* CuDF or Numba CUDA + CuPy

@ C. Leggett 2019-11-15

>
A
rrrrrrr ""|

BERKELEY LAB

Framework Integration

> |f we had Algorithms in AthenaMT workflows (reconstruction, simulation) that could be

offloaded, how would we do it?

» AthenaMT AvalancheScheduler maintains a separate queue of Algorithms that it

considers “10 Bound”

- originally intended to be used for Algorithms that read/write data to disk
 synchronous accelerator offloading behaves (in theory) in the same way

* hardware thread is freed to do other
work while GPU processes data

* latency is hidden by scheduling more
work (other Algorithms or concurrent
events)

» Simulated reconstruction (q431)

 oversubscribe with many more
software threads than hardware

» don’t need to offload many Algs to
see significant gains

» Synchronous offloading has issues

Normalized Throughput

18

16

14

12

10

25 threads

ATLAS Reconstruction Normalized Througput

———— |
T s LA TTTEST s AAAAAALY LLARRLLARAAAY
eff = -0.75 eff=0
eff = Q.75 suunnnunssssiaes eff = -0.75 top 4
---------------- eff = 0 top 4 rwwwssnsmsmsnnns eff = 0.75 top 4
no offload
2 4 6 8 10 12 14 16 18 20

Concurrent Events

Asynchronous Offloading

» Asychronous offloading avoids the shortcomings of synchronous offloading
» developed by Attila Krasznahorkay
 fewer inefficiencies than synchronous offloading (for CUDA)
* not possible in all languages
» Requires modifications to Gaudi / Scheduler to split Algorithm: :execute into two steps
* 1° part executed on GPU

« 2" part on CPU after GPU is done
* triggered by callback, allows scheduler to continue dataflow processing

» Provides some transparent primitives to allow better GPU interaction with the AuxStore

>

>

>

Portability: The Challenge

We see all three flavours of ice cream in the next the DOE HPCs
 A21: Intel, Perimutter: NVidia , Frontier: AMD

Each accelerator vendor has its own flavour of programming tools to target their GPU
« NVidia: CUDA

* Intel: SYCL / OneAPI / dpcpp

« AMD: hip

Our software needs to run for the next 10+ years
- we cannot afford to re-write for each hardware platform

And what comes out in 5 years?
* we may see more “exotic” architectures (TPU, FPGA, ASIC)

What happens if a vendor significantly modifies their programming environment?
* eg AMD recently dropped SPIR support for hip/ROCm

it Size of Work

» Significant impedance mismatch:
* V100 has 160,000 threads. AMD RX Vega / 5700 have similar. Intel Gen12 ?7??

* QOur loops are much less wide than that (10k or so)
* may need to gang data between events to increase GPU workload - significant refactor

> Likely that we will need to be able to schedule and execute concurrent kernels on GPU

* not well supported by portability layers

« some explicit support (eg CUDA streams),
» even existing CUDA implementations have major performance drawbacks
» hidden synchronization points with some memory access

* this may (is promised to) change in the coming year

* we are often memory limited on GPUs
« executing concurrent kernels exacerbates this problem

@ C. Leggett 2019-11-15

Working Towards A Solution

» We need to find a portable solution that works for all accelerator platforms
* portability is more important than performance

» Projects worth exploring » Machine learning tools
« Kokkos * pytorch, tensorflow, etc
. Raja * requires major paradigm shift to use
» SYCL / OpenCL pervasively
. OpenMP / OpenACC * does map much better onto accelerators
» hip * hardware back-ends already there

Alpaka / cupla

» While some of these look good on paper, it is very important to understand how they
map onto our workflows and framework

« something which works well for the online may not map onto the offline

» We need to encourage ($$%) vendors to provide portability solutions
» We may need to develop these solutions ourselves if the vendors can’t deliver

it General Issues

» Small problem size

* inability to use all available threads on GPU

* — may need to accumulate data over many events
» Data conversion

- takes longer to convert data to form useable by GPU than to perform the calculation on
GPU

* — rewrite EDM
» Amdahl’s law
* in many workflows, parts that can be offloaded only account for small fraction of total time
« — find non-traditional ways of doing calculations that map better onto GPUs
» Verification
» code paths on GPU and CPU will never be the same
* — verification of physics results will be required

Conclusions

> Lots of different ongoing efforts with different scopes

» Using GPUs effectively in HEP (especially for ATLAS) is non-trivial
* ineffective usage can still lead to significant gains in throughput

 our workloads tend to be too small. May need to gang data between events to “fill up”
GPU, or implement concurrent kernel execution

» Portability is a big problem
* major changes by hardware and software vendors in the next ~18 months

» we should forge ahead with all our current studies while we evaluate different portability
solutions

» We should not be afraid of paradigm shifts when looking for ways to use GPUs

~

ffEareenr III|

BERKELEY LAB

@ C. Leggett 2019-08-16

