
C. Leggett 2019-11-15
1

GPU Usage in ATLAS

Charles Leggett

ATLAS ML Workshop

November 15 2019

C. Leggett 2019-11-15
2

Why The Renewed Interest In Accelerators?
► In the next generation of supercomputers we see extensive use of accelerator technologies

• Oak Ridge: Summit (2018)
• 4608 IBM AC922 nodes w/ 2x Power9 CPU
• 3x NVIDIA Volta V100 + NVLink / CPU

• LBL: NERSC-9 "Perlmutter" (2020)
• AMD EPYC "Milan" x86 only nodes +

mixed CPU / "next gen" NVidia GPU

• Oak Ridge: Frontier (2021)
• 1.5 exaflop
• AMD EPYC CPU + 4x AMD "Instinct" GPU

• Commercial clouds:
• Brainwave / Azure FPGA
• Google Cloud TPU

► In order to meet the HL-LHC computing requirements, we need to use all available
computing resources, or cut back physics projections
• US funding agencies have indicated that we will not be able to get allocations if

our code does not make use of accelerator hardware

• LLNL: Sierra (2018)
• 4320 IBM AC922 nodes w/ 2x Power9 CPU
• 2x NVIDIA Volta V100 + NVLink / CPU

• Argonne: Aurora A21 (2021)
• Intel Xeon CPU + Intel Xe/gen12 GPU + Optane

• Tsukuba: Cygnus (2020)
• 2x Intel Xeon 6162+ 4x NVidia V100 GPU
• 2x CPU + 4x GPU + 2x Intel Stratix FPGA

• Japan: Fugaku (2021)
• manycore ARM A64fx (48+2)
• integrated "SVE" 512 bit GPU-like accelerator

C. Leggett 2019-11-15
3

Past Usage
► Using GPUs accelerators in ATLAS is nothing new

• they’ve been around for more than 2 decades
• a trivial search on inSPIRE of “ATLAS” and “GPU” results in 25 papers, going back to 2011.

• Tracking
• Trigger
• generic Algorithmic acceleration
• ML acceleration
• Event Generation
• Visualization (doesn’t really count)

► Many other HEP experiments have dallied with GPUs
• some have chosen to use them, some not

C. Leggett 2019-11-15
4

Trigger Studies
► Started investigations in 2010 for using GPUs in HLT farm for Inner Detector

• significant amount of offline/HLT code ported to GPUs or developed from scratch

from Dmitry Emeliyanov

• Client-server model
(APE) made less
important by
advances in CUDA
such as concurrent
streams, and nvidia-
cuda-mps-control
server to share a
GPU between several
processes

C. Leggett 2019-11-15
5

C. Leggett 2019-11-15
6

Hardware Evolution

C. Leggett 2019-11-15
7

C. Leggett 2019-11-15
8

Why Isn’t The HLT Using GPUs Now?
► Ultimately, the HLT decided not to use GPUs for Run 3

► Intermediate data required too much memory
• 2MB input data → 50MB hits/doublets → 0.1MB output tracks
• not enough fast, on chip memory (shared mem is very slow)

► Reject-accept nature of pattern recognition algorithms doesn’t map well onto GPUs
• multiple levels of reduction (x2400) from cuts in eg, seed making don’t leave much work for

GPU
• memory latency can’t be hidden, performance bound to memory bandwidth

► Very large computational overheads from data conversion
• need to convert C++ style objects to SofA that can be consumed by GPU

► Cost
• what to do with big GPU farm when not taking data?

► HLT is currently re-evaluating GPU usage, looking at end-to-end solutions (hits in,
tracks out), and modifications to EDM

C. Leggett 2019-11-15
9

Current GPU Demonstrator Projects
► Several “demonstrator” efforts are ongoing.

• small, self contained
• easy to run in different environments

► Being used as platforms to evaluate various GPU techonologies and issues
• Languages
• Ease of coding / conversion
• GPU hardware comparison
• Data structures
• Portability to different platforms

C. Leggett 2019-11-15
10

FastCaloSim
► Meifeng Lin @BNL

► Parametrized calorimeter simulation
► Aprox 6 months old
► Kernels written in CUDA

• port to SyCL now underway

► Significant speedup over CPU (8x speedup
for full event loop for simple hit simulation)

► Hampered by small work sizes - GPU is
not well utilized
• many concurrent CPU jobs can utilize

the same GPU

C. Leggett 2019-11-15
11

ACTS
► “A Common Tracking Software”
► Heather Gray, Xiaocong Ai @LBL

► OpenMP hackathon to parallelize seed finder (originally targeting KNL on Cori)
► Extended to use OpenMP offloading directives to target GPU

C. Leggett 2019-11-15
12

Event Generation
► Very old (2012) Madgraph code that uses GPUs

• parallelizing HEGET, gVEGAS, gBASES
• GPU programs were not fully integrated
• no CLI integration, event generation

► Current effort (Walter Hopkins @ ANL)
• updated GPU code (CUDA4 → CUDA9)
• updated gVEGAS

• gVEGAS could also be used by Sherpa and other generators

► Next steps
• update gSPRING and gBASES
• benchmark performance

C. Leggett 2019-11-15
13

Doublet Seeding with Numpy+Numba (+GPU)
► Paolo Calafiura + Sean Conlon @LBL

► Project to parallelize track seeding with Numba
► Using fixed size arrays, parallelize inner loop
► Significant improvements in performance:

• original for loop: 153s
• 2-D Numpy array method: >200s
• Numpy+Numba w/ parallel inner loop: 6s

► Next step is to use CUDA backend to Numba
• projected runtime: ms??

• still some investigation needed for best data structures to use
• CuDF or Numba CUDA + CuPy

● Select an inner hit
● Look at all the layers in the current and adjacent phi slices
● Apply cuts to the layers and phi slices
● Look at all the hits in the layers and phi slices that remain
● Apply cuts to this set of outer hits until the best candidates remain
● Finally, add these doublets to the set of input doublets

C. Leggett 2019-11-15
14

Framework Integration
► If we had Algorithms in AthenaMT workflows (reconstruction, simulation) that could be

offloaded, how would we do it?
► AthenaMT AvalancheScheduler maintains a separate queue of Algorithms that it

considers “IO Bound”
• originally intended to be used for Algorithms that read/write data to disk
• synchronous accelerator offloading behaves (in theory) in the same way

• hardware thread is freed to do other
work while GPU processes data

• latency is hidden by scheduling more
work (other Algorithms or concurrent
events)

► Simulated reconstruction (q431)
• oversubscribe with many more

software threads than hardware
• don’t need to offload many Algs to

see significant gains
► Synchronous offloading has issues

• may be addressed by NVidia soon

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18
ATLAS Reconstruction Normalized Througput

25 threads

eff = -0.75 eff = 0

eff = 0.75 eff = -0.75 top 4

eff = 0 top 4 eff = 0.75 top 4

no offload

Concurrent Events

N
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18
ATLAS Reconstruction Normalized Througput

25 threads

eff = -0.75 eff = 0

eff = 0.75 eff = -0.75 top 4

eff = 0 top 4 eff = 0.75 top 4

no offload

Concurrent Events

N
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

7
%

C. Leggett 2019-11-15
15

Asynchronous Offloading
► Asychronous offloading avoids the shortcomings of synchronous offloading

• developed by Attila Krasznahorkay
• fewer inefficiencies than synchronous offloading (for CUDA)
• not possible in all languages

► Requires modifications to Gaudi / Scheduler to split Algorithm::execute into two steps
• 1st part executed on GPU
• 2nd part on CPU after GPU is done

• triggered by callback, allows scheduler to continue dataflow processing

► Provides some transparent primitives to allow better GPU interaction with the AuxStore

C. Leggett 2019-11-15
16

Portability: The Challenge
► We see all three flavours of ice cream in the next the DOE HPCs

• A21: Intel, Perlmutter: NVidia , Frontier: AMD

► Each accelerator vendor has its own flavour of programming tools to target their GPU
• NVidia: CUDA
• Intel: SYCL / OneAPI / dpcpp
• AMD: hip

► Our software needs to run for the next 10+ years
• we cannot afford to re-write for each hardware platform

► And what comes out in 5 years?
• we may see more “exotic” architectures (TPU, FPGA, ASIC)

► What happens if a vendor significantly modifies their programming environment?
• eg AMD recently dropped SPIR support for hip/ROCm

C. Leggett 2019-11-15
17

Size of Work
► Significant impedance mismatch:

• V100 has 160,000 threads. AMD RX Vega / 5700 have similar. Intel Gen12 ???
• Our loops are much less wide than that (10k or so)

• may need to gang data between events to increase GPU workload - significant refactor

► Likely that we will need to be able to schedule and execute concurrent kernels on GPU
• not well supported by portability layers

• some explicit support (eg CUDA streams),
» even existing CUDA implementations have major performance drawbacks
» hidden synchronization points with some memory access

• this may (is promised to) change in the coming year

• we are often memory limited on GPUs
• executing concurrent kernels exacerbates this problem

C. Leggett 2019-11-15
18

Working Towards A Solution
► We need to find a portable solution that works for all accelerator platforms

• portability is more important than performance

► Projects worth exploring
• Kokkos
• Raja
• SYCL / OpenCL
• OpenMP / OpenACC
• hip
• Alpaka / cupla

► While some of these look good on paper, it is very important to understand how they
map onto our workflows and framework
• something which works well for the online may not map onto the offline

► We need to encourage ($$$) vendors to provide portability solutions
► We may need to develop these solutions ourselves if the vendors can’t deliver

► Machine learning tools
• pytorch, tensorflow, etc
• requires major paradigm shift to use

pervasively
• does map much better onto accelerators
• hardware back-ends already there

C. Leggett 2019-11-15
19

General Issues
► Small problem size

• inability to use all available threads on GPU
• → may need to accumulate data over many events

► Data conversion
• takes longer to convert data to form useable by GPU than to perform the calculation on

GPU
• → rewrite EDM

► Amdahl’s law
• in many workflows, parts that can be offloaded only account for small fraction of total time
• → find non-traditional ways of doing calculations that map better onto GPUs

► Verification
• code paths on GPU and CPU will never be the same
• → verification of physics results will be required

C. Leggett 2019-11-15
20

Conclusions
► Lots of different ongoing efforts with different scopes

► Using GPUs effectively in HEP (especially for ATLAS) is non-trivial
• ineffective usage can still lead to significant gains in throughput
• our workloads tend to be too small. May need to gang data between events to “fill up”

GPU, or implement concurrent kernel execution

► Portability is a big problem
• major changes by hardware and software vendors in the next ~18 months
• we should forge ahead with all our current studies while we evaluate different portability

solutions

► We should not be afraid of paradigm shifts when looking for ways to use GPUs

C. Leggett 2019-08-16
21

f in

