

Simulations for HL-LHC configuration

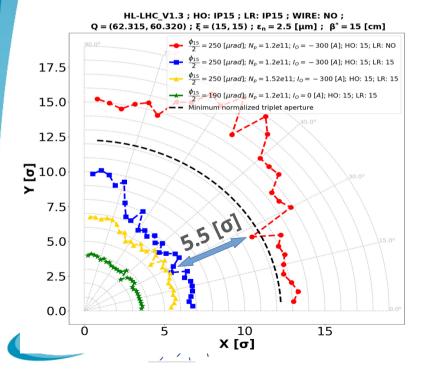
Kyriacos Skoufaris, Stephane Fartoukh, Nikos Karastathis, Yannis Papaphilippou, Axel Poyet, Adriana Rossi and Guido Sterbini

WP3/WP13 HL-LHC Satellite Meeting – Wire Compensation, October 17, 2019 in the framework of the 9th HL-LHC Collaboration Meeting

<u>Outline</u>

I. Introduction

- Quantification of the problem
- Proposed solution
- II. Numerical simulations
 - Nominal scenario
 - Ultimate scenario
 - Pushed scenarios


III. Conclusions

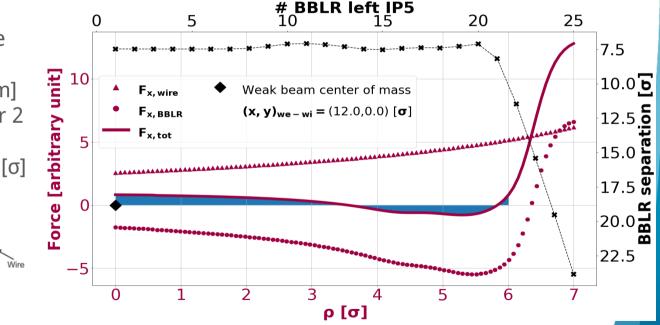
Introduction - Problem quantification

The impact of the BBLR interactions on particle motion is stronger at the end of luminosity levelling (where β * is minimum) than at the start of collisions (for a constant X-ing angle).

For the nominal scenario of the HL-LHC (1.2E11 at the end of levelling with β^* of 15 [cm]) **the minimum DA is reduced by 5.5 [\sigma] in the presence of the BBLR interactions.**

- For the nominal scenario (end of leveling) the DA_{min} = 6.17 [σ] after optimization (no IP2&8)
- No margin for any unexpected detrimental effect on lifetime (like e-cloud ; significantly present at the last run of the LHC)
- Not enough margin for X-ing angle reduction or bunch intensity increment (triplet protection from irradiation, crab cavities operation at lower voltage, extend the luminosity leveling)

Introduction – Proposed solution


The use of DC wires is an effective and simple solution for the BBLR compensation.

- 4 wires (1 per IP per site) are used
- longitudinal position ±195 [m] from IP1&5 (beta ratio 0.5 or 2 ^[a])
- transverse position D_w>10.4 [σ]
 (behind tertiaries)

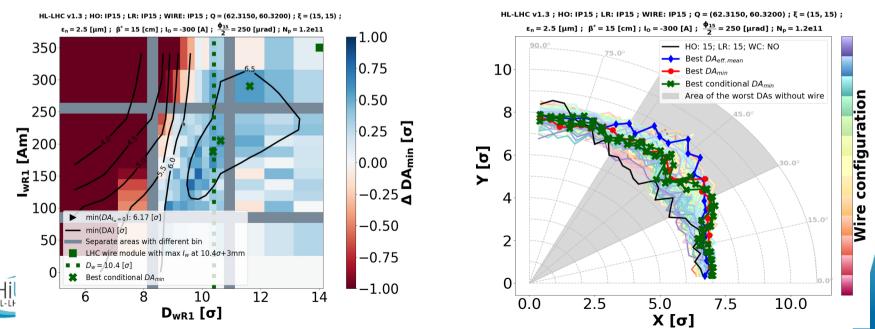
195 m

195 n

Strong bear

Numerical simulations - Nominal scenario

The free parameters of the 4 wires are the transverse distance from the weak beam (D_w) and the current (I_w).

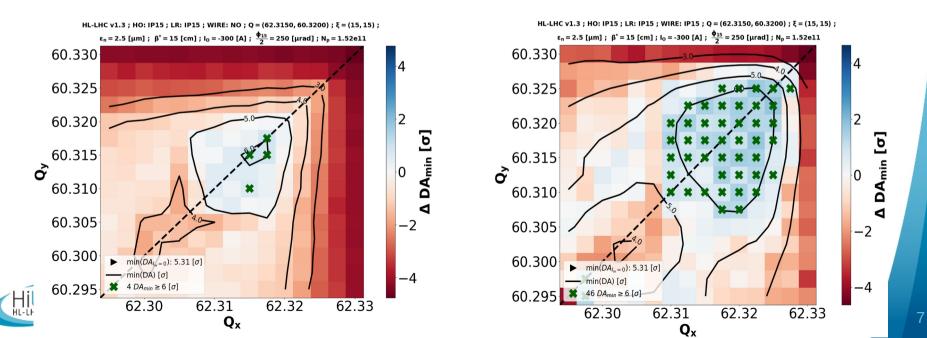

HL-LHC V1.3; Q = (62.315, 60.320); $\xi = (15, 15)$; $\varepsilon_n = 2.5$ [µm]; $\beta^* = 15 \text{ [cm]}; I_0 = 0 \text{ [A]}; \frac{\phi_{15}}{2} = 250 \text{ [µrad]}; N_p = 1.2 \times 10^{11}$ 0.322 Resonance lines HO:15; LR:NO; WC:NO 0.320 HO:15; LR:15; WC:NO HO:15: LR:15: WC:15 0.318 **∂** 0.316 0.314 0.312 0.310 0.306 0.308 0.310 0.312 0.314 0.316 Qx

With appropriate choice of the D_w and I_w **the DC wires can perfectly compensate the octupolar tune spread with amplitude** (non-compensated by alternating crossing between IPs) generated by the BBLR interactions.

The most important observables that reflect the particle dynamics are the DA – beam lifetime.

Numerical simulations - Nominal scenario

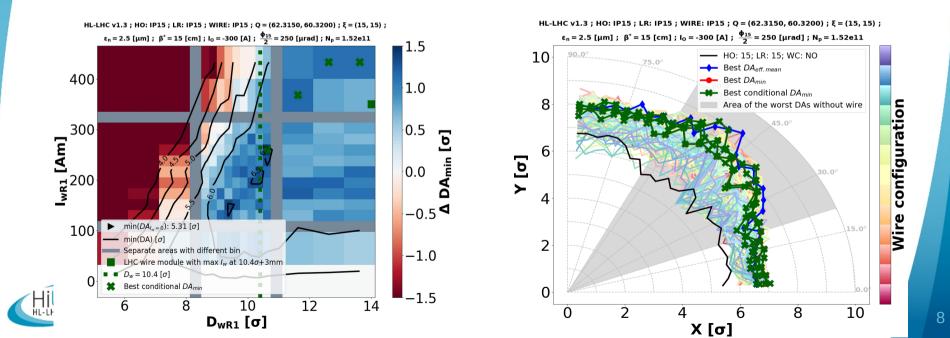
- Different wire configurations with D_w>10.4 [σ] improve the DA_{min} up to 0.7 [σ] on top of the well optimized nominal scenario (DA_{min} = 6.17 [σ]) - Best conditional DA_{min}.
- The existing LHC wire (green square) is not ideal for the HL-LHC nominal scenario.
- The average DA gain along the different angles is even more significant.



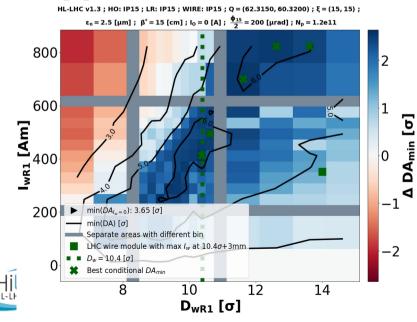
6

Numerical simulations - Ultimate scenario

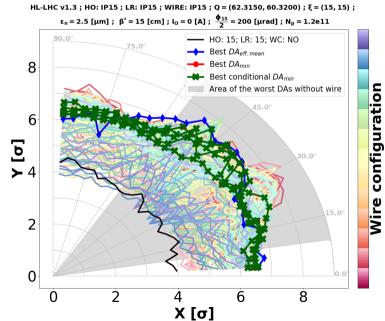
Even with assisting octupole current (negative polarity for partial BBLR compensation) **there** is not any tune configuration above the diagonal with $DA_{min} \ge 6 [\sigma]$.


Using the wire compensators (with one of the best DA configuration) a large set of good WPs (DA_{min} ≥ 6 [σ]) can be used.

Numerical simulations - Ultimate scenario

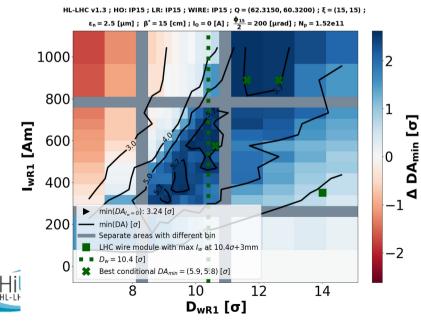

The **wire compensators guarantee best conditional DA_{min} up to 6.7 [σ]** (1.5 [σ] improvement).

• The DA gain along the different angles is even more significant.



Numerical simulations - Pushed X-ing angle scenario 1

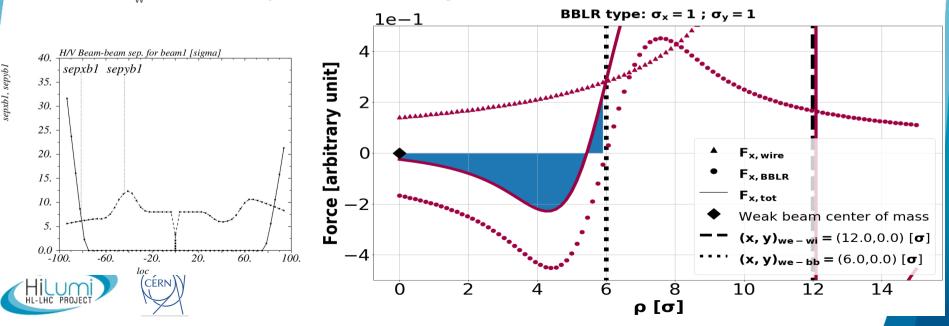
- Different wire configurations guaranty $DA_{min} \ge 6 [\sigma]$.
- Many of them are with D_w≥10.4 [σ]. The best of them (best conditional ones) can improve the DA_{min} up to 6.3 [σ].



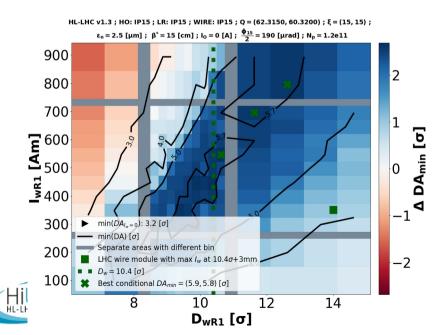
Pushed X-ing angle scenario 1	
Half crossing angle	200 [µrad]
Bunch intensity	1.2x10 ¹¹

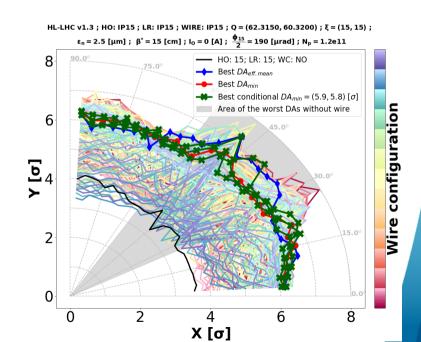
Numerical simulations - Pushed x-ing angle and Np scenario

- Even at this extreme (in Xing and bunch density) scenario the DC wire can improve the DA_{min} up to 5.9 [σ] and with D_w ≥ 10.4 [σ].
- For all the best conditional (wire) configurations **the DA for the different angles is very close or above 6 [σ].**

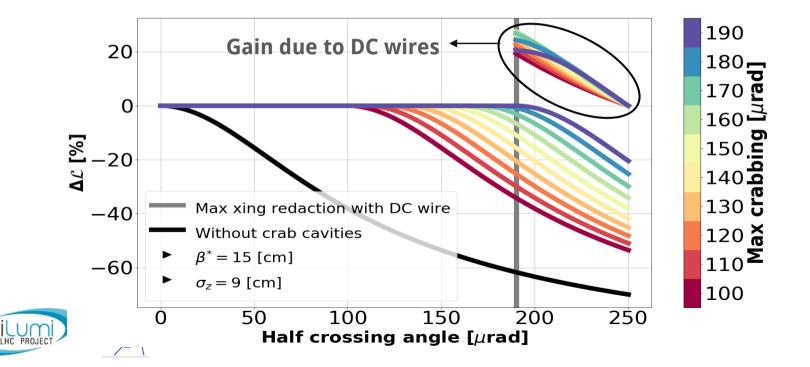

Pushed X-ing angle and Np scenario	
Half crossing angle	200 [µrad]
Bunch intensity	1.52x10 ¹¹

Numerical simulations - Pushed X-ing angle scenario 2


- At hXing = 190 [μ rad] and β^* = 15 [cm] some BBLR are around 6 [σ] away from the strong beam.
- Although the 1/r field attenuation of these BBLRs stop at 3.5 [σ], the wire compensators placed far from the weak beam (D_w > 6 + 2.5 [σ]) performs extremely well.


Pushed X-ing angle scenario 2	
Half crossing angle	190 [µrad]
Bunch intensity	1.2x10 ¹¹

Numerical simulations - Pushed X-ing angle scenario 2


- The DC wire can improve the DA_{min} up to 5.9 [σ] (2.7 [σ] gain) even with D_w≥10.4 [σ].
- For all the best conditional (wire) configurations the DA for the different angles is very close or above 6 [σ].

Numerical simulations - Pushed X-ing angle scenarios

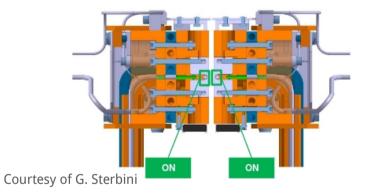
• Reducing the X-ing angle with the help of the DC wires **the crab cavity voltage can be reduced without sacrificing the luminosity**.

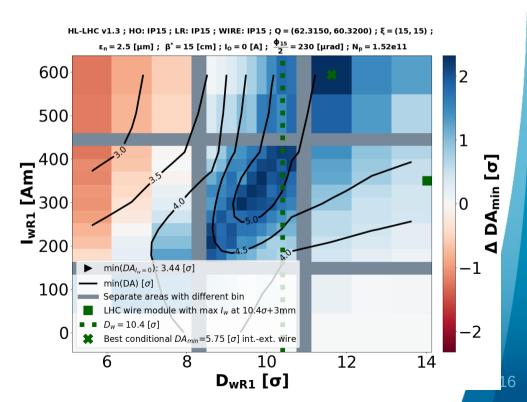
Conclusions

The wire compensator guarantee $DA_{min} \approx 26 [\sigma]$ for all the studied scenarios without violating the machine protection restrictions.

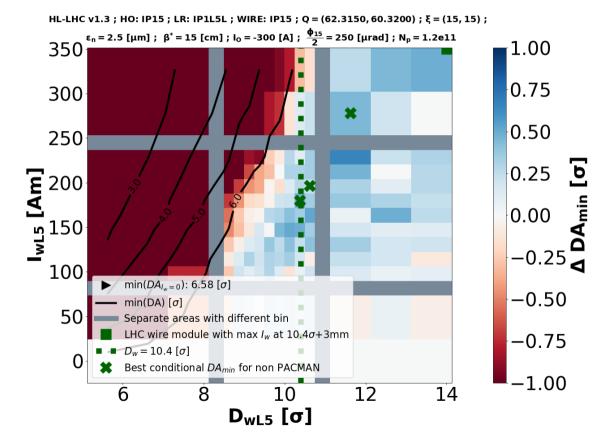
- The lifetime gained makes the machine more tolerant (flexible) at any unexpected destructive effect.
- With all the good wire configurations the area of the good working points (WPs) is enlarged
 - WP can be kept constant during leveling
- With the reduction of the crossing angle and/or increase of the bunch population without sacrificing the lifetime (min DA>6σ):
 - the crab cavities can be operated at lower voltage
 - the **irradiation** of the triplets can be **reduced**

• the **integrated luminosity** can be **increased**




Thank you !

The wires of both jaws are powered



PACMAN+wire

