Correction of Hamiltonian driving terms with wires

Dobrin Kaltchev, TRIUMF

With many thanks for the discussions: Yannis
Papaphilippou, Stephane Fartoukh, Kyriacos and Nikos

Fermilab 2019 meeting on Wire Compensation

Wire correction using Hamiltonian Fourier

Coefficients $C_{m k}$ (Hamiltonian dr. terms)

S. Fartoukh et al.
PRST-AB 18, 121001

Physical review special Topics-accelerators and beams 18,121001 (2015) PRST-AB 18, 121001

Consider 1D correction
 X-plane in IR5

Collision points (CP)

$$
\sigma_{x, y}^{(j), \text { strong }}
$$

different dr terms $c_{m n}$ (expansion of the kick, not H)

Left-right independent optimization of two wires in the plane of separation (x). So $\mathrm{k}=0$.
Wish to install a wire than cancels this sum for some m.

$$
C_{m}^{\mathrm{CP}}=\sum_{j=1}^{18} C_{m}^{(j)}
$$

(diff in betatr. phases ignored)

$$
-C_{m}^{\mathrm{CP}}=N^{\mathrm{W}} C_{m}^{\mathrm{W}}
$$

Want these: $D_{x}^{W}, r^{W}=$?, $N^{W}=$?

Know real sep. and aspect
ratios: $D_{x}^{(j)}, r^{(j)}$
"sigma" aspect ratio: $r=\frac{\sigma_{y}^{\text {strong }}}{\sigma_{x}^{\text {strong }}}$
HL-LHC PROJEC

Comparison of approaches: $C_{m k}$ and $c_{m k}$

$$
\sigma_{x, y} \equiv \sigma_{x, y}^{\operatorname{str}}, \quad \text { omit } " \text { strong" from now on }
$$

> S. Fartoukh et al. PRST-AB 18, 121001

Here everything depends on strong beam (Ham. approach):

- CP participates with beta aspect ratio at its location:

$$
r_{\mathrm{w}}=\frac{\beta_{x}^{\text {weak }}}{\beta_{v}^{\text {weak }}}
$$

- Exact anti-symmetry:

$$
\beta_{x, y}^{\text {weak }}=\beta_{y, x}^{\text {strong }} .
$$

Optimization in 2D produces these

$$
\begin{gathered}
\sigma_{x, y}^{\text {weak }}=\sigma_{y, x} \\
\sigma_{x}^{\text {weak }}=\sigma_{y}=r \sigma_{x} ; \quad \sigma_{y}^{\text {weak }}=\sigma_{x}=\frac{1}{r} \sigma_{y}
\end{gathered}
$$

$$
\begin{aligned}
& c_{p q}^{\mathrm{LR}} \equiv \sum_{k \in \mathrm{LR}} \frac{\beta_{x}^{p / 2}\left(s_{k}\right) \beta_{y}^{q / 2}\left(s_{k}\right)}{d_{b b}^{p q}\left(s_{k}\right)}
\end{aligned}
$$

- CP participates with sigma aspect ratio:

$$
r \equiv \frac{\sigma_{y}}{\sigma_{x}} \quad r=\sqrt{r^{\mathrm{w}}}
$$

- Exact anti-symmetry:
- For now Left-Right independent.

Comparison of approaches: $C_{m k}$ and $c_{m k}$

S. Fartoukh et al. PRST-AB 18, 121001

- No dependence on amplitude

Here:

$a_{x, y} \mathrm{n}$-sigma amplitudes

$$
\begin{aligned}
& x=\sqrt{2 \beta_{x}^{\text {weak }} J_{x}} \sin \phi_{x}=a_{x} \sigma_{x}^{\text {weak }} \sin \phi_{x}=r a_{x} \sigma_{x} \sin \phi_{x} \\
& y=\sqrt{2 \beta_{y}^{\text {weak }} J_{y}} \sin \phi_{y}=a_{y} \sigma_{y}^{\text {weak }} \sin \phi_{y}=a_{y} \sigma_{x} \sin \phi_{y}
\end{aligned}
$$

- Define amplitude region: well between orbits

$$
\begin{aligned}
r a_{x} & >d_{x} \quad \text { outside strong beam orbit }\left(|x|>D_{x}\right) \\
r a_{x} & <d_{x} \text { between orbits }\left(|x|<D_{x}\right) \\
r a_{x} & <d_{x}+\Delta \text { and } a_{x}>\Delta \quad \leftarrow \text { "well between orbits' }
\end{aligned}
$$

$\Delta \approx 2 \div 2.5$ in σ_{x} units.

$$
d_{x, y} \equiv D_{x, y} / \sigma_{x, y}-\text { normalized separations }
$$

Comparison of results

S. Fartoukh et al. PRST-AB 18, 121001

Here:

- Confirmed that all can be canceled in single plane (of collision)
and working on 2D
- For single plane any location works and working on 2D
- Verified with

MadX tracking and
Effective Hamiltonian
(beam-beam invariant)

2D Fourier coefficient (modulo) as an integral along parametrized curve. It depends only on aspect ratio \mathbf{r} and normalized separation to weak-beam sigma:

$$
\frac{d_{x}}{r}=\frac{D_{x}}{\sigma_{y}}=\frac{D_{x}}{\sigma_{x}^{\text {weak }}}
$$

CP lattice location participates only via r and norm. sep:

$$
\begin{aligned}
C_{m k}\left(s, x, y, D_{x}\right) & \Longrightarrow C_{m k}^{(r)}\left(a_{x}, d_{x}, a_{y}\right) \\
\left|C_{m k}^{(r)}\left(a_{x}, \frac{D_{x}}{\sigma_{x}^{\text {weak }}}, a_{y}\right)\right| & =\int_{0}^{a_{x}} d \xi \frac{2 \mathbf{Q}_{m k}\left(r \xi, \frac{D_{x}}{a_{x} \sigma_{x}^{\text {weak }}} r \xi, \frac{a_{y}}{a_{x} g_{r}(\xi)} \xi ; 1\right)}{\xi g_{r}(\xi)} \\
g_{r}(\xi) & =\sqrt{\frac{\left(r^{2}-1\right) \xi^{2}}{a_{x}^{2}}+1}
\end{aligned}
$$

$\mathbf{Q}_{m k}\left(\hat{a}_{x}, \hat{d}_{x}, \hat{a}_{y} ; 1\right)=e^{-\frac{1}{2}\left(\hat{a_{x}}-\hat{d}_{x}\right)^{2}-\frac{1}{2}{\hat{a_{y}}}^{2}} \boldsymbol{\Lambda}_{m}\left(\hat{a}_{x} \hat{d}_{x},-\hat{a}_{x}^{2} / 4\right) \boldsymbol{\Lambda}_{k}\left(0,-\hat{a}_{y}^{2} / 4\right)$
"well-between beams" parametric curves become parametric lines

Using novel basis: Generalized 2D Bessel functions

The \mathbf{Q} above are the \mathbf{W} in this paper

Beam-beam effects at the Fermilab Tevatron: Theory

T. Sen, ${ }^{*}$ B. Erdelyi, M. Xiao, and V. Boocha

For several infinitesimal beam-beam kicks, the integral reduces to a sum over the kicks, and the resonance driving terms become

$$
\begin{gather*}
U_{m_{x}, m_{y} p}^{+++}=\frac{1}{16} \frac{r_{p}}{2 \pi \gamma_{p}}(-1)^{m_{x}+m_{y}-1} \sum_{n} N_{b, n} \int_{0}^{1} \frac{d v}{v\left[v\left(r^{2}-1\right)+1\right]^{1 / 2}} \exp \left(-t_{x, n}-t_{y, n}\right) W_{x, n} W_{y, n} \exp \left[i\left(m_{x} \alpha_{x, n}+m_{y} \alpha_{y, n}+p \theta_{n}\right)\right], \tag{48}\\
W_{x}=\sum_{l_{x}}(-1)^{l_{x}}\left[\exp \left(-s_{x}\right) I_{m_{x}-2 l_{x}}\left(s_{x}\right)\right]\left[\exp \left(-\frac{r_{x}}{2}\right) I_{l_{x}}\left(\frac{r_{x}}{2}\right)\right], \tag{50}
\end{gather*}
$$

it turns out these W are known objects called 2D Bessels
[12] H. J. Korsch, A. Klumpp , D. Witthaut, On two-dimensional Bessel functions, Journal of Physics A, V39, 48 (2006)

$$
e^{-\frac{1}{2}\left(\hat{a_{x}}-\hat{d}_{x}\right)^{2}-\frac{1}{2}{\hat{a_{y}}}^{2}} \boldsymbol{\Lambda}_{m}\left(\hat{a}_{x} \hat{d}_{x},-\hat{a}_{x}^{2} / 4\right) \boldsymbol{\Lambda}_{k}\left(0,-\hat{a}_{y}^{2} / 4\right)
$$

Wire Fourier coefficient

The wire corrector potential can be described just as another long-range CP, whose strong-beam sigmas $\sigma_{x, y}$ are both decreased by a large factor denoted here with f_{w} [2]. Hence, the Fourier coefficients for a wire corrector can be obtained by taking

$$
\begin{align*}
& \sigma_{x, y} \rightarrow \sigma_{x, y} / f_{w}, \tag{6.1}\\
& f_{w} \text { is large, say } \sim 100
\end{align*}
$$

Expectaton: C_{m}^{W} should not depend on the value of f_{W}

\lim

$f_{w} \rightarrow \infty$

X-plane. CP and Wire Fourier coef. modulo $D=|C|$ as an integral along parametrized line

Because of the Gaussian factor, for a_{x} well between orbits

$$
\mathbf{Q}_{m} \rightarrow 0 \text { hence } D_{m} \rightarrow \text { const },
$$

and D^{CP} differs from D^{W} only because of the presence of g_{r} under the integral. This is valid for any m.

$$
\begin{aligned}
\text { line slope } \psi & =\frac{\tilde{d}_{x}}{a_{x}}=\frac{D_{x}}{\sigma_{x}^{\text {weak }} a_{x}} \\
D_{m}^{\mathrm{CP},(\mathrm{r})}\left(a_{x}, \frac{D_{x}}{\sigma_{x}^{\text {weak }}}\right) & =\int_{0}^{a_{x}} d \xi \frac{2 \mathbf{Q}_{m}(r \xi, \psi r \xi ; 1)}{g_{r}(\xi) \xi} \\
g_{r}(\xi) & =\sqrt{\frac{\left(r^{2}-1\right) \xi^{2}}{a_{x}^{2}}+1} \\
D_{m}^{\mathrm{W}}(\psi) & =\lim _{f_{w} \rightarrow \infty} \int_{0}^{f_{w} a_{x}} d \xi \frac{2 \mathbf{Q}_{m}(r \xi, \psi r \xi ; 1)}{\xi}= \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i m \phi_{x}} \ln P d \phi_{x} \\
P & =\frac{1}{2}\left(d_{x}+r a_{x} \sin \phi_{x}\right)^{2}
\end{aligned}
$$

Wire coef D_{m}^{W} is just the asymptotic of $D_{m}^{C P}$

$$
\begin{aligned}
\qquad \begin{array}{ll}
\widetilde{d}_{x} \equiv \frac{D_{x}}{\sigma_{x}^{\text {weak }}} \\
\text { slope } \psi & =\frac{\widetilde{d}_{x}}{a_{x}}=\frac{D_{x}}{\sigma_{x}^{\text {weak }} a_{x}} \\
D_{x} \\
\left.\sigma_{x}^{\text {weak }}\right) & =\int_{0}^{a_{x}} d \xi \frac{2 \mathbf{Q}_{m}(r \xi, \psi r \xi ; 1)}{g_{r}(\xi) \xi} \\
g_{r}(\xi) & =\sqrt{\frac{\left(r^{2}-1\right) \xi^{2}}{a_{x}^{2}}+1} \\
D_{m}^{\mathrm{w}}(\psi) & =\lim _{f_{w} \rightarrow \infty} \int_{0}^{f_{w} a_{x}} d \xi \frac{2 \mathbf{Q}_{m}(r \xi, \psi r \xi ; 1)}{\xi}= \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i m \phi_{x}} \ln P d \phi_{x} \\
P & =\frac{1}{2}\left(d_{x}+r a_{x} \sin \phi_{x}\right)^{2}
\end{array} \begin{array}{c}
\text { For ax "well } \\
\text { between orbits" } \\
\text { the only }
\end{array} \\
\text { difference is in in just a } \\
\text { form factor } \mathrm{g} \\
\text { under int. }
\end{aligned}
$$

Well between orbits wire coef. depends only on param line

for large $f_{w} \rightarrow \infty$, it depends only on ψ

Detour: Single CP and Wire both at same norm sep

Need to solve this Equation for IR5 Left or Right. (intensity 2.2 E11, 250 mkrad)

$$
D_{m}^{\mathrm{CP}}=\sum_{j=1}^{18} D_{m}^{\left(r_{j}\right)}\left(a_{x}, \tilde{d}_{x}^{(j)}\right)
$$

(diff in betatr. phases ignored)

two unknowns: ψ and and the wire charge N^{W} in units of CP charge.

Illustration for $\mathrm{m}=4$, $\mathrm{ax}=6$

Red points represent 18 CP (stay same on plot for any m)

Black lines repr. wire contours for red-point values. They deviate slightly from red pts because of factors \mathbf{g}.

Blue line repr. wire
solution ψ, N^{W} for this m

"well betw orbits" means above diagonal

Any ax "well between orb" will give the same

Solving numerically for several values of m and N^{W} shows that there exist $\psi^{A L L}$ and $N^{W A L L}$

$$
m=1, m=2
$$

excluded (lin. and quad. terms in H)

Wire of \boldsymbol{N}^{W} installed here cancels all m

Recursion property of wire Fourier coefficient. It explains existence of $\psi^{A L L}$ and $N^{W A L L}$

The $D_{m}^{\mathrm{w}}(\psi)$ obey homogeneous difference equation for the index m with this analytical solution:

$$
\begin{aligned}
D_{m}^{\mathrm{W}}(\psi)= & R_{m}\left(D_{3}^{\mathrm{W}}, D_{4}^{\mathrm{W}} ; \psi\right)= \\
= & \frac{B^{m-3}\left(3 A D_{3}^{\mathrm{W}}-4 D_{4}^{\mathrm{W}}\right)-A^{m-3}\left(3 B D_{3}^{\mathrm{W}}-4 D_{4}^{\mathrm{W}}\right)}{m(A-B)} \\
& A=\psi+\sqrt{\psi^{2}-1}, \quad B=\psi-\sqrt{\psi^{2}-1}
\end{aligned}
$$

By knowing ψ and D_{3}^{W} and D_{4}^{W} one can find D_{m} for any m.
Stephane: driving terms generated by wire corrector for different indices m, k may not be independent. We see that, at least in the single plane case this is indeed the case, but for Hamiltonian driving terms.

Solving (numerically) this equation to find $\Psi^{A L L}$ (arbitrary m_{1} and m_{2})

$$
\frac{D_{m_{1}}^{\mathrm{CP}}}{R_{m_{1}}\left(\psi, D_{3}(\psi), D_{4}(\psi)\right)}=\frac{D_{m_{2}}^{\mathrm{CP}}}{R_{m_{2}}\left(\psi, D_{3}(\psi), D_{4}(\psi)\right)}
$$

Table 1: Values of wire charge and normalized separation at the wire corrector that cancel all Hamiltonian driving terms (any index m). Single-plane (of separation) assumed and left-right independent optimization.

Testing with MadX tracking. Wires installed at $\psi^{A L L}$ and $N^{W A L L}$ as in Table 1 (x-plane)

Figure 6: Top: Equal compensation of the total Hamiltonian driving term for
With wire each m for the left-right independent compensation with two wires installed near $s= \pm 93.5 \mathrm{~m}$ from IP5, parameters taken as in Table 1. Bottom: Action-angle coordinates $J_{x}\left(\phi_{x}\right)$ of a single particle with $a_{x}=6$ tracked for 1000 turns: with wire (darker) and without.

Testing with BB Invariant (x plane)

Summary

We found that any lattice location $\left(r_{w}\right)$ for the wire will provide the same uniform (all m) cancellation of Hamiltonian driving terms in this plane as long as two wires are installed between the beam orbits at distances 10.3 (right wire) or 9.4 (left wire) $\sigma_{x}^{\text {weak }}$ from the weak beam axis, with currents $\sim 160 \mathrm{~A}$ (for intensity 2.210^{11} and crossing angle $250 \mu \mathrm{rad}$, as in [3]).

Thus the optimum setups are very close for left and right wires and also agree with the $r_{w}=1$ result in [3], see the bottom line in Table 1.

The result may be explained as follows. We have seen that for a fixed IP5 optics (lattice) and a fixed m, the sum of all m-th CP coefficients depends on the set of values of r and \widetilde{d}_{x} at these CPs so it effectively has two degrees of freedom. The wire coefficient to be fitted also has two degrees of freedom: wire charge N^{W} and single other parameter, since being the limit of the round-beam CP case ($r=1$), the wire coefficient depends on only one lattice parameter \widetilde{d}_{x}. In addition, wire coefficients for different m are related. Therefore, not surprisingly, the optimization procedure finds (for each left or right) region, a solution pair that cancel the sum for all m.

$$
\widetilde{d}_{x} \equiv \frac{D_{x}}{\sigma_{x}^{\text {weak }}}
$$

Many Thanks for your attention

Wire cancellation at ampl. a_{x} as a "jump" along characteristic line

- take a particle traversing at x round-beam CP of charge λ and separation D_{x}. The coef. depends on normalized ampl. and sep.:

$$
C_{m}\left(a_{x}, d_{x}\right), \quad \text { where } d_{x}=D_{x} / \sigma_{x}^{\mathrm{str}}, \quad a_{x}=x / \sigma_{x}^{\mathrm{str}}
$$

- position "wire corrector CP" at the same location (back to back)

$$
\sigma_{x}^{\text {str }} \rightarrow \sigma_{x}^{\text {str }} / f_{w}, \quad f_{w}=100
$$

- Cancellation (with $-\lambda$) requires

$$
C_{m}\left(a_{x}, d_{x}\right)=C_{m}\left(100 a_{x}, 100 d_{x}\right)
$$

over some range of a_{x}. It becomes violated when a_{x} approaches d_{x}.

- It is a f_{w}-times "jump" from red to blue point (same surface). Here is a 3 times jump (middle) and range of canceled a_{x} (right)

