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Comparison of approaches: C,;, and c,;,

omit "strong” from now on

Here'everything depends on
strong beam (Ham. approach):

= CP participates with sigma aspect
ratio:
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= For now Left-Right independent.




Comparison of approaches: C,,;, and c,,,
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a., n-sigmaamplitudes

= No dependence x = /2B sin g, = a0y sin ¢, = ra,oysin @
on amplitude y = /zﬁ;&'eak Jysin gy = a,0¥* sin 9, = a,0 sin 9y

= Define amplitude region: well
between orbits

ra, > d, outside strong beam orbit (|x| > D,)
ra, < dy between orbits (|x| < Dy)
ra, < di+Aanda, >A <+ “well between orbits’

A=~ 2-+2.51n 0, units.

dxy = Dy, /0y, —normalized separations



Comparison of results
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= If for a pair m,k canceled, then all are = Confirmed that all can be canceled in
approximately canceled single plane (of collision)

and working on 2D

=  For single plane any location works
and working on 2D

= above true for locations with
™ ~2o0r1l/2

= Verified with
MadX tracking and
Effective Hamiltonian
(beam-beam invariant)

= Verified with:
tune-shifts
MadX, SixTrack
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2D Fourier coefficient (modulo) as an integral along
parametrized curve. It depends only on aspect ratio r and
normalized separation to weak-beam sigma:

for wire, also observedin

dy Dy Dy
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CP lattice location participates only via r and norm. sep:
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Using novel basis: Generalized 2D Bessel functions

The Q above are the W in this Beam-beam effects at the Fermilab Tevatron: Theory
paper —P

T. Sen,* B. Erdelyi, M. Xiao, and V. Boocha

For several infinitesimal beam-beam kicks, the integral reduces to a sum over the kicks, and the resonance driving
terms become

1 r dv
Up bt =— L (=1m*+m —1§ N, f —ton = L)W, W, ‘ +mya,, + pb,)],
My, My, P 16277')/1;( ) b,n 0 v[v(r _ 1) + 1]1/2 p( xn y,n) xn y.nexp[t(mxax,n mya),n P (42)

W, = Z(—1>f-r[exp<—sx)fm,,_zgx(s,a][exp(— 5)1,(5”

L,
(50) |

W, = S (s ), ofexs( -2 )1,(2))]

[11] Clemente Cesarano and Claudio Fornaro, Generalized Bessel functions in
terms of generalized Hermite polynomials, International Journal of Pure and

It turns out th ese W are kn own Applied Mathematics Volume 112 No. 3 2017, 613-629 (see e.g. Eqn 27)
[12] H. J. Korsch, A. Klumpp , D. Witthaut, On two-dimensional Bessel func-

objects called 2D Bessels \ tions, Journal of Physics A, V39, 48 (2006)




Wire Fourier coefficient

The wire corrector potential can be described just as another long-range CP, whose
strong-beam sigmas o, , are both decreased by a large factor denoted here with f,,
[2]l. Hence, the Fourier coefficients for a wire corrector can be obtained by taking

Gx’y — Gx,y/fWa (61)
fw 18 large, say ~ 100

Expectaton: C¥ should not depend on the
value of fy,
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X-plane. CP and Wire Fourier coef. modulo D=|C|
as an integral along parametrized line

Because of the Gaussian factor, for a, well between orbits
O Q,, surface
Q,, — 0 hence D, — const,
and DP differs from D¥ only because of the presence of g, under the integral. function under integral for m=4
This is valid for any m. ~Exp[-1/2 (“’x—dx)z] Ag
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Wire coef DY is just the asymptotic of D'’

D, DY contour is just a
line
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Well between orbits wire coef. depends only on param
line

DY surface “well between orbits”
(above diagonal). Any contour of
const. value of D¥ coincides with its
param line.
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for large f,, — oo,
it depends only on y




Detour: Single CP and Wire both at same norm sep

m=4 r=1.33 Dx/o,"**=10

5 0.30
Showing ) £ 025
sections here T~ &= 0.20
of the two ;" Q 015
surfaces: < = oa0
CP (red) and ; o 0.05
wire (blue) 2 0.00 {s=
00 2 4 6 8 10 12 14 “
a, ﬂx
t I
ax near
ax “well between strong beam
orbits” core




Need to solve this Equation for IRS Left or Right.
(intensity 2.2 E11, 250 mkrad)

P ), 70)
D, = D,/,? (ay,d,"”)

IRS Right

m=4

(diff in betatr. phases ignored)
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CZCW
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Ax

two unknowns: Y and and the wire charge NV in units of CP charge.
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Red points represent
18 CP (stay sameon
plot for any m)

Black lines repr.wire
i contours for red-point
i values.They deviate
3 slightly from red pts
becauseof factors g.

Illustration for m=4, ax=6

Blue line repr. wire
solution W ,N" for

this m

IR5 Right

m=4

“well betw
orbits” means
above
diagonal

Any ax “well between
orb” will give the same
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m=1, m=2
excluded
(lin.and quad.
terms in H)

Wire of N¥ installed
here cancels all m

Solving numerically for several values of m and N" shows that

there exist WAL gqnd NWALL
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Recursion property of wire Fourier coefficient.
It explains existence of W qnd NW AL

The D) (y) obey homogeneous difference equation for the index m
with this analytical solution:

Dy (y) = Ru(D3,Dy;y) =

B" 3 (3ADY —4DY)— A" (3BDY —4DY)
m (A —B)

;r A=v++\/y2—1, B=y—/y?—-1 ’Jl

By knowing y and D3 and D}’ one can find Dy, for any m.

;e

Stephane: driving terms generated by wire corrector for different indices m, k may not be in-
dependent. We see that, at least in the single plane case this is indeed the case, but for Hamiltonian

driving terms.
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Solving (numerically) this equation to find W4"*

(arbitrary m; and m,)

CP CpP
DS} D

— 1y

le(w:'Df%(l’[)vDﬁl(W)) Rmz(wan%(W)aDdf(W))

Table 1: Values of wire charge and normalized separation at the wire corrector
~ that cancel all Hamiltonian driving terms (any index m). Single-plane (of separa-
~ tion) assumed and left-right independent optimization. |

CP setup NWALL(Wy  pW jgweaks Wy ALL |
18, IR5 Right 15 (158A) 10.3 1.71 ;a_.
18, IRS Left  15.5(164 A) 9.4 1.57 !
the result in ~140 A 10.3

forr,=1 T
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Testing with Mad X tracking. Wires installed at

ALL W ALL :
U and N as in Tablel (x-plane)
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Figure 6: Top: Equal compensation of the total Hamiltonian driving term for With wire
each m for the left-right independent compensation with two wires installed near

s = £93.5 m from IP5, parameters taken as in Table Bottom: Action-angle

coordinates J.(¢,) of a single particle with a, = 6 tracked for 1000 turns: with

wire (darker) and without.




Testing with BB Invariant (x plane)

BB invariant from H (red)
a,=6.; a,=0 (MadX in black)
2.210~11; smear=0.02849

BB invariant from H g (red)
a,=6.; a,=0 (MadX in black)
2.210*11; smear=0.00067
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Summary

We found that any lattice location (r,,) for the wire will provide the same
uniform (all m) cancellation of Hamiltonian driving terms in this plane as long
as two wires are installed between the beam orbits at distances 10.3 (right wire)
or 9.4 (left wire) G}Veak from the weak beam axis, with currents ~ 160 A (for
intensity 2.210"!" and crossing angle 250 u rad, as in [3]).

Thus the optimum setups are very close for left and right wires and also agree
with the r,, = 1 result in [3], see the bottom line in Table[I}

The result may be explained as follows. We have seen that for a fixed IP5
optics (lattice) and a fixed m, the sum of all m-th CP coefficients depends on
the set of values of r and d, at these CPs so it effectively has two degrees of
freedom. The wire coefficient to be fitted also has two degrees of freedom: wire
charge NV and single other parameter, since being the limit of the round-beam
CP case (r = 1), the wire coefficient depends on only one lattice parameter dy. In
addition, wire coefficients for different m are related. Therefore, not surprisingly,
the optimization procedure finds (for each left or right) region, a solution pair that
cancel the sum for all m.

~ D
dy -

weak
Gx

Gl



Many Thanks for your attention




Wire cancellation at ampl. a, as a “jump” along characteristic line

e take a particle traversing at x round-beam CP of charge A and separation D,. The coef.
depends on normalized ampl. and sep.:

Cm(ax;dx), where d :Dx/O'Str,

X ax = x/q;;tr
e position “wire corrector CP" at the same location (back to back)

0" = 03/ i

£ =100

e Cancellation (with —A) requires

Cm (ax, dx) — Cm(loo Ay, 100 dx)

over some range of a,. It becomes violated when a, approaches d,.

e Itis a f,—times "jump" from red to blue point (same surface). Here is a 3 times jump
(middle) and range of canceled a, (right)

40

2

() )
O

)
.Q 1@

\
A

4

30

010

=010k

m=4 k=0 a,=6 d,=10.4 a,=0

/

’:‘?‘:ﬁ‘ 0.05
O r
“ L ‘,»:q w20 | \
2 000 —
) \
10 —0.05

\

iy

12




	Correction of Hamiltonian driving terms with wires 
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	 Wire Fourier coefficient   
	X-plane. CP and Wire Fourier coef. modulo D=|C|�as an integral along parametrized line  
	 Wire coef  𝑫 𝒎 𝑾  is just the asymptotic of  𝑫 𝒎 𝑪𝑷  
	Well between orbits wire coef. depends only on param line
	 Detour: Single CP and Wire both at same norm sep �
	Need to solve this Equation for IR5 Left or Right.�(intensity 2.2 E11,  250 mkrad) 
	 Illustration for m=4, ax=6
	Solving numerically for several values of m and  𝑵  𝑾   shows that there exist   Ψ   𝑨𝑳𝑳   𝒂𝒏𝒅 𝑵  𝑾 𝑨𝑳𝑳   
	Recursion property of wire Fourier coefficient.  �It explains existence of   Ψ   𝑨𝑳𝑳   𝒂𝒏𝒅 𝑵  𝑾 𝑨𝑳𝑳 
	Solving (numerically) this equation to find  Ψ  𝑨𝑳𝑳  �(arbitrary  m 𝟏   and  m 𝟐  )
	Slide Number 18
	Slide Number 19
	Summary
	Many Thanks for your attention
	--

