US HL-LHC Accelerator Upgrade Project

QXFA Coil Fabrication Electrical QA

Prepared by:
Guram Chlachidze, US HL-LHC AUP 302.4.4 Manager, FNAL
Carlo Santini, US HL-LHC AUP, FNAL
Marcellus Parker, US HL-LHC AUP, FNAL

Reviewed by:
Giorgio Ambrosio, US HL-LHC AUP Magnets L2 Manager, FNAL

Approved by:
Alfred Nobrega, US HL-LHC AUP 302.5 Manager, FNAL
Jesse Schmalzel, US HL-LHC AUP 302.6 Manager, BNL
Giorgio Ambrosio, US HL-LHC AUP Magnets L2 Manager, FNAL
James Blowers, US HL-LHC AUP QA Manager, FNAL
Ruben Carcagno, US HL-LHC AUP Deputy Project Manager, FNAL
Giorgio Apollinari, US HL-LHC AUP Project Manager, FNAL
Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Section No.</th>
<th>Revision Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>v0</td>
<td>6/27/17</td>
<td>All</td>
<td>Initial Release</td>
</tr>
<tr>
<td>v1</td>
<td>4/10/18</td>
<td>3</td>
<td>Changed in 3.1 Trace Hipot from 3500 V to 5000 V; and in 3.14 and 3.16 QH to Coil Hipot from 3200 V to 4800 V</td>
</tr>
<tr>
<td>v2</td>
<td>5/16/18</td>
<td>All</td>
<td>- Added Ranges for acceptable RLQ, Voltage tap, and Quench heater measurements</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Updated Impulse testing procedure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Updated Hipot location for testing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Merged Sec. 2 into Sec. 1</td>
</tr>
<tr>
<td>v3</td>
<td>5/31/18</td>
<td>2</td>
<td>Changed in 2.14 & 2.16 the QH to Coil Hipot from 4800 V to 3680 V</td>
</tr>
<tr>
<td>v4</td>
<td>5/31/18</td>
<td>2</td>
<td>Changed in 2.1 the Trace Hipot value from 5000 V to 3800 V</td>
</tr>
<tr>
<td>v5</td>
<td>6/11/19</td>
<td>2</td>
<td>Changed in 2.1 Trace Hipot after receiving from 3800 V to 3700 V (value used at CERN before delivery to AUP)</td>
</tr>
</tbody>
</table>

Contents

1. Comments ..3
2. Fabrication Process ...3
1 Comments

- **Hipot tests:**
 - Power the component listed first, keep untested components floating.
 - Test each Quench Heater separately.
 - Connect the 11 pole segments together to perform Coil to Pole Hipot. Be sure that Inner and Outer pole segments are connected.
 - Set the maximum leakage current threshold to 1 μA (10 μA when 1 μA does not work). The maximum leakage current must not be exceeded neither during Ramp up nor at Plateau.

- **Impulse tests:**
 - Impulse tests with direct polarity (High Outer Layer – Ground Inner Layer) at 1000 V, 1500 V, 2000 V and 2500 V
 - Impulse tests with reversed polarity (High Inner Layer – Ground Outer Layer) at 1000 V, 1500 V, 2000 V and 2500 V

- **Electrical Measurements:**
 - Coil inductance (LQ) measurements at 20 Hz (unless otherwise specified)
 - Coil resistance (R) and VT measurements at 1 A. After Impregnation, connect Multimeter Terminals at 7 inches from the Splice Blocks.

2 Fabrication Process

Pre-Fabrication Tests

1. Trace Hipot after receiving: 3700 V

Coil Fabrication Tests:

2. Coil winding: Real-time monitoring of continuity between coil, parts and mandrel

3. After curing, coil on curing mandrel, OD up: Coil RLQ
 - R: (520.00 - 540.00 mV)
 - Ls: (10.40 – 11.00 mH)
 - Q: (2.20 – 2.50)
 - Continuity check:
 - coil-to-RE saddles,
 - coil-to-LE saddles,
 - saddle-to-saddle,
 - coil-to-end spacers,
 - coil to pole
4. Before reaction, fixture open, w/o mold blocks and SS shell, OD up:

- Coil RLQ
 - R: (520.00 - 540.00 mV)
 - Ls: (6.10 – 6.80 mH)
 - Q: (1.40 – 1.60)
 - Continuity checks:
 - coil-to-RE saddles,
 - coil-to-LE saddles,
 - saddle-to-saddle,
 - coil-to-end spacers,
 - coil to pole

5. Before reaction, After close and flip, fixture open, ID up:

- Coil RLQ
 - R: (520.00 - 540.00 mV)
 - Ls: (6.20 – 6.40 mH)
 - Q: (1.40 – 1.50)
 - Continuity checks:
 - coil-to-RE saddles,
 - coil-to-LE saddles,
 - saddle-to-saddle,
 - coil-to-end spacers,
 - coil to pole

6. After reaction, fixture open, OD up:

- Coil RLQ
 - R: (590.00 -610.00 mV)
 - Ls: (6.10 – 6.40 mH)
 - Q: (1.20 – 1.30)
 - Continuity checks:
 - coil-to-RE saddles,
 - coil-to-LE saddles,
 - saddle-to-saddle,
 - coil-to-end spacers,
 - coil to pole

7. After splicing, OL trace installed, OD up:

- Coil RLQ
 - R: (590.00 -610.00 mV)
 - Ls: (6.00 – 6.40 mH)
 - Q: (1.10 – 1.30)
- OL Voltage tap
 - B1: 590.00 – 610.00 mV
 - B2: 590.00 – 610.00 mV
 - B3: 490.00 – 430.00 mV
 - B4: 260.00 – 280.00 mV
 - B5: 260.00 - 280.00 mV
 - B6: 260.00 – 280.00 mV
 - B7: 260.00 – 280.00 mV
 - B8: 260.00 – 280.00 mV
8. After fixture bolted closed, OD up:
 - OL Heater R
 B01: 1.70 – 2.20 Ω
 B02: 1.70 – 2.20 Ω
 B03: 1.70 – 2.20 Ω
 B04: 1.70 – 2.20 Ω
 - Coil RLQ
 R: (590.00 -610.00 mV)
 Ls: (6.50 – 6.90 mH)
 Q: (1.20 – 1.40)
 - Continuity checks
 coil-to-OL Heaters

9. After flip, fixture open, ID up:
 - Coil RLQ
 R: (590.00 -610.00 mV)
 Ls: (6.50 – 6.80 mH)
 Q: (1.20 – 1.40)
 - Continuity checks:
 coil-to-RE saddles,
 coil-to-LE saddles,
 saddle-to-saddle,
 coil-to-end spacers,
 coil to pole

10. After IL trace installed, ID up:
 - Coil RLQ
 R: (590.00 -610.00 mV)
 Ls: (6.50 – 6.80 mH)
 Q: (1.20 – 1.40)
 - IL Voltage tap
 A1: 0.00 – 1.00 mV
 A2: 0.00 – 1.00 mV
 A3: 190.00 – 210.00 mV
 A4: 240.00 – 260.00 mV
 A5: 240.00 - 260.00 mV
 A6: 250.00 - 270.00 mV
 A7: 250.00 – 270.00 mV
 A8: 260.00 – 280.00 mV
 - IL Heater R
 A01: 3.40 – 3.70 Ω
 A02: 3.40 – 3.70 Ω

11. After fixture bolted closed, ID up:
 - Coil RLQ
 R: (590.00 -610.00 mV)
 Ls: (7.20 – 7.50 mH)
 Q: (1.30 – 1.50)
 - Continuity checks
 coil-to-IL Heaters
12. After impregnation, fixture open, OD up:

- Coil RLQ
 R: (590.00 - 620.00 mV)
 Ls: (6.60 – 6.90 mH)
 Q: (1.30 – 1.50)

- Continuity checks:
 - coil-to-RE saddles,
 - coil-to-LE splice blocks,
 - coil-to-OL Heaters,
 - saddle-to-saddle,
 - OL Heaters-to-saddles,
 - coil to pole,
 - pole segm to pole segm

- OL Voltage tap
 B1: 590.00 – 610.00 mV
 B2: 590.00 – 610.00 mV
 B3: 260.00 – 280.00 mV
 B4: 260.00 - 280.00 mV
 B5: 260.00 – 280.00 mV
 B6: 260.00 – 280.00 mV
 B7: 260.00 – 280.00 mV
 B8: 260.00 – 280.00 mV

- OL Heater R
 B01: 1.70 – 2.20 Ω
 B02: 1.70 – 2.20 Ω
 B03: 1.70 – 2.20 Ω
 B04: 1.70 – 2.20 Ω

13. After flip, ID up:

- Coil RLQ
 R: (590.00 - 620.00 mV)
 Ls: (6.10 – 6.50 mH)
 Q: (1.20 – 1.50)

- Continuity checks:
 - coil-to-RE saddles,
 - coil-to-LE splice blocks,
 - coil-to-IL Heaters,
 - saddle-to-saddle,
 - IL Heaters-to-saddles,
 - coil to pole,
 - pole segm to pole segm

- IL Voltage tap
 A1: 0.00 – 1.00 mV
 A2: 0.00 – 1.00 mV
 A3: 190.00 – 210.00 mV
 A4: 240.00 – 260.00 mV
 A5: 240.00 - 260.00 mV
 A6: 250.00 - 270.00 mV
 A7: 250.00 – 270.00 mV
 A8: 260.00 – 280.00 mV
14. Before shipping, coil on bench and on shipping Mandrel, OD up:

- IL Heater R
 A01: 3.40 – 3.70 Ω
 A02: 3.40 – 3.70 Ω

/* Steps 12 and 13 can be reverse depending on the process*/

- Coil RLQ (20 Hz, 100 Hz, 1 kHz)

 @ 20 Hz
 R: (590.00 -610.00 mV)
 Ls: (4.80 – 5.10 mH)
 Q: (0.80 – 0.90)

 @ 100 Hz
 Ls: (3.20 – 3.50 mH)
 Q: (1.50 – 1.70)

 @ 1k Hz
 Ls: (1.80 – 2.00 mH)
 Q: (1.90 – 2.10)

- Continuity checks:
 coil-to-structure,
 heaters-to-structure,
 coil-to-RE saddles,
 coil-to-LE splice blocks,
 coil-to-heaters,
 saddle-to-saddle,
 heaters-to-saddles,
 coil to pole (Ok if open, Hipot if resistance > 1 MΩ, fail if < 1 MΩ),
 pole segm to pole segm

- Voltage tap
 A1: 0.00 – 1.00 mV
 A2: 0.00 – 1.00 mV
 A3: 190.00 – 210.00 mV
 A4: 240.00 – 260.00 mV
 A5: 240.00 - 260.00 mV
 A6: 250.00 - 270.00 mV
 A7: 250.00 – 270.00 mV
 A8: 260.00 – 280.00 mV
 B8: 260.00 – 280.00 mV
 B7: 260.00 – 280.00 mV
 B6: 260.00 – 280.00 mV
 B5: 260.00 – 280.00 mV
B4: 260.00 - 280.00 mV
B3: 410.00 - 430.00 mV
B2: 590.00 – 610.00 mV
B1: 590.00 – 610.00 mV

- Heater R
 A01: 3.40 – 3.70 Ω
 A02: 3.40 – 3.70 Ω
 B01: 1.70 – 2.20 Ω
 B02: 1.70 – 2.20 Ω
 B03: 1.70 – 2.20 Ω
 B04: 1.70 – 2.20 Ω

- Hipots:
 QH to Coil 3680 V
 Coil to Pole 100 V
 (to be performed only if continuity check is not open, and resistance > 1 MΩ)
 Coil to Endshoes (all) 1000 V
 QH IL to Endshoes IL 2500 V
 QH OL to Endshoes OL 2500 V
 Endshoes IL to Endshoes OL 1000 V

- Impulse tests (Direct and Reverse)

15. After receiving, coil in the crate on shipping Mandrel, OD up:
 - Coil RLQ (20 Hz, 100 Hz, 1 kHz)
 - Continuity checks:
 - coil-to-structure,
 - heaters-to-structure,
 - coil-to-RE saddles,
 - coil-to-LE splice blocks,
 - coil-to-heaters,
 - saddle-to-saddle,
 - heaters-to-saddles,
 - coil to pole (Ok if open, Hipot if resistance > 1 MΩ, fail if < 1 MΩ),
 pole segm to pole segm
 - Voltage tap & Heater R.

16. After receiving, coil on Wooden Table
 - Hipots:
 QH to Coil 3680 V
 Coil to Pole 100 V
 (to be performed only if continuity check is not open, and resistance > 1 MΩ)
Coil to Endshoes (all) 1000 V
QH IL to Endshoes IL 2500 V
QH OL to Endshoes OL 2500 V
Endshoes IL to Endshoes OL 1000 V

· **Impulse tests** (Direct and Reverse)