Characterization of HV-CMOS pixel sensor prototypes

Ettore Zaffaroni

STREAM Final Conference, 17/09/2019
Outline

• Introduction
• The characterized sensors
• TCT (Transient Current Technique) measurements and results
• Testbeam measurements and results
Introduction

• ATLAS will upgrade its inner tracker for HL-LHC
 - ITk, \(\sim 190 \text{ m}^2 \) of silicon,
 \(\sim 15 \text{ m}^2 \) of pixel detectors
 - High occupancy and radiation damage
• HV-CMOS developed as a possible replacement for the outermost pixel layer

• CCPDv3, CCPDv4 (ams 180 nm) small prototypes, capacitively coupled to front-end ASICs

• H35DEMO (ams 350 nm), first full scale prototype, with monolithic parts

• ATLASPix1 (ams 180 nm), fully monolithic, 3 pixel matrices

• ATLASPix2 (ams/TSI 180 nm), small scale prototype, focus on periphery and SEU tolerant memory

• ATLASPix3 (TSI 180 nm), full scale prototype, single pixel matrix
H35DEMO chip

- H35 technology by ams
 - 350 nm HV-CMOS
- 4 pixel matrices and test structures
- 250x50 μm² pixels
- 4 different resistivities
 - 20, 80, 200, 1000 Ω · cm
ATLASPIX1 chip

• aH18 technology by ams
 - 180 nm HV-CMOS
• Fully monolithic
• Same resistivities as H35DEMO
• ATLASPIX_Simple matrix tested
 - 130x40 μm² pixels
 - 25x400 matrix
 - Column-drain readout, triggerless
Transient Current Technique
TCT (Transient Current Technique)

- Generation of carriers using a laser
 - Precise location
- Carriers move under electric field, generating a current
- Current signal amplified with a RF amplifier

- TCT allows to study the space charge region
 - Depletion depth, N_{eff}, etc.
TCT setup

- Pulsed IR laser (1064 nm) with FWHM of 12 μm
- Detector at –27 °C using Peltier
- 1 μm step size in all axes
TCT setup

- DUT mounted vertically to reduce effects of swinging stages
- PCB with controlled impedance traces and correct termination to remove signal reflections
H35DEMO test structures

- In the periphery of the chip
- 3x3 pixel matrix (just the sensor diodes)
- Outermost pixel cathodes are connected together
 - 2 channels (central and external)
- Top bias
Irradiation campaigns

- Neutrons
 - TRIGA reactor in Ljubljana
 - One irradiation step per sample
 - Annealing

- Protons (measurements at Uni. Bern and Uni. Geneva)
 - BERN Inselspital cyclotron (16.7 MeV)
 - Multiple irradiation steps per sample
 - PS IRRAD (24 GeV)
 - One irradiation step per sample
eTCT scans

- Edge TCT scans performed
- $\sim 150-300 \times 1 \, \mu m$ steps in y, $\sim 70 \times 5 \, \mu m$ steps in x
- Several voltage steps (10 to 12 normally)
 - From 0 V to -100 or -165 V
- At each step the signal is averaged 40 times
 - To reduce noise
- All results shown for central pixel

DOI: 10.1088/1748-0221/13/10/p10004
Data analysis - depletion

- Integration of current signal to get the charge
- Selection of the region
Data analysis - depletion

- Fit of the charge profiles
 - One fit per profile in the ROI
- Two contributions:
 - Smeared box function
 - Gaussian, to model the charge sharing
- Calculation of the FWHM
 - Max of the box function considered
Data analysis - N_{eff}

- N_{eff} (effective doping concentration) is calculated by fitting the depletion vs voltage data with:

$$d = d_0 + \sqrt{\frac{2\varepsilon}{e N_{\text{eff}}} V}$$

- d_0 and N_{eff} free parameters
 - e electron charge
 - ε silicon dielectric constant

- d_0: sensitive region depth at 0 V bias (due to built-in voltage and n-well finite depth)
Results - $N_{_{\text{eff}}}$

- $20 \ \Omega \cdot \text{cm}$
- $80 \ \Omega \cdot \text{cm}$
- $200 \ \Omega \cdot \text{cm}$
- $1000 \ \Omega \cdot \text{cm}$
Results - N_{eff}

• Significant differences between protons and neutrons and between resistivities

• Initial increase of N_{eff} at very low fluences ($<10^{14}$ n_{eq}/cm2, protons) for the 200 Ω · cm sample
 - Effect competing with initial acceptor removal?
 - Not observed in 1000 Ω · cm, data not available for 20 and 80 Ω · cm
Results – N_{eff}

- Plots combined by particle type, for different initial resistivities
- Tend to the same N_{eff} value

- Neutrons
- Protons 16.7 MeV
- Protons 24 GeV
Results - annealing

- Measured on neutron irradiated samples
- Initial beneficial annealing, then reverse annealing
- Measurement will be performed on proton irradiated samples for comparison
Testbeams
Testbeams

- **Telescope**: pixel sensors used to measure tracks and generate trigger
- **DUT** read out at the same time
- **Reconstruction and analysis**

![Diagram of Testbeams system]

DCS (power, HV, cooling...) not represented
Reconstruction and analysis

Proteus software

RAW DATA

NOISE-SCAN
Remove noisy pixels

ALIGNMENT
Align telescope planes and DUT

TRACK RECONSTRUCTION
Find tracks, match with DUT hits

DATA ANALYSIS
Efficiency, timing, etc.
Telescope modules

- Planar modules from IBL
 - Innermost pixel layer in ATLAS
 - Planar silicon pixel sensor

- Read out by the FE-I4 ASIC
 - 50x250 μm² pixels
 - 80 columns, 336 rows
DAQ: CaRIBOu system

- Read-out system for ITk and CLIC sensor prototypes
- Provides power, HV and data links
- Based on a PC, a Zynq-7000 FPGA and a custom DUT board

DOI: 10.1088/1748-0221/12/01/P01008
Telescope

• 6 FE-I4 modules
 - Spatial resolution 8x12 um
• Trigger rate up to 4 kHz
• Cold DUT box (down to -20 °C)
• Successfully used in various campaigns (SPS, FNAL) since 2014

DOI: 10.1088/1748-0221/13/02/p02011, 10.1088/1748-0221/13/12/p12009
Measurement campaign

- Data acquisition at CERN SPS (06-10/2018)
- Simple matrix of ATLASPIX1
- Bias voltage and threshold scans
- Different irradiations
 - Protons (while operating the sensor)
 - Neutrons
Testbeam results

- High efficiency after irradiation
- Noisy pixels and neighbors masked
- Lines masked due to issues in row circuitry
 - Identified and solved in subsequent prototype submission
Testbeam results

- Efficiency vs bias voltage (left) and threshold (right)
- Above 98% for a wide range of parameters
Testbeam results

- Cluster time: difference between trigger time (telescope) and cluster time (DUT)
 - 1 bin spread given by the telescope
- Cluster value: time over threshold
Comments

- Testbeams show excellent performance of ATLASPix1 before and after irradiation
 - Efficiency up to \(\sim 99\% \) after \(10^{15} \text{n}_{\text{eq}}/\text{cm}^2 \)
 - Excellent timing performances

- Identified issues in the circuitry, feedback provided to the designers
Conclusions

• TCT measurements
 - Initial acceptor removal observed after proton and neutron irradiation
 - Beneficial and reverse annealing observed for neutrons
 - Significant differences between neutron and protons effects

• Testbeams
 - High, uniform efficiency over a large pixel matrix after irradiation
 - Very good timing performances

• Excellent results for fully monolithic pixel sensors!

Thank you!