

Design and characterization in Depleted CMOS technology for particle physics pixel detector

Siddharth Bhat Centre de Physique des Particules de Marseille Aix-Marseille University ESR-02

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 675587.

Outline

- ATLAS inner detector upgrade for the HL-LHC
- Depleted CMOS Sensor developments
 - Design and measurements of Single Event Upset (SEU) tolerant memories
 - Developments towards Serial Powering
- Conclusions

Outline

- ATLAS inner detector upgrade for the HL-LHC
- Depleted CMOS Sensor developments
 - Design and measurements of Single Event
 Upset (SEU) tolerant memories
 - Developments towards Serial Powering
- Conclusions

17/09/2019

Jan'10

Jan'11

CENTRE DE PHYSIQUE DES PARTICULES DE MARSEILLE

CPPM

Siddharth Bhat- CPPM, STREAM Final Conference

The HL-LHC upgrade

LHC / HL-LHC Plan

Jan'16

Jan 17

Jan '18

Month in Year

CPPM

Siddharth Bhat- CPPM, STREAM Final Conference

5 (Aix+Marseille

The new ITk

- Strips at outer radii, pixels near to the interaction region.
- Pixel detector : (R<35cm)
 - 12.7 m², 5×10⁹ channels
 - 5 barrel layers
 - Inner 2: 3D/planar
 - Outer 3: planar/CMOS
 - 50×50 μm^2 or 25×100 μm^2
 - inclined modules
- \rightarrow minimize material and maximize resolution while keeping full coverage.

	ATLAS-HL-LHC	
	Outer	Inner
Required Time Res. [ns]	25	25
Particle Rate [kHz/mm²]	1000	10 000
Fluence [n _{eq} /cm ²]	10 ¹⁵	10 ¹⁶
Ion. Dose [Mrad]	80	1000

CPPM

Sensor technologies

- One CMOS IC technology for whole ATLAS & CMS pixel detectors:
 - RD53 collaboration: joint ATLAS and CMS effort on common 65 nm design.
 - Requirements given by the innermost layers
- Sensor technology baseline optimized according to radiation hardness, cost and foundries production capability.

Depleted Monolithic Active Pixel Sensor

Integrate the sensor and electronics on a single entity!

<u>Advantages</u>: Commercial process, no hybridization (reduced material budget, cost and procurement), considerable depleted regions in high-resistive substrates, fast charge collection by drift, multiple wells for shielding, etc...

Two Approaches:

"Large sensor electrode"

Large collecting well containing the electronics

PROS: Short-drift distances, Rad-hard **CONS:** Large sensor capacitance (compromise on timing and noise), higher analog power.

"Small sensor electrode"

Small collecting well, separate from the electronics

PROS: Very small sensor capacitance **CONS:** Long drift distances, compromised rad-hardness.

P-Substrate

Siddharth Bhat- CPPM, STREAM Final Conference

Depleted Monolithic Active Pixel Sensor

Integrate the sensor and electronics on a single entity!

Advantages: Commercial process, no hybridization (reduced material budget, cost and procurement), considerable depleted regions in high-resistive substrates, fast charge collection

PROS: Short-drift distances, Rad-hard **CONS:** Large sensor capacitance (compromise on timing and noise), higher analog power.

P+

P⁺⁺ Substrate

Outline

- ATLAS inner detector upgrade for the HL-LHC
- Depleted CMOS Sensor developments
 - Design and measurements of Single Event Upset (SEU) tolerant memories
 - Developments towards Serial Powering
- Conclusions

SEUs occur in memories (SRAMS,SDRAMS) and sequential logics!

SEU tolerant test chips

- <u>3 SEU tolerant chips in 3 different technologies</u> designed and allow to collect all data from latches and directly compare their behavior during irradiation tests.
- The SEU chip is sub-divided in several columns - Typically <u>80</u> cells per kind of memories
- Custom patterns are written and read through a shift register in synchronization with the beam.

- <u>Sequence:</u>
- \rightarrow Put data into SR
- \rightarrow Write into memory
- \rightarrow Wait for the beam
- \rightarrow Data back into SR
- \rightarrow Read through the SR
- \rightarrow Cal. # of errors

- DeepNwell and HV

CPPM

17/09/2019

CPPN

Siddharth Bhat- CPPM, STREAM Final Conference

 $D_{2N} = 5.5 \,\mu m$

SEU-robustness: DICE Versions

 $D_{2N} = 2.7 \,\mu m$

- <u>DICE latch structure is based on the</u> <u>conventional cross coupled inverters</u>:
 - The charges deposited by a ionising particle striking one node can't be propagated due to the stability of this architecture.
 - If 2 sensitive nodes are affected simultaneously, the immunity is lost and the DICE latch is upset.
- 4 versions have been submitted:

8 µm

SEU-robustness: TRL Versions

TRL with standard latch

TRL with DICE latch

- 4 TRL versions have been designed:
 - 1st version: TRL with standard latch.
 - 2nd version: TRL with DICE latch.
 - 3rd version: triplication of the standard latch and increasing the distance between a minimum distance between 2 bits (~65 μm).
 - 4th version: triplication of the DICE latch.

SPLIT TRL with standard latch

SPLIT TRL with DICE latch

CPPM

Siddharth Bhat- CPPM, STREAM Final Conference

Experimental Setup for AMS SEU test IC

- Beam size 1 cm²
- Mean dose rate 1.1 MRad/hr
- TID: 165 MRad
- Exposure time 10 days
- 2 AMS chips were installed

Mother board V2

Dose does not affect the behavior of the AMS SEU chip

17/09/2019

Test results for AMS chip

$$\sigma (\text{cm}^2) = \frac{N_{errors}}{\Phi * N_{latches}}$$

- We stored enough data to extract an acceptable statistic for SEU.
 - 80 cells per type of latch and we reached a spill number > 10000.
- Cross section of the standard latch ~ 138.6 E-15 cm²
- Cross section of DICE latch ~ 9.3 E-15 cm²
- SPLIT TRL W/ standard latch shows very good performance with the cross section ~ 7.3 E-17 cm²
- TRL W/ DICE latch shows very good performance as well with the cross section ~ 9.2E-18 cm²

DICE is x15 more robust than the Standard Latch!

TRL w/ DICE Latch is ×15000 more robust than the Standard Latch!

Outline

- ATLAS inner detector upgrade for the HL-LHC
- Depleted CMOS Sensor developments
 - Design and measurements of Single Event Upset (SEU) tolerant memories
 - Developments towards Serial Powering
- Conclusions

Traditional: Parallel Powering

Big power loss in cables!!!

Small power loss in cables!!!

17/09/2019 CENTRE DE PHYSIQUE DES Particules de marseille

CPPM

Siddharth Bhat- CPPM, STREAM Final Conference

Aix*Marseille

20

Why choosing Serial Powering?

CPPM

Siddharth Bhat- CPPM, STREAM Final Conference

Shunt-LDO: to power electronics

Sensor bias: TowerJazz

- Novel modified process developed in collaboration with the foundry.
- Adding a planar **n-type layer** significantly improves depletion under deep pwell.
- Pixel dimensions:
- 36 x 36 µm² pixel size
- 3 µm diameter electrodes
- Measured capacitance < 5fF

In order to polarize the sensor in same way

- $(Vss_N Vbias_N)$ must be constant in all modules.
- Since Vss_N is shifted every module we cannot use the same bias for all modules.

Requirements for Sensor

- HV to pwell = -6 V
- HV to substrate = 20 V

CPPM

Siddharth Bhat- CPPM, STREAM Final Conference

Charge Pump: to power sensor

- Cross-coupled architecture of charge pump.
- Two parallel, complementary cross-coupled parts operate in opposite phases.
- The charge pump has several stages.
- The operating frequency is 640 MHz, should deliver 500 μA.

Generating higher voltages

17/09/2019

CENTRE DE PHYSIQUE DES Particules de marseille

CPPM

Siddharth Bhat- CPPM, STREAM Final Conference

Aix*Marseille

24

Measurements

Outline

- ATLAS inner detector upgrade for the HL-LHC
- Depleted CMOS Sensor developments
 - Design and measurements of Single Event
 Upset (SEU) tolerant memories
 - Developments towards Serial Powering
- Conclusions

Conclusions

- New generation silicon pixel detectors will be an essential part of ATLAS future tracker upgrades where they will be used for tracking and vertexing.
- SEU Radiation Hard Cells:
- → Designed Single Event Upset tolerant test chips in AMS/TJ/LF technologies in order to study the different architectures for various technologies.
- \rightarrow Keeping the area almost same as standard latch, DICE is ~15× immune to SEU.
- → TRL have big area penalty (typ: $\sim 20 \times$) but are $\sim 15000 \times$ more immune to SEU.
- <u>Serial Powering is necessary for ATLAS ITk detector</u>:
- → Shunt-LDO Regulator for Electronics:
 - The block is able to generate constant voltage of 1.8 V up to 1.4 A of input current for Serially Powering CMOS modules in ATLAS ITk.
- → Charge Pump for Sensor Bias:
 - From the measurements \rightarrow 2 versions of the charge pump circuit show good and stable response and could be used to bias the CMOS sensor.

Thank you!

Backup

Siddharth Bhat- CPPM

Critical charge simulations

Siddharth Bhat- CPPM

Critical charge simulations

03/09/2019

AMS

CENTRE DE PHYSIQUE DES PARTICULES DE MARSEILLE CPPM Siddharth Bhat - CPPM, PhD Defense

34

Area of SEU memories

LF

Column # (Design)	Area (µm²)	Distance b/w 2 sensitive nodes (D ₂ N- μm)
1. TRL W/ DICE latch	400	14
2. TRL W/ standard latch	330	7
3. SPLIT TRL W/ standard	450	50
latch		
4. SPLIT TRL W/ standard	450	50
latch		
5. Standard latch	24	-
6. DICE latch	32	3.5

memories	_	TJ	
Column # (Design)	Are (µm	a ²)	Distance b/w 2 sensitive nodes (D ₂ N- μm)
1. TRL W/ DICE latch	360)	15
2. TRL W/ standard latch	300)	8.2
3. SPLIT TRL W/ standard latch	350)	65
4. SPLIT TRL W/ DICE latch	370)	65
5. Standard latch	27		-
6. DICE latch	47		5.5

Column # (Design)	Area (µm²)	Distance b/w 2 sensitive nodes (D ₂ N- μm)
1. TRL W/ DICE latch	400	11
2. TRL W/ standard latch	400	9
3. SPLIT TRL W/ standard latch	350	65
4. SPLIT TRL W/ DICE latch	370	65
5. Standard latch	27	-
6. DICE latch	32	2.5
7. Enhanched DICE	44	5.5
8. SRAM	40	

17/09/2019

CENTRE DE PHYSIQUE DES PARTICULES DE MARSEILLE

CPPM

backside metal

Hybrid detectors

- Hybrid pixels are used as tracking devices in the innermost layers of LHC experiments.
- Sensor and ASIC are independent units.

	FE-I3 LHC Run 1	FE-I4 LHC Run 2-3	FE-65 LHC Run 4-5
Tech node	250 nm	130 nm	65 nm
Chip size [mm ²]	7.4 × 11	18.8 × 20.2	~20 × 20
# transistors	$3.5\mathrm{M}$	87 M	1G
Hit rate [Hz/cm ²]	100 M	400 M	3 G
Pixel size [µm]	400 x 50	250 x 50	50 x 50
TID [Rad]	100 M	250 M	~0.5-1 G

ATLASpix2 and Test Board

LD	IN	Load	Data loading
CK	IN	Clock	
RDBCK	IN	ReadBack	Latches data loading in SR
CLR	IN	Clear	Reset

36 Aix Marseille

Errors with pattern all "0" for Chip #2

- # errors VS the cell # is shown.
- Col#5 and col# 2 shows similar behaviour.
- # acquisitions : 2500
- # spills : 2500
- Col #1,#3, #4 are very robust.

 % spills W/ errors VS cell # is shown.

Aix*Marseille

37

- # errors VS the cell # is shown.
- Col #5 and col # 2 shows similar behaviour.
- # acquisitions > 3000.
- # spills ~ 3000
- Error variation between DICE and standard latch can be seen.
- Col #1, #3, #4 are very robust.

All "1" pattern

CENTRE DE PHYSIQUE DES PARTICULES DE MARSEILLE CPPM Siddharth Bhat- CPPM, STREAM Final Conference

Latch(s) description

- Standard cell "LHX1_HV" from the CORELIB_HV Lib
- Active area $\phi = 20.10^{-12} \, \text{m}^2$

- DICE "Dual Interlocked Storage Cell" cell
- DICE latch structure is based on the conventional cross coupled inverters: Active area
 - The charges deposited by a ionising particle strike one node can't be propagated due to the stability of this architecture.
 - If 2 sensitive nodes (corresponding to the OFF transistors drain area) are affected simultaneously, the immunity is lost and the DICE latch is upset

We expect to gain by 5 the BER robustness (Standard cell "LHX1_HV" is the reference)

- # errors VS the cell # is shown.
- Col #5 and col # 2 shows similar behaviour.
- # acquisitions > 3000.
- # spills ~ 3000
- Error variation between DICE and standard latch can be seen.
- Col #1, #3, #4 are very robust.

All "1" pattern

- # errors VS the cell # is shown.
- Col #5 and col # 2 shows similar behaviour.
- # acquisitions > 3000.
- # spills ~ 3000
- Error variation between DICE and standard latch can be seen.
- Col #1, #3, #4 are very robust.

All "1" pattern

× 17/09/2019

CENTRE DE PHYSIQUE DES PARTICULES DE MARSEILLE CPPM

Depleted Monolithic Active Pixel Sensors (DMAPS)

Monolithic sensors with electronics all in one!

2 lines of development followed : (a) large electrode design / (b) small electrode design

- matured over several years
- radiation hardness (TID & NIEL) proven
- rate capability for L4 (and even L3/L2) shown
- timing close to specs
- $(\rightarrow LF / AMS)$

- very promising wrt. timing and power
- Vendor already established at CERN
- rate capability for L4 (and even L3/L2) shown
- fast timing due to small C
- radiation hardness -> Sept. 2018

 $(\rightarrow TJ)$