The Technology (TE) Department and its activities

V. Mertens 3.9.2019

<u>Outline:</u> Organisation Infrastructures Contributions

CERN internal organisation

	Director-General	Fabiola Gianotti
	DG Units (DG): Translation, Minutes and Council Support,	
	Occupational Health & Safety and Environmental Protection Unit (HSE)	Doris Forkel-Wirth
Г	Director for Accelerators and Technology	Frédérick Bordry
Accelerators and	Beams (BE)	Paul Collier
Technology Sector	Engineering (EN)	Roberto Losito
	Technology (TE)	Jose Miguel Jimenez
	Director for Finance and Human Resources	Martin Steinacher
	Finance and Administrative Processes (FAP) Human Besources (HB)	Florian Sonnemann
	Industry, Procurement and Knowledge Transfer (IPT)	Thierry Lagrange
	Site Management and Buildings (SMB)	Lluis Miralles
	Director for International Relations	Charlotte Warakaulle
	Stakeholder relations (IR-REL): Host States,	
	Member States, Associate & Non-Member States,	
	International Organisations, Partnerships & Fundraising	
	Strategic Planning & Evaluation, Protocol	Ana Gadinha
	Education, communications and outreach (m-ECO)	Ana Godinno
	Director for Research and Computing	Eckhard Elsen
	Scientific Information Services (RCS-SIS)	
The Technology Departments and its estivities	Experimental Physics (EP)	Manfred Krammer
Volker Mertens	Information Technology (IT)	Frédéric Hemmer
PT industry representatives, 3 September 2019	Theoretical Physics (TH)	Gian Giudice

CERN

TE Department structure

TE in numbers

TE members of personnel

	Number (2016)	Number (2017)	Number (9.12.2018)
Employed personnel			
Staff	445	447	447
Fellows	130	133	145
Total	577	580	592
International collabora	tion		
Cooperation			
Associates	66	54	53
Project Associates	26	36	69
Total	92	90	122
Exchange of scientists			
Scientific Associates	0	0	2
Visiting Scientists	9	8	6
Guest Professors	1	0	0
Total	10	8	8
Training programs			
Students (Doct, Tech Admin)	74	74	59
Apprentices	0	19	18
Trainees	40	31	32
Total	114	124	109
Grand Total	793	802	831

Age distribution (of staff)

Technical infrastructures by TE (selection)

Meyrin site

Contributions/uses by BE, EP, EN, SMB departments

Prevessin si

Chemical surface finishing and PCB production

B107

Polymer laboratory

B771

Superconducting cables manufacturing and qualification

FRESCA2 - Facility for the REception of Superconducting CAbles

Ready for operation: Q1/2020

Superconducting magnets fabrication

B180

coil winding

coil splicing

coil dimensions

coil reaction

coil impregnation

preparation for collaring

Superconducting test centre

For magnets, powering links, RF equipment

SM18

The Technology Departments and its activities Volker Mertens PT industry representatives, 3 September 2019

Upgrades by BE, EN, SMB, TE departments 10

Magnetic measurements

B311 For normal conducting magnets

Vacuum laboratory

B113

A reference for accelerator beam vacuum

Surface coating

B101

Leadership for coating technologies and associated R&D

CERN roadmap

Three main scientific pillars

Full exploitation of the LHC:

- successful Run 2, LS2, and Run 3 start-up.
- Upgrade of LHC Injectors; on-track construction of HL-LHC.
- Scientific diversity programme serving a broad community:
 - ongoing experiments and facilities at Booster, PS, SPS and their upgrades.
 participation in accelerator-based neutrino through CERN Neutrino Platform.

Preparation of CERN future:

- vibrant accelerator R&D programme exploiting CERN strengths and uniqueness.
- design studies for future accelerators: CLIC, FCC (includes HE-LHC).
- future opportunities of diversity programme: "Physics Beyond Colliders".

2019-2020: update of the European Strategy for Particle Physics (ESPP)

CERN's Accelerator Complex

CERN roadmap (LHC, HL-LHC)

CERN roadmap – Full exploitation of the LHC (incl. HL-LHC)

10 times more luminosity Beam brightness Proton density **Crossing angle** Technology demonstrator High magnetic field ~11 T High current ~100 kA Mitigation of beam effects New collimators Worldwide approach **CERN Member States** and International Collaborations

CERN

The Technology Departments and its activities Volker Mertens PT industry representatives, 3 September 2019

WP1 Project Management

WP6A - Superconducting links and current leads

WP3 – interaction region quadrupoles and correctors

coil winding

coil pack assembly

prototype structure

WP11 – 11 T dipoles

WP12 - vacuum

Thermal mechanical validation of the shielded beam screens

Prototyping and mechanical and RF tests of the deformable RF bridge

WP7 – Machine Protection Quench Detection & Protection Energy extraction

EE systems based on IGBTs

- Two prototype switch modules for 1kA tested
- 2 kA bipolar prototype under construction

1 kA modules

EE systems based on vacuum switches

- 2 kA EE system prototype fully tested
- Type tests for 600 A systems

Vacuum switch

2 x 600 A system

CERN roadmap – scientific diversity

600 m³, 7'500 tons of LAr 180 tons warm gas filtered P < 50 ppt O₂ eq. (50/10¹²)

Tracks in NP04 LAr volume

LAr cryoplant for neutrino platform in SPS North experimental area

CERN roadmap – High Energy Frontier (FCC, CLIC)

Special electrostatic and magnetic devices

Superconducting septa developments for the FCC: Truncated Cosine Theta (TCT, left, middle) and Super conducting Shield (SuShi, right) topologies.

Electrostatic quadrupole concept

Shape memory allows: from feasibility study to implementation

temperature control

Integrated heating/cooling collars (remote clamping/unclamping)

SMA vacuum set-ups in TDC2 (SPS North Area)

Small beam pipes and SC RF cavities by electroforming

Upcoming needs for industrial procurement

TE-ABT:

- Capacitor charging power supplies for the LHC beam dumping system, 35 kV / 10 mA 20 kV / 10mA, 2023-2025, high precision & high stability
- Digitiser for acquisition of pulse signals, 100 MS/s 14 bits, 2023-2025, PCIe form factor with Linux driver
- High voltage DC generators for electrostatic septa powering, 270 kV / 2 mA, 2022-2023, without SF6 as insulating medium

TE-CRG:

- Supply of 40'000 t of liquid nitrogen for the operational period 2019-2023 (renewal)
- Supply of 240 t of liquid helium for the operational period 2021-2025 (renewal)
- Industrial support services for cryogenics maintenance and operation for the period 2022-2026 (renewal)
- Two 18 kW @ 4.5 K cryogenic plants and cold compressors units
- 1.5 km cryogenic distribution infrastructure (multiple lines)

Will be presented and discussed in dedicated discussions this afternoon.

TE-EPC:

- Power converters (supplies) based mainly on commercial components (t b integrated in EPC's power racks + controls archit.)
- Power converters built to specification, or built to print (CERN design; based on manufacturing folder, 5 ... 150 units),
 e.g. for HL-LHC: 5 units of 10 V / 18 kA, 10 units of 8 V / 14 kA, 100 units of 10 V / 120 A, ...
- Components to be used in power converters (power semiconductors, magnetics, racks, capacitors, DCCT, ...)

Upcoming needs for industrial procurement

TE-MPE:

- CLIQ (Coupling Loss Induced Quenches) quench protection system (pre-series for the IT String test in SM18 + series); primarily electromechanical components, i.e. capacitors, switching devices/thyristors, charging units control electronics crates, mechanics (+ assembly)
- Quench Heater Power Supplies (DQHDS); e.g. electrolytic capacitors, charging circuits and controls electronics, cables and mechanics (+ assembly). Capacitor lifetime particularly critical.
- Energy Extraction Systems for 600 A and 2 kA magnet/circuits of HL-LHC insertion region and triplet; capacitors, triggering circuits, copper bus bars and machining, vacuum switches, controls electronics, cables and mechanics (+ assembly), dump resistors. Development based on vacuum switch technology.
 Will be presented and discussed in dedicated discussions this afternoon.

TE-MSC:

Will be presented and discussed in dedicated discussions this afternoon.

TE-VSC:

- Vacuum components (handled through main workshop EN-MME)
- Collaborations with Universities (Minho, IST Lisbon, Leiria)

Thank you for your attention

CMS

Accelerating Science and Innovation

CERN Précessin

ATLA

ALICE

CERN roadmap (injectors, LHC/HL-LHC)

CERN

The Technology Departments and its activities Volker Mertens PT industry representatives, 3 September 2019

F. Bordry, ATS Director 34