

ALICE Experiment - Highlights and Status

Deepa Thomas for the ALICE Collaboration

US LHS Users Association Annual Meeting 2019
16 October 2019

Heavy-ion collisions

- Explore the deconfined state of QCD matter
 Quark Gluon Plasma.
- Lattice QCD calculations indicate hadronic matter exhibits phase-transition at high temperature.
 - QGP -> QCD at high temperature and density.
- Measurements in heavy-ion collisions used to probe different stages of the evolution.

- 1. Initial parton scattering processes
- 2. Thermalization and formation of QGP
- 3. Hydrodynamic expansion & cooling of QGP
- 4. Hadronization to hadron gas
- 5. Chemical freeze-out inelastic collisions cease
- 6. Kinetic freeze-out elastic collisions cease

ALICE detector

Central barrel coverage: $|\eta| < 0.9$

Muon spectrometer coverage: $-4 < \eta < -2.5$

Time Projection Chamber

Tracking and PID

Run 2 data taking

Successful data taking in Run 2

- pp @ 13 TeV: ~ 59 pb⁻¹
 - Using EMCal trigger to collect large statistics for rare probes
 - High multiplicity triggers
- pp @ 5 TeV: ~ 1.3 pb-1
 - Reference data sample -> no QGP formation.
- Pb-Pb @ 5.02 TeV in 2018: ~ 0.9 nb-1
 - 9 x larger sample of central collisions in 2018 compared to 2015.
- p-Pb @ 5 and 8 TeV: ~ 3nb⁻¹, ~ 25nb⁻¹
 - Study initial state effects
- Xe-Xe @ 5.14 TeV pilot run: ~ 0.3 μb⁻¹

ALICE physics output

- Total No of papers : 262
- 2 Nature Physics articles
 - Nature Physics 13 (2017) 535–539
 - Nature Physics 11 (2015) 811-814
- 27 papers submitted unto now in 2019

Highlights (biased selection)

- Charge particle multiplicity and particle production
- Signatures of QGP in heavy-ion collisions
 - What about small systems (pp & p-Pb) at similar multiplicities?
- Probing QGP with heavy-quarks
- Probing QGP with jets
- Looking forward
- Summary & Conclusions

Charge-particle multiplicity

Particle production related to the initial parton and energy density.

- Charge particle multiplicity in AA collisions shows a steeper rise vs \sqrt{s} than pp and p-Pb (no universal scaling).
 - Follows similar trend as lower energy.
- dN/dη vs N participants shows a strong dependence.

Particle production in AA collisions driven by geometry (Npart)

Particle production

Particle production vs multiplicity

- Increase of $\langle p_T \rangle$ with multiplicity; with steeper increase for heavier particles (mass ordering).
 - Signature of collective radial expansion.
- Trends similar in pp, p-Pb and Pb-Pb collisions

Collective radial expansion in high multiplicity pp & p-Pb collisions??

Strangeness enhancement

Nature Physics 13 (2017) 535

- Increase in the abundance of strange baryons —> effect increases with strangeness content.
 - Signature of QGP in AA collisions.
- Relative abundance of strange quarks increases with multiplicity in small systems.
 - Values and evolution trend independent of collision systems or energy.
- PYTHIA do not reproduce the data.
- Enhancement in small systems associated to jet production or soft processes?
 - φ-hadron correlation studies ongoing to further understand it

Resonance production

Resonance production vs multiplicity

Looking at hadronic phase: Yields modified by hadronic scattering after chemical freeze-out.

- Re-scattering of decay daughters scatter -> signal loss
- Regeneration: resonances formed in hadron scattering

ALICE Preliminary

 \Diamond pp $\sqrt{s} = 7 \text{ TeV}$

∘ p-Pb $\sqrt{s_{NN}}$ = 5.02 TeV

□ Pb-Pb $\sqrt{s_{NN}}$ = 5.02 TeV

ቲን Xe-Xe √s_{NIN} = 5.44 TeV

ALICE

• pp √s = 2.76 TeV

 \times p-Pb $\sqrt{s_{NN}}$ = 5.02 TeV

■ Pb-Pb $\sqrt{s_{NN}}$ = 2.76 TeV

STAR

★ pp √s = 200 GeV

☆ Au-Au √s_{NN} = 200 GeV

- EPOS3

-- EPOS3 (UrQMD OFF)

Lifetime(fm/c): $T_{\rho}(1.3) < T_{K*}(4.2) < T_{\Sigma*}(5.5) < T_{\Lambda*}(12.6) < T_{\Xi*}(21.7) < T_{\Phi}(46.2)$

ρ, K*, Λ* reduced yield: final state scattering of decay particles

Φ, Ξ*: longer life time, yield constant

Collective flow

 Azimuthal distribution of particles in the plan perpendicular to beam axis -> sensitive to dynamics at the early stages of collision.

Initial state spatial anisotropies are transferred into final state momentum anisotropies v_n by pressure gradients -> flow of the OCP

$$\frac{dN}{d\varphi} \propto 1 + 2v_1 \cos(\Delta\varphi) + 2v_2 \cos(2\Delta\varphi) + 2v_3 \cos(3\Delta\varphi) + \dots$$

v₂: elliptic flow

Azimuthal anisotropy

v₂ in Pb-Pb and p-Pb collisions

Pb-Pb:

- $p_T < 2 \text{ GeV/}c$: hadron mass ordering -> hydro-dynamic flow.
- $p_T > 2.5$ GeV/c: baryons $v_2 >$ mesons $v_2 ->$ quark flow + recombination effects

p-Pb:

- Similar mass ordering observed in high multiplicity collisions.
- Medium in high-multiplicity p-Pb??
- Some differences between systems observed.

Azimuthal anisotropy

v_n in pp, p-Pb, Xe-Xe and Pb-Pb collisions

PRL 123 (2019) 142301

$$\frac{dN}{d\varphi} \propto 1 + 2v_1 \cos(\Delta\varphi) + 2v_2 \cos(2\Delta\varphi) + 2v_3 \cos(3\Delta\varphi) + \dots$$

- New technique to measure ν_n: multi-particle correlations in η ranges —> removes bias from non-flow.
- V₂, V₃ and V₄ in pp, p-Pb, Xe-Xe and Pb-Pb collisions vs N_{ch}.
- Similar ordering of $v_2 > v_3 > v_4$ seen in all systems.
- Weak multiplicity dependence of v₂ in pp and p-Pb.
- PYTHIA8 cannot describe the measurement in pp.

Probing QGP with Heavy-flavor

Heavy quarks (HQ): Charm and beauty quarks

 Massive - charm ~ 1 GeV/c² beauty ~ 4 GeV/c²

 Produced in hard scattering processes in the initial stages of the collisions before QGP is formed.

```
charm \sim 0.07 fm/c, beauty \sim 0.02 fm/c QGP \sim 0.1-1 fm/c
```

- Production well controlled and calculable with pQCD —> Calibrated probe.
- Undergoes elastic (collisional) and inelastic (radiational) collisions —> sensitive to transport properties of QGP.
- Lose less energy in QGP compared to light quarks.
- Not created or destroyed in the medium —> identity is preserved in the medium, thus tagged
 up to hadronization

Nuclear Modification Factor

 R_{AA} < 1 -> charm undergoes energy loss in QGP

 R_{AA} (0-10%) < R_{AA} (30-50%) < R_{AA} (60-80%) at intermediate and high p_T

Hotter and denser medium in central Pb-Pb collisions compared to peripheral collisions.

Beauty in QGP

Study mass and flavor dependence of energy loss.

$$\Delta E(g) > \Delta E(uds) > \Delta E(c) > \Delta E(b) < \stackrel{??}{-} > R_{AA}(\pi) < R_{AA}(D) < R_{AA}(B)$$

 R_{AA} (b->e) > R_{AA} (b,c->e) for $2 < p_T < 6 \text{ GeV/}c$

Hint of beauty losing less energy than charm

Heavy-quark hadronisation

Investigating hadronisation mechanisms with Λ+c

- Expected enhancement of baryon over meson yield in if hadronization via coalescence.
- Λ_c^+/D^0 measured.

ALI-PUB-141421

Λ+c/D0 at LHC higher than the expectations based e+ e-

JHEP 04 (2018) 108

Heavy-quark hadronisation

Investigating hadronisation mechanisms with Λ^{+}_{c}

- Expected enhancement of baryon over meson yield in if hadronization via coalescence.
- Λ+_c/D⁰ measured.

 Λ^+c/D^0 in Pb-Pb collisions higher than in pp and p-Pb collisions -> model calculations with fragmentation and coalescence is favored by data.

Heavy-quark collective flow

- Elliptic flow of light flavour hadrons at low p_T (< 2-3 GeV/c) explained by hydrodynamical models.
- Heavy quarks with large mass interact enough that they thermalize (equilibrate)?
 - Expected to take longer than light quarks

HQ production is isotropic ($v_2 = 0$) ??

HQ production is anisotropic ($v_2 = 0$) ??

Heavy-quark collective flow

Charm quark

Charged particles
D mesons
J/Ψ

 $v_2 = \langle \cos[2(\phi - \Psi_2)] \rangle$

- Charm quarks interact strongly with the medium.
- Charm quarks participate in the collective expansion of the medium
- D-meson v₂ possibly from charm quark flow + hadronisation via coalescence with the light-flavour quark

Heavy-quark collective flow

 $v_2 = \langle \cos[2(\phi - \Psi_2)] \rangle$

Beauty quark

- Open-beauty v₂ > 0, while bottomonia v₂ ~ 0
 - Impact of collisional energy loss and coalescence on b->e?

Heavy-flavor transport coefficients

D meson R_{AA} and v_2 measurements provide constraints to models

Constraints on T and p dependence of \hat{q} and D_s

Probing QGP with jets

Jet cross-section in pp collisions

Jet cross-sections for different $R \rightarrow$ study sensitivity to the jet transverse energy profile.

Probing QGP with jets

Jet quenching in Pb-Pb

$$R_{AA} = \frac{1}{\langle N_{coll} \rangle} \frac{Y_{AA}}{Y_{pp}}$$

- Full jet R_{AA} for R = 0.2, 0.4 measured at low jet p_T down to 40 GeV/c.
- Strong suppression of jet yield. No jet R dependence
- Models include jet-medium interactions —> predict similar tried as data.

Jet substructure

Jet substructure sensitive to modifications in the medium.

Grooming jets with SoftDrop algorithm

• Extract the hard components of a jet by recursively removing large-angle soft radiation to expose 2-prong

structure in the jet.

Groomed momentum fraction distributions;

pp:

- Shape different for small and large jet radii at low p_T.
- PYTHIA reproduces the trend very well.

Jet substructure

Jet substructure sensitive to modifications in the medium.

Grooming jets with SoftDrop algorithm

Extract the hard components of a jet by recursively removing large-angle soft radiation to expose 2-prong

structure in the jet.

Groomed momentum fraction distributions;

pp:

- Shape different for small and large jet radii at low p_T.
- PYTHIA reproduces the trend very well.

arXiv:1905.02512

Pb-Pb:

- Modification of Z_g in central Pb-Pb collisions w.r.t vacuum.
- Suppression in the rate of symmetric splittings.
- Models capture the qualitative trend of data

Looking forward

Major upgrade during LS2

All pixel Inner Tracker System

GEM based TPC readout

Pixel Muon Forward Tracker

- Faster interaction trigger
- New online-offline system

Run 3+4: x 100 higher statistics than Run 2

High precision measurements including beauty hadrons possible.

Conclusions

- Several new results from Run 2 data -> improving our understanding of the nature of QGP
 - v_n measurements in A-A collisions due to collective hydrodynamic flow of the medium.
 - Heavy-quarks and high p_T jets lose energy through interactions with QGP.
- QGP in small systems?? —> New puzzle.
- Exciting times in heavy-ion physics!!
- Looking forward for the restart in 2021
 - New detector components.
 - x 100 increase in statistics from Run 3 and 4.

Back-up