

Run II by the numbers

- Proton-proton @ 13 TeV:
 - 156 fb⁻¹ delivered, 147 fb⁻¹ recorded (94%),
 139 fb⁻¹ good for physics (95%)
 - Luminosity uncertainty: 1.7%

- Other datasets:
 - 1.80 (1.76) nb⁻¹ delivered (collected) of Pb-Pb in 2018
 - Pb-p and Pb-Pb datasets in 2016 and 2015
 - High β* and other dedicated runs for soft QCD measurements
- Rich datasets going into Long Shutdown!

The nitty gritty work

- Full Run II results deserve the best calibrations and smallest uncertainties...
 - Sub-percent electron & photon energy uncertainties, <~10% efficiency uncertainty over wide η, p_T range [arXiv:1908.00005].
 - Few % uncertainty on b-tagging efficiency [arXiv: 1907.05120].
 - Jet energy scale uncertainty of a few percent
 - Muon reconstruction efficiency known to few per-mille

Higgs Headliner

 Major effort to assemble unified picture of Run II Higgs measurements with up to 80 fb⁻¹ of data [arXiv:1909.02845]

Full Run II Higgs Measurements

 Full dataset used in γγ,ZZ channels for differential measurements, good agreement with state-of-the-art QCD calculations within uncertainties

$$\sigma(pp \to H) = 56.7^{+6.4}_{-6.2}(\gamma\gamma), 54.4^{+5.6}_{-5.4}(4l), 55.4^{+4.3}_{-4.2}(\text{comb.}) \text{ pb}$$

$$\sigma(pp \to H) = 55.6 \pm 2.5 \text{ pb (NLO - N3LO QCD, NLO EW)}$$

Lepton Flavor Violating Higgs Decays

- Full Run-II searches for H→eµ [arXiv:1909.10235]
 - Br($H \rightarrow e\mu$) < 6.1x10⁻⁵;
 - (Also limits on Br(H→ee) < 3.4x10⁻⁴)
- New tau results with 36 fb-1:
 - Br($H \rightarrow e\tau$, $H \rightarrow \mu\tau$) < 4.7 x10⁻³, 2.8 x10⁻³ [arXiv:1907.06131</sup>]

Di-Higgs Searches

- Di-Higgs searches provide powerful constraints on BSM physics
 - Initial Run II searches combined to put 6.9xSM limit on non-resonant HH production [arXiv:1906.02025]

- bbWW channel updated to full Run II dataset
 - Upper limit of 1.2^{+0.4}-0.3 pb (40xSM) for this single channel [arXiv:1908.06765]

Investigating the Aleph m_{µµ} fluctuation

• Aleph data found $5(2.6)\sigma$ local(global) sig. for a 30 GeV $m_{\mu\mu}$ resonance in events with b-jets

CMS analysis shows 1.4σ deficit to 4.2σ local excess @ 28 GeV

ATLAS analyzed full Run II data and finds no excess

ATLAS-CONF-2019-036

Many more Higgs results!

Short Title	Journal Reference	Date	√s (TeV)	L	Links
Search BSM H(125)->emu lepton flavor violating decay and H(125)->ee	Submitted to PLB	23-SEP-19	13	139 fb ⁻¹	Documents 1909.10235 Inspire
h(125) combination cross-sections, couplings	Submitted to Phys. Rev. D	06-SEP-19	13	80 fb ⁻¹	Documents 1909.02845 Inspire
HH->bb WW-> bblvlv	Submitted to PLB	19-AUG-19	13	139 fb ⁻¹	Documents 1908.06765 Inspire
Search BSM H(125)->tau I (I=e,mu) lepton flavor violating decay	Accepted by PLB	13-JUL-19	13	36.1 fb ⁻¹	Documents 1907.06131 Inspire Briefing Internal
Search BSM bH H->bb	Submitted to PRD	05-JUL-19	13	27.8 fb ⁻¹	Documents 1907.02749 Inspire
Combination h(125)h(125)	Submitted to PLB	05-JUN-19	13	36.1 fb ⁻¹	Documents 1906.02025 Inspire
H(125)->invisible combination	Phys. Rev. Lett. 122 (2019) 231801	10-APR-19	7 , 8 , 13	5 fb ⁻¹ , 20 fb ⁻¹ , 36 fb ⁻¹	Documents 1904.05105 Inspire
VH(125), H->WW	Phys. Lett. B 798 (2019) 134949	24-MAR-19	13	36.1 fb ⁻¹	Documents 1903.10052 Inspire
VH(125) H->bb STXS	JHEP 05 (2019) 141	11-MAR-19	13	80 fb ⁻¹	Documents 1903.04618 Inspire
Summary of searches for mediator-based dark matter and scalar dark energy models	JHEP 05 (2019) 142	03-MAR-19	13	36 fb ⁻¹	Documents 1903.01400 Inspire
Measurement of the 4 lepton invariant mass distribution at 13 TeV with the ATLAS detector	JHEP 04 (2019) 048	15-FEB-19	13	36 fb ⁻¹	Documents 1902.05892 Inspire Rivet HepData Internal
Short Title				Document	Number Date

Search BSM bH with H-> mu mu	Short Title	Document Number	Date	√s (TeV)	L	Links
	Self-coupling constraints from single and double Higgs measurements	ATLAS-CONF-2019-049	03-OCT-19	13	80 fb ⁻¹	Documents Internal
Search for flavor-changing neutral current t to Hq with H->b-bbar and	H(125) H-> tau tau spin/CP studies	ATLAS-CONF-2019-050	02-OCT-19	13	36.1 fb ⁻¹	Documents Internal
Search BSM H->HH->4W and HH->4W	H(125) combination differential cross-sections gamma gamma and 4I	ATLAS-CONF-2019-032	11-JUL-19	13	139 fb ⁻¹	Documents Briefing Internal
	H(125)->gammagamma differential cross sections	ATLAS-CONF-2019-029	11-JUL-19	13	139 fb ⁻¹	Documents Briefing Internal
H(125) -> tau tau	VBF HH to 4b	ATLAS-CONF-2019-030	11-JUL-19	13	126 fb ⁻¹	Documents Internal
	Search H(125)->mumu	ATLAS-CONF-2019-028	11-JUL-19	13	139 fb ⁻¹	Documents Briefing Internal
Search BSM H->HH->bb WW and HH->bb WW	H(125)->4I STXS and differential cross sections	ATLAS-CONF-2019-025	09-JUL-19	13	140 fb ⁻¹	Documents Briefing Internal
	ttH(125) H->gammagamma	ATLAS-CONF-2019-004	18-MAR-19	13	139 fb ⁻¹	Documents Briefing Internal
	Low mass boosted di-b-jet resonances with an extra jet	ATLAS-CONF-2018-052	26-NOV-18	13	80 fb ⁻¹	Documents Internal

Electroweak Sector: Vector Boson Scattering in ZZjj

- Observed ZZjj EWK production!
 - $\sigma(obs) = 0.82 \pm 0.21 \text{ fb}$
 - $\sigma(\text{pred}) = 0.61 \pm 0.03 \text{ fb}$
- All VVjj channels have $> 5\sigma$ significance (V = W,Z)
 - 13 TeV Z_γij result and full Run II
 differential Z_γ also available [ATLAS CONF-2019-034, ATLAS-CONF-2019-039]

	$\mu_{ m EW}$	$\mu_{ ext{QCD}}^{\ell\ell\ell\ell jj}$	Significance Obs. (Exp.)
$\ell\ell\ell\ell jj$	1.54 ± 0.42	0.95 ± 0.22	$5.48 \ (3.90) \ \sigma$
$\ell\ell u u jj$	0.73 ± 0.65	-	$1.15~(1.80)~\sigma$
Combined	1.35 ± 0.34	0.96 ± 0.22	$5.52 \ (4.30) \ \sigma$

Measurements Sensitive to pQCD

• Measurement of inclusive photon production up to $E_{T} \sim 1$ TeV with < 10% experimental & theoretical uncertainties [arXiv:1908.02746]

Excellent NLO & NNLO agreement with data; NNLO uncertainties

comparable to data uncertainties

arXiv:1908.02746

Multiscale Dynamics: Lund Plane

- New proposal to represent internal structure of jets*:
 - Lund Plane: In(1/z) vs In(1/θ)
- Recluster jet using Cambridge/ Aachen alg, plot history
- Utilize tracks associated to antikT (R = 0.4) jets, recluster with C/A, plot history
- Powerful test of MCs against shower and hadronization history
 - Can distinguish perturbative and non-perturbative effects in same measurement
- Can be used in ML-based jet discriminants

 $\Delta R = \Delta R$ (emission, core)

Many more Standard Model results!

Journal Reference

onor nuc		oodina receivine	20.0	,3 (101)	_	`	-111110			
Measurement of the inclusive isolated-photon cross section at 13 TeV		Accepted by JHEP	07-AUG-19	13	36 fb ⁻¹	Documents 190	08.02746 Inspire			
KS and Lambda production in ttbar events at 7 TeV		Submitted to EPJC	25-JUL-19	7	5 fb ⁻¹	Documents 190	07.10862 Inspire			
High transverse momentum Z(->bb) + photon production at 13 TeV		Submitted to PLB	16-JUL-19	13	36.1 fb ⁻¹	Documents 190	07.07093 Inspire			
Z boson in association with jets cross sections at 8 TeV		Accepted by EPJC	15-JUL-19	8	20.3 fb ⁻¹	Documents 190 HepData Internal	07.06728 Inspire			
W and Z cross sections at 2.76 TeV		Submitted to EPJC	08-JUL-19	2.76	4 pb ⁻¹	Documents 190	07.03567 Inspire			
Properties of Jet Fragmentation using Charged Particles with the ATLAS TeV	detector at sqrt{s } = 13	Phys. Rev. D 100 (2019) 052011	21-JUN-19	13	32.9 fb ⁻¹	Documents 190	06.09254 Inspire			
Same-sign WW cross section at 13 TeV		Accepted by PRL	07-JUN-19	13	35 fb ⁻¹	Documents 190 HepData Internal	06.03203 Inspire			
Measurement of Underlying Event in Z Boson Events at 13 TeV		Eur. Phys. J. C 79 (2019) 666	23-MAY-19	13	3.2 fb ⁻¹	Documents 190	05.09752 Inspire			
Measurement of the vector Boson scattering of VV final states in the Sen	nileptonic decay channel	Phys. Rev. D 100 (2019) 032007	19-MAY-19	13	35 fb ⁻¹	Documents 190	05.07714 Inspire			
ZZ production with two charged leptons and two neutrinos in the final star	te at 13 TeV	Accepted by JHEP	17-MAY-19	13	36 fb ⁻¹	Documents 190	05.07163 Inspire			
Measurement of differential W+W- production cross sections in proton-provith the ATLAS detector	oton collisions at 13TeV	Accepted by EPJC	10-MAY-19	13	35 fb ⁻¹	Documents 190 HepData Internal	05.04242 Inspire			
W cross section and W+/W- asymmetry at 8 TeV		Accepted by EPJC	11-APR-19	8	20.2	Documents 190	04.05631 Inspire			
Observation of light-by-light scattering in 2018 5.02 TeV Pb+Pb		Phys. Rev. Lett. 123 (2019) 052001	06-APR-19	5.02 /NN, 5.02 /NN	.5 nb ⁻¹ , 1 nb ⁻¹	Documents 190 HepData Briefin	04.03536 Inspire			
Evidence for WVV production at 13 TeV		Accepted by PLB	25-MAR-19	13	80 fb ⁻¹	Documents 190 HepData Internal	03.10415 Inspire			
Measurement of the jet shapes at 13 TeV	Short Title				Docume	nt Number	Date	√s (TeV)	L	
Measurement of the 4 lepton invariant mass distribution at 13 TeV with the	Z gamma VBS at 13 Te	V			ATLAS-CON	NF-2019-039	07-AUG-19	13	36.1 fb ⁻¹	Documents
vicasurement of the 4 lepton invariant mass distribution at 13 lev with the		ent with charged particles				NF-2019-035	24-JUL-19	13	140 fb ⁻¹	Documents
Precision WZ cross sections and polarisation at 13 TeV		reak production of two jet	s in association with	h a Z-boson pair		NF-2019-033	12-JUL-19	13	139 fb ⁻¹	Documents
Scalar leptoquarks pair search and differential cross-section measureme	Z(>II) gamma cross se Inclusive single diffractive	ve dissociation cross-sec	tion of pp collisions	at 8 TeV		NF-2019-034 NF-2019-012	12-JUL-19 09-APR-19	13 8	139 fb ⁻¹ 24.11 nb ⁻¹	Documents
+ jet events	J	(2010)100				riopodia mema				

√s (TeV)

Links

Precision Top Physics

- Lepton + jets 13 TeV dataset used to measure precise top quark differential distributions in wide phase space (including boosted!)[arXiv:1908.07305]
- eμ dilepton 13 TeV dataset used to measure σtt to $\sigma_{t\bar{t}} = 826.4 \pm 3.6 \text{ (stat)} \pm 11.5 \text{ (syst)} \pm 15.7 \text{ (lumi)} \pm 1.9 \text{ (beam) pb}$
 - Also used to extract pole mass, differential distributions

ATLAS-CONF-2019-041

 $m_t^{\text{pole}} = 173.1_{-2.1}^{+2.0} \,\text{GeV}$

ATLAS

Resolved

 $10^6 \sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1}$

Fiducial phase-space

- Resolved

• $(x10^8)$, $200 < m^{t\bar{t}} [GeV] \le 400$

 \circ (x10⁶), 400 < m^{tt} [GeV] \leq 550

• $(x10^4)$, $550 < m^{t\bar{t}} [GeV] \le 700$

 \Box (x10²), 700 < m^{tt} [GeV] \leq 1000

▲ $(x10^0)$, $1000 < m^{t\bar{t}}$ [GeV] ≤ 2000 _

Full Run II Top Results

Measured charge asymmetry, defined as

$$A_C = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)} \qquad \Delta|y| = |y_t| - |y_{\bar{t}}|$$

 Good agreement with NNLO pred, puts tight limits on dim 6 BSM operators [ATLAS-CONF-2019-026]

- Used very pure dilepton sample to directly measure top width $\Gamma_t = 1.94^{+0.52}_{-0.49} \, \text{GeV}$, in agreement with 1.322 GeV SM prediction
 - Sensitive to BSM contributions, relatively model independent

Many more Top results!

Short Title	Journal Reference	Date	√s (TeV)	L	Links
Search for FCNC tqgamma in single top	Submitted to PLB	22-AUG-19	13	80 fb ⁻¹	Documents 1908.08461 Inspire
Differential ttbar cross-sections in lepton+jets with 36 fb-1	Submitted to EPJC	20-AUG-19	13	36 fb ⁻¹	Documents 1908.07305 Inspire
KS and Lambda production in ttbar events at 7 TeV	Submitted to EPJC	25-JUL-19	7	5 fb ⁻¹	Documents 1907.10862 Inspire
Measurement of the top-quark mass using ttbar+1jet events at 8 TeV	Submitted to JHEP	06-MAY-19	8	20.3 fb ⁻¹	Documents 1905.02302 Inspire
Spin correlation measurement at 13 TeV	Submitted to EPJC	18-MAR-19	13	36 fb ⁻¹	Documents 1903.07570 Inspire
Measurement of the jet shapes at 13 TeV	JHEP 08 (2019) 033	07-MAR-19	13	36 fb ⁻¹	Documents 1903.02942 Inspire HepData Internal
ATLAS+CMS combination of Run 1 single top measurements and extraction of Vtb	JHEP 05 (2019) 088	18-FEB-19	8	20 fb ⁻¹	Documents 1902.07158 Inspire
Measurement of ttV in multilepton final states using 36.5fb-1 at 13 TeV	Phys. Rev. D 99 (2019) 072009	11-JAN-19	13	36 fb ⁻¹	Documents 1901.03584 Inspire
Search for flavor-changing neutral current t to Hq with H->b-bbar and tautau at 13 TeV	JHEP 05 (2019) 123	30-DEC-18	13	36 fb ⁻¹	Documents 1812.11568 Inspire
Measurement of the ttbar+gamma cross section at 13 TeV	Eur. Phys. J. C 79 (2019) 382	04-DEC-18	13	36 fb ⁻¹	Documents 1812.01697 Inspire
Measurement of the ttbb cross section at 13 TeV	JHEP 04 (2019) 046	29-NOV-18	13	36 fb ⁻¹	Documents 1811.12113 Inspire HepData Internal
4 top quark search with 1 or 2 leptons	Phys. Rev. D 99 (2019) 052009	06-NOV-18	13	36 fb ⁻¹	Documents 1811.02305 Inspire Briefing Internal

Short Title	Document Number	Date	√s (TeV)	L	Links
Top quark mass using soft muon tags	ATLAS-CONF-2019-046	27-SEP-19	13	36 fb ⁻¹	Documents Internal
Observation of tZq single top at 13 TeV	ATLAS-CONF-2019-043	23-SEP-19	13	139 fb ⁻¹	Documents Internal
ttgamma cross section in emu channel	ATLAS-CONF-2019-042	22-SEP-19	13	140 fb ⁻¹	Documents Internal
Measurement of the ttbar production cross-section in the lepton+jets channel at 13 TeV	ATLAS-CONF-2019-044	22-SEP-19	13	139 fb ⁻¹	Documents Internal
Top width measurement in dilepton ttbar	ATLAS-CONF-2019-038	02-AUG-19	13	139 fb ⁻¹	Documents Internal
Inclusive and lepton differential cross-sections in dilepton ttbar with 36 fb-1	ATLAS-CONF-2019-041	04-AUG-19	13	36 fb ⁻¹	Documents Internal
Measurement of ttbar charge asymmetry at 13 TeV in I+jets	ATLAS-CONF-2019-026	09-JUL-19	13	139 fb ⁻¹	Documents Briefing Internal

ATLAS SUSY Searches* - 95% CL Lower Limits

ATLAS Preliminary

 $\sqrt{s} = 13 \text{ TeV}$

July 2019

SUSY Strong Production

- Comprehensive search for all hadronic final states of squarks & gluinos in R-parity conserving simplified scenarios
 - Cut-based and BDT approaches combined for maximum sensitivity
 - Model independent results also presented

SUSY EWK Production

- If squarks and gluinos are very heavy then may only have access to charginos and neutralinos
 - Low cross-section final states dominated by leptons + MET, sometimes "extras" like Higgs

Many more SUSY results!

Short Title	Journal Reference	Date	√s (TeV)	L	Links
Chargino-neutralino pair; Higgs boson in final state, 2 b-jets and 1 lepton	Submitted to EPJC	19-SEP-19	13	139 fb ⁻¹	Documents 1909.09226 Inspire
Stop pair, sbottom pair, gluino pair; two same-sign leptons or three leptons	Submitted to JHEP	18-SEP-19	13	139 fb ⁻¹	Documents 1909.08457 Inspire
Chargino pair, slepton pair; 2 leptons	Submitted to EPJC	21-AUG-19	13	139 fb ⁻¹	Documents 1908.08215 Inspire
Sbottom; b-jets	Submitted to JHEP	08-AUG-19	13	139 fb ⁻¹	Documents 1908.03122 Inspire
Gluino pair, squark pair; displaced vertex with lepton pairs	Submitted to PLB	23-JUL-19	13	32.8 fb ⁻¹	Documents 1907.10037 Inspire HepData Internal
Spin correlation measurement at 13 TeV	Submitted to EPJC	18-MAR-19	13	36 fb ⁻¹	Documents 1903.07570 Inspire
Summary of searches for mediator-based dark matter and scalar dark energy models	JHEP 05 (2019) 142	03-MAR-19	13	36 fb ⁻¹	Documents 1903.01400 Inspire
Searches for 3rd generation Leptoquarks	JHEP 06 (2019) 144	21-FEB-19	13	36 fb ⁻¹	Documents 1902.08103 Inspire
Gluino pair, squark pair, stop pair, R-hadron; pixel ionisation, calorimeter and muon timing	Phys. Rev. D 99 (2019) 092007	05-FEB-19	13	36.1 fb ⁻¹	Documents 1902.01636 Inspire HepData Internal
Chargino-neutralino pair; Higgs boson in final state	Phys. Rev. D 100 (2019) 012006	22-DEC-18	13	36 fb ⁻¹	Documents 1812.09432 Inspire HepData Internal
Displaced jets in muon system	Phys. Rev. D 99 (2019) 052005	18-NOV-18	13	36 fb ⁻¹	Documents 1811.07370 Inspire HepData Internal

Short Title	Document Number	Date	√s (TeV)	L	Links
Gluino pair; squark pair; gluino-squark; 0-lepton	ATLAS-CONF-2019-040	05-AUG-19	13	139 fb ⁻¹	Documents Internal
Soft b-hadron tagging for compressed SUSY scenarios	ATLAS-CONF-2019-027	11-JUL-19	13	139 fb ⁻¹	Documents Internal
Chargino-neutralino pair; Higgs boson in final state, 2 photons	ATLAS-CONF-2019-019	17-MAY-19	13	139 fb ⁻¹	Documents Internal
Chargino-neutralino pair; 3 leptons, weak-scale mass splittings	ATLAS-CONF-2019-020	19-MAY-19	13	139 fb ⁻¹	Documents Internal
Stop pair; 1-lepton	ATLAS-CONF-2019-017	19-MAY-19	13	139 fb ⁻¹	Documents Internal
Chargino-neutralino pair, slepton pair; soft leptons	ATLAS-CONF-2019-014	19-MAY-19	13	139 fb ⁻¹	Documents Briefing Internal
Stop pair; Z boson	ATLAS-CONF-2019-016	17-MAY-19	13	139 fb ⁻¹	Documents Internal
Staus; taus	ATLAS-CONF-2019-018	17-MAY-19	13	139 fb ⁻¹	Documents Briefing Internal
Stop pair, long-lived; displaced vertex and displaced muon	ATLAS-CONF-2019-006	18-MAR-19	13	136 fb ⁻¹	Documents Internal

Exotics

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits Status: May 2019

ATLAS Preliminary

 $\int \mathcal{L} dt = (3.2 - 139) \text{ fb}^{-1}$

 \sqrt{s} = 8, 13 TeV

Model	ℓ , γ	Jets†	E ^{miss} T	∫£ dt[fl	⁻¹] Limit	J		Reference
ADD $G_{KK} + g/q$ ADD non-resonant ADD QBH ADD BH high $\sum p_T$ ADD BH multijet RS1 $G_{KK} \to \gamma \gamma$ Bulk RS $G_{KK} \to M$ Bulk RS $G_{KK} \to M$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	2 J	Yes - - - -	36.1 36.7 37.0 3.2 3.6 36.7 36.1 139	G _{KK} mass 2.3 TeV G _{KK} mass 1.6 TeV	7.7 TeV 8.6 TeV 8.9 TeV 8.2 TeV 9.55 TeV	n=2 n=3 HLZ NLO n=6 $n=6$, $M_D=3$ TeV, rot BH $n=6$, $M_D=3$ TeV, rot BH $k/\overline{M}_{PI}=0.1$ $k/\overline{M}_{PI}=1.0$ $k/\overline{M}_{PI}=1.0$	1711.03301 1707.04147 1703.09127 1606.02265 1512.02586 1707.04147 1808.02380 ATLAS-CONF-2019-003
Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP		$\geq 1 \text{ b, } \geq 1\text{J/2}$ $\geq 2 \text{ b, } \geq 3 \text{ j}$	-	36.1 36.1	KK mass 3.8 KK mass 1.8 TeV	TeV	$\Gamma/m=15\%$ Tier (1,1), $\mathcal{B}(A^{(1,1)} o tt)=1$	1804.10823 1803.09678
$\begin{array}{c} \operatorname{SSM} Z' \to \ell\ell \\ \operatorname{SSM} Z' \to \tau\tau \\ \operatorname{Leptophobic} Z' \to \\ \operatorname{Leptophobic} Z' \to \\ \operatorname{Leptophobic} Z' \to \\ \operatorname{SSM} W' \to \ell\nu \\ \operatorname{SSM} W' \to \tau\nu \\ \operatorname{HVT} V' \to WZ \to \\ \operatorname{HVT} V' \to WH/Z \to \\ \operatorname{LRSM} W_R \to tb \\ \operatorname{LRSM} W_R \to \mu N_R \end{array}$	tt 1 e, μ 2 1 e, μ 1 τ 1 e, μ 1 τ e, μ 1 τ e, μ multi-channe multi-channe		- - Yes Yes Yes -	139 36.1 36.1 36.1 139 36.1 139 36.1 36.1	Z' mass 2.42 TeV Z' mass 2.1 TeV Z' mass 3.0 TeV W' mass 3.7 TeV V' mass 3.6 TeV V' mass 2.93 TeV W _R mass 3.25 TeV	6.0 TeV TeV TeV	$\Gamma/m=1\%$ $g_V=3$ $g_V=3$ $m(N_R)=0.5$ TeV, $g_L=g_R$	1903.06248 1709.07242 1805.09299 1804.10823 CERN-EP-2019-100 1801.06992 ATLAS-CONF-2019-003 1712.06518 1807.10473 1904.12679
Cl qqqq Cl ℓℓqq Cl tttt	- 2 e, μ ≥1 e,μ	2 j - ≥1 b, ≥1 j	– – Yes	37.0 36.1 36.1	Λ Λ Λ 2.57 TeV	0.0 10 1	21.8 TeV η_{LL}^- 40.0 TeV $\eta_{LL}^ C_{4t} =4\pi$	1703.09127 1707.02424 1811.02305
Axial-vector mediated Colored scalar mediated $VV_{\chi\chi}$ EFT (Diractor Scalar reson. $\phi \rightarrow$	liator (Dirac DM) $0 e, \mu$ DM) $0 e, \mu$	$\begin{array}{c} 1-4\ j\\ 1-4\ j\\ 1\ J, \leq 1\ j\\ 1\ b, \ 0\text{-}1\ J \end{array}$	Yes Yes Yes Yes	36.1 36.1 3.2 36.1	$\begin{array}{ccc} m_{med} & & 1.55 \text{ TeV} \\ m_{med} & & 1.67 \text{ TeV} \\ M_* & & 700 \text{ GeV} \\ m_{\phi} & & & 3.4 \text{ TeV} \\ \end{array}$	eV	g_q =0.25, g_χ =1.0, $m(\chi)$ = 1 GeV g =1.0, $m(\chi)$ = 1 GeV $m(\chi)$ < 150 GeV y = 0.4, λ = 0.2, $m(\chi)$ = 10 GeV	1711.03301 1711.03301 1608.02372 1812.09743
Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen	1,2 <i>e</i> 1,2 <i>μ</i> 2 <i>τ</i> 0-1 <i>e</i> , <i>μ</i>	≥ 2 j ≥ 2 j 2 b 2 b	Yes Yes - Yes	36.1 36.1 36.1 36.1			$eta=1 \ eta=1 \ eta(LQ_3^u o b au)=1 \ eta(LQ_3^d o t au)=0$	1902.00377 1902.00377 1902.08103 1902.08103
Heavy VLQ $TT \rightarrow Ht/Zt$ $VLQ BB \rightarrow Wt/Zt$ $VLQ T_{5/3} T_{5/3} T_{5/3}$ $VLQ Y \rightarrow Wb + X$ $VLQ QQ \rightarrow WqW$	0+X multi-channe $0+X$	I		36.1 36.1 36.1 36.1 79.8 20.3	T mass 1.37 TeV B mass 1.34 TeV T _{5/3} mass 1.64 TeV Y mass 1.85 TeV B mass 1.21 TeV Q mass 690 GeV		SU(2) doublet SU(2) doublet $\mathcal{B}(T_{5/3} \to Wt) = 1$, $c(T_{5/3}Wt) = 1$ $\mathcal{B}(Y \to Wb) = 1$, $c_R(Wb) = 1$ $\kappa_B = 0.5$	1808.02343 1808.02343 1807.11883 1812.07343 ATLAS-CONF-2018-024 1509.04261
Excited quark q^* — Excited quark q^* — Excited quark b^* — Excited lepton ℓ^* Excited lepton v^*	$q\gamma$ 1 γ	2 j 1 j 1 b, 1 j – –	- - - -	139 36.7 36.1 20.3 20.3	$\begin{array}{c} \mathbf{q}^* \text{ mass} \\ \mathbf{q}^* \text{ mass} \\ \mathbf{b}^* \text{ mass} \\ \boldsymbol{\ell}^* \text{ mass} \\ \mathbf{v}^* \text{ mass} \\ \end{array}$	6.7 TeV 5.3 TeV	only u^* and d^* , $\Lambda=m(q^*)$ only u^* and d^* , $\Lambda=m(q^*)$ $\Lambda=3.0 \text{ TeV}$ $\Lambda=1.6 \text{ TeV}$	ATLAS-CONF-2019-007 1709.10440 1805.09299 1411.2921 1411.2921
Type III Seesaw LRSM Majorana ν Higgs triplet $H^{\pm\pm}$ – Higgs triplet $H^{\pm\pm}$ – Multi-charged parti Magnetic monopole	e^{it} 3 e, μ, τ cles –	- - -	Yes	79.8 36.1 36.1 20.3 36.1 34.4	N ⁰ mass 560 GeV N _R mass 3.2 TeV H ^{±±} mass 400 GeV multi-charged particle mass 1.22 TeV monopole mass 2.37 TeV	V	$m(W_R)=4.1$ TeV, $g_L=g_R$ DY production DY production, $\mathcal{B}(H_L^{\pm\pm} o\ell au)=1$ DY production, $ q =5e$ DY production, $ g =1g_D$, spin $1/2$	ATLAS-CONF-2018-020 1809.11105 1710.09748 1411.2921 1812.03673 1905.10130
$\sqrt{s} = 8$	partial data	$\sqrt{s} = 13$ full da	ta		10 ⁻¹ 1	1	0 Mass scale [TeV]	-

^{*}Only a selection of the available mass limits on new states or phenomena is shown.

[†]Small-radius (large-radius) iets are denoted by the letter i (J).

Dark Matter Searches

- Simple assumptions on leptophilic and leptophobic dark matter scenarios narrowing parameter space for DM at LHC
 - Axial-vector mediators exclude to 2.6(3.6) TeV for leptophobic(philic) DM
 - Vector mediators exclude to 2.6 TeV for leptophobic DM

Dark Sectors: Displaced Lepton Jets

- If there exists a complex dark sector it could couple to the higgs and mix with the SM through a dark photon
 - Search for displaced lepton jets from dark photon decays
 - Set limits based on dark photon cτ, mass and mixing parameter to the SM [arXiv:1909.01246]

arXiv:1909.01246

ATLAS Long-lived Particle Searches* - 95% CL Exclusion

Status: July 2019

ATLAS Preliminary

 $\int \mathcal{L} dt = (18.4 - 36.1) \text{ fb}^{-1} \sqrt{s} = 8, 13 \text{ TeV}$

Many more Exotics results!

Short Title		Journal Reference	Date	√s (TeV)	L	Links		
Search for displaced lepton-jets		Submitted to EPJC	03-SEP-19	13	36 fb ⁻¹	Documents 1909.01246 HepData Internal	Inspire	
Gluino pair, squark pair; displaced vertex with lep	ton pairs	Submitted to PLB	23-JUL-19	13	32.8 fb ⁻¹	Documents 1907.10037 HepData Internal	Inspire	
lepton + MET resonance search		10.1103/PhysRevD.100.052013	13-JUN-19	13	139 fb ⁻¹	Documents 1906.05609 HepData Internal	Inspire	
Search for excited electrons		Eur. Phys. J. C 79 (2019) 803	07-JUN-19	13	36 fb ⁻¹	Documents 1906.03204 HepData Internal	Inspire	
Search for highly ionising particles/monopoles		Submitted to PRL	24-MAY-19	13	36 fb ⁻¹	Documents 1905.10130 HepData Briefing Internal		
Prompt and Displaced Heavy Neutral Lepton Sea	ırch	Accepted by JHEP	23-MAY-19	13	36 fb ⁻¹	Documents 1905.09787 Internal	Inspire	
Heavy Neutrino search in boosted topology		Phys. Lett. B 798 (2019) 134942	29-APR-19	13	80 fb ⁻¹	Documents 1904.12679 HepData Internal	Inspire	
H(125)->invisible combination		Phys. Rev. Lett. 122 (2019) 231801	10-APR-19	7,8,13	5 fb ⁻¹ , 20 fb ⁻¹ , 36 fb ⁻¹	Documents 1904.05105 Internal	Inspire	
Dilepton Resonance Search		Phys. Lett. B 796 (2019) 68	14-MAR-19	13	139 fb ⁻¹	Documents 1903.06248 HepData Briefing Internal		
Summary of searches for mediator-based dark m	atter and scalar dark energy models	JHEP 05 (2019) 142	03-MAR-19	13	36 fb ⁻¹	Documents 1903.01400 Internal	Inspire	
Search for top - anti-top resonances in the hadron	nic final state	Phys. Rev. D 99 (2019) 092004	26-FEB-19	13	36 fb ⁻¹	Documents 1902.10077 Internal	Inspire	
Searches for 3rd generation Leptoquarks		JHEP 06 (2019) 144	21-FEB-19	13	36 fb ⁻¹	Documents 1902.08103 Internal	Inspire	
Search for displaced hadronic jets in the calorime	ter	Eur. Phys. J. C 79 (2019) 481	08-FEB-19	13	33 fb ⁻¹	Documents 1902.03094 Internal	Inspire	
Gluino pair, squark pair, stop pair, R-hadron; pixe	l ionisation, calorimeter and muon timing	Phys. Rev. D 99 (2019) 092007	05-FEB-19	13	36.1 fb ⁻¹	Documents 1902.01636 HepData Internal	Inspire	
	ore section messurements in dilenten or dimuon + ist					Documents I 1002 00277 I	Ineniro	
events	Short Title		Docu	ıment Number	Date	√s (TeV)	L	
Resolved low mass dijet resonance search with I			ATLAS-C	ONF-2019-030	11-JUL-19	13	126	
Search for MET plus a single top quark	Dijet resonance search			CONF-2019-007	17-MAR-19	13	139	
Coardinion MET plus a single top quark	Low mass boosted di-b-jet resonances with an extra	a jet	ATLAS-C	ONF-2018-052	26-NOV-18	13	80 1	

30 fb⁻¹

150 fb⁻¹

3000 fb⁻¹

300 fb⁻¹

LS2 Work

- Large program of consolidation: fixing leaks, replacing old parts, etc.
 - E.g., TRT gas change due to leakage, replacement of pixel opto-boards, cooling connections replaced for calorimeters, muon gas leak repairs
 - Significant maintenance to technical networks and general infrastructure
- Phase II Upgrades demonstrator & prep work:
 - Tile calorimeter electronics demonstrator installed
 - MDT replacement options studied

View of the Inner Detector, after opening of end plate (March 2019)

Phase I Upgrades

 Liquid Argon Calorimeter Electronics improved to provide higher granularity information to trigger system

 TDAQ Readout System completely redesigned: FELIX

 Planned installation of New Small Wheel: completely new muon inner endcap

Jet Energy Scale: ATLAS

STXS Cross-Sections

Multiscale Dynamics: Gluon splitting

- Select sample rich in g→bb by large radius jet with 2 small radius sub-jets, at least 1 b-tag
 - Probe quantities related to b-b system

 Data shows significant deviation from models in angle related to gluon polarization (largely unconstrained from prior data)

Multiscale Dynamics: Jet Constituent Characteristics

- By exploiting the fact that forward jets tend to be quark dominated, can extract in situ quark & gluon distributions
 - Utilize ML technique, topic modeling, to extract distributions without dependence on MC models

Phys. Rev. Lett. 120, 241602 (2018)

 Paper has detailed comparisons of jet fragmentation quantities in forward and central regions, compares q/g distributions extracted with MC fractions to N³LO predictions

Q/G Jet Extraction

- Topics converge to quark/gluon definitions in the case that there are some bins in the dataset which are purely quark or purely gluon
 - Basically true for quarks, not quite true for gluons, but converges at high pT
 - Only true for Nch
- Extraction relying on MC fractions shows good agreement with N3LO at low pT, diverges at high pT
 - Used for Nch & fragmentation variables

$$h_{i}^{T_{1}} = \frac{h_{i}^{f} - \left(\min_{j} \{h_{j}^{f}/h_{j}^{c}\}\right) \times h_{i}^{c}}{1 - \min_{j} h_{j}^{f}/h_{j}^{c}},$$

$$h_{i}^{T_{2}} = \frac{h_{i}^{c} - \left(\min_{j} \{h_{j}^{c}/h_{j}^{f}\}\right) \times h_{i}^{f}}{1 - \min_{j} h_{i}^{c}/h_{j}^{f}}.$$

arXiv:1906.09254

Top Charge Asymmetry

Multi-scale: Jet production

 ATLAS selects hadronic top, W and dijet events and compares jet substructure variables for data and standard generators

