LHCb Status & Outlook

US-LHC Users Association Annual Meeting 2019

Daniel Craik on behalf of the LHCb collaboration

Massachusetts Institute of Technology

16th October, 2019

- LHCb has a broad physics programme
- Increasingly functioning as "a GPD in the forward region"
- Will highlight a selection of results from the last year
- Many topics not covered
 - e.g. CEP, heavy ions, fixed target...

The LHCb detector

- Instrumentation in the forward region
 (2 < η < 5)
- Excellent secondary vertex reconstruction
- Precise tracking before and after magnet
- Good PID separation up to $\sim 100 \, \text{GeV}/c$

- Triggerless readout at 40 MHz
- New vertex locator
- New tracking (UT, SciFi)

Phase 1 upgrade : Upstream Tracker

- Upgraded silicon tracker to replace TT
 - Finer granularity
 - Improved coverage
 - Lower material budget
- First major LHCb construction contribution from US
 - Bare stave construction complete
 - Sensor QA almost finished
 - ASIC design validated in test beam
 - Off-detector electronics validated in slice test, now in production
 - Aim to install first half at LHCb by March 2020
 - Contributions from Syracuse, Maryland, Cincinnati, Michigan & MIT

The LHCb detector: phase 2 upgrade

- Tracking in magnet
- ECAL upgrade
- TORCH for PID or ToF
- Replace HCAL with shielding
- Some changes could happen as part of phase 1b

- Slow particles swept out by magnet
- Significant gains at low momentum by instrumenting sides of magnet
- Particularly useful for gluon saturation studies
- Recommended for inclusion in Phase 1b ugrade
- Los Alamos leading design and construction

LHCb trigger

- Hardware trigger to be removed from Run III
- Option to move to a GPU-based HLT1 with GPUs installed on the Event Builder servers
- Demonstrated technical feasibility modulo integration tests that are underway
- May be adopted by LHCb for Run III

CP violation and CKM elements

- LHC era has seen marked improvements in key measurements (upper→lower)
- But deviations from the CKM quark-mixing mechanism continue to elude detection
- Uncertainties on "tree" quantities still give room for new physics in loops
- Key goal to improve precision on less well-determined SM measurements, γ and |V_{ub}|
- Compare these "baseline" results to loop-dominated processes to search for NP
 - Continue to improve key loop-process measurements such as $\phi_{s},\,\Delta m_{s}$ and Δm_{d}

 γ from $B^0 \rightarrow DK^{*0}$

- γ measured at tree level \rightarrow SM measurement
- LHCb average dominated by $B^+ \rightarrow DK^+$ decays
- B⁰ → DK^{*0} decay pathways both colour suppressed
 - Larger r_B cf. B^+ ightarrow DK⁺ (\sim 0.3 vs \sim 0.1)
- New analysis uses a larger dataset for 2-body GLW/ADS modes
- Includes 4-body GLW/ALS-like modes for first time
- First observations of $B^0 \rightarrow D(\pi^+ K^-) K^{*0}$ and $B^0 \rightarrow D(\pi^+ \pi^- \pi^+ \pi^-) K^{*0}$ (39.4%, 86.5% CL contours)

(39.4 %, 86.5 % CL contours

PRD90 (2014) 112002

JHEP 08 (2019) 041

- ϕ_s small in SM, may be enhanced by NP
- $B_s^0 \rightarrow J/\psi \phi$ decays studied in data from 2015-16
- Single most precise measurement of ϕ_s to date
- Other channels, e.g. $B_s^0 \rightarrow J/\psi \pi^+\pi^-$, also utilised
- $\bullet\,$ LHCb combination consistent with SM predictions -0.041 ± 0.025
- $\phi_s^{s\overline{s}s} pprox$ 0 in SM, small mixing & decay phases cancel
- New analysis of $B^0_s
 ightarrow \phi \phi$ decays in 2011-16 data
- Most precise single measurement of $\phi_s^{s\overline{s}s}$ to date $-0.073 \pm 0.115 \pm 0.027$
- Upper limit (90% CI) on rate of $B^0 \rightarrow \phi \phi$ decay $\mathcal{B}(B^0 \rightarrow \phi \phi) < 2.7 \times 10^{-8}$

CPV in charm

- Study CPV in up-type quarks
- Measure ΔA_{CP} between K⁺K⁻ and π⁺π⁻ to control systematics
- LHCb combination gives 5.3 σ significance of CPV
- First observation of (direct) CP violation in charm decays
- Global average now inconsistent with "no CPV" at more than 5σ

$$a^{
m ind}_{C\!P} = (0.028 \pm 0.026)\% \ \Delta a^{
m dir}_{C\!P} = (-0.164 \pm 0.028)\%$$

arXiv:1909.05211

CPV in ${\it B}^+\! \rightarrow \pi^+\pi^+\pi^-$ decays

- Charmless *b*-decays have tree- and loop-level contributions with similar amplitudes
- Dalitz plot analysis of ~ 20 000 B[±] → π[±]π[±]π[∓] decays recorded in Run I
- CPV previously seen in a model-independent analysis of this dataset
- Three different models considered for S-wave
- Significant CPV observed in low-m_{π⁺π⁻} S-wave, the a₂(1270) resonance and in interference between S- and P-wave contributions
- No CPV observed in $\rho \omega$ mixing
- Does not directly inform on SM or NP parameters but offers further insight into CPV in multi-body decays

Rare decays and anomalies

- Rare or forbidden SM processes sensitive to new physics contributions
- Many anomalies in current results
 - P'_5 , R_K , R_D^* , etc
- Analyses typically limited by statistics
- Exciting prospects for Run III+

- Analysis of $B^+ \rightarrow K^+ \ell^+ \ell^-$ updated with 5 fb⁻¹ of data
- Total uncertainty on R_K in $1.1 < q^2 < 6.0 \, {
 m GeV}^2/c^4$ reduced by $\sim 40 \, \%$
- Central value also moved towards SM prediction
 - 2.5 σ discrepancy *cf.* 2.6 σ in Run I
- Still statistically dominated
- More data needed

R_{K^*} and angular analyses

- Analyses of B⁰ → K^{*0}ℓ⁺ℓ[−] give access to both R_{K*} and angular quantities
- Run I analyses show interesting anomalies, e.g. R_{K*}, P'₅
- Analyses on Run II data still to come

- Updated study of $B_s^0 \rightarrow \phi \gamma$ decays
- First measurement of CPV parameters $\mathcal{S}_{\phi\gamma}$ and $\mathcal{C}_{\phi\gamma}$
- Updated measurement of $\mathcal{A}^{\Delta}_{\phi\gamma}$
- Results consistent with SM at 1.3, 0.3, and 1.7 σ

• Normalised to
$$B^0
ightarrow K^{*0}$$

$$\mathcal{B} = (7.1 \pm 1.5 \pm 0.6 \pm 0.7) imes 10^{-10}$$

LFV decays

- Charged LFV negligible in SM
- Would be clear evidence of BSM physics
- Searches for $B^+ \to K^+ e^{\pm} \mu^{\mp}$ and $B^0_{(s)} \to \tau^{\pm} \mu^{\mp}$ in Run I data
- New best limits set on branching fractions

at 90 (95) % confidence level

 $A' \rightarrow \mu^+ \mu^-$

Dan Craik (MIT)

- New physics may well be disconnected from SM up to GUT scale
- If a dark sector couples to ours at some scale, photon can mix with a dark photon

NFW

- May interact either via a particle carrying both charges or through GUT-scale interaction between sectors
- Search for massive dark photon decays to $\mu^+\mu^-$ in this "few-loop" regime

 $\varepsilon \equiv \langle \gamma' | \gamma \rangle = \langle \gamma' | \cdots \bigcirc \gamma \rangle + \langle \gamma' | \cdots \bigcirc \gamma \rangle + \cdots \\ \varepsilon \sim \mathcal{O}(10^{-3}) \qquad \varepsilon \sim \mathcal{O}(10^{-5})$

e.g. particle carrying both EM

arXiv:1910.06926

${\it A}'\!\to\mu^+\mu^-$

- New analysis extends previous LHCb searches for dark photon decays to $\mu^+\mu^-$
- Factor 3× increase in luminosity
- Search for prompt $\mu^+\mu^-$ limited by $\gamma^*\!\rightarrow\mu^+\mu^-$ background
 - Vertex-constrained fit improves resolution at low $m(\mu^+\mu^-)$
 - Isolation requirements reduce background at higher mass
- Search for long-lived A' uses vertex resolution to reduce background
 - Dominant backgrounds from material interaction, b-decays to multiple muons and K⁰_s decays
- Exclusion region expected to be significantly increased with Run III analysis

NEW

Hadron production in Z^0 -tagged jets

- Production of charge hadrons studied in jets in 2012 data
- First studies of jet hadronisation in forward direction and in jets produced with a Z⁰
- cf. mid-rapidity jets, more collimated in both z and r
 - More similar to ATLAS γ +jet
 - Suggests effect due to quark-dominated jets
- *cf.* simulation, more high-momentum hadrons

Spectroscopy and production

- Many new states and decays observed
- Many serendipitous discoveries
- In particular, LHC provides a unique environment to study *b*-baryons
 - First evidence of CP violation in A⁰_b decays
 - First observation of pentaquarks

- Hidden-charm pentaquarks first observed in 6D amplitude analysis of $\Lambda_b^0 \rightarrow J/\psi \, pK^-$ decays
- Latest analysis uses 9× larger dataset to perform 1D mass fit
- Previously observed resonance resolved into two separate states
- New narrow state observed, $P_c(4312)^+$
- Near-threshold masses hint at molecular structures
- Also expect relatively narrow $\Sigma_c^{*+}\overline{D}^{(*)0}$ states
- For *P_c*(4312)⁺ and *P_c*(4457)⁺, thresholds within widths of peaks
 - Possible virtual states, arXiv:1904.10021
- Updated 6D amplitude analysis required to identify broad states or assign *J*^P

c-baryon lifetimes

- Properties of charm baryons effective tests of higher-order corrections to HQE
- Lifetimes of Λ⁺_c, Ξ⁰_c and Ξ⁺_c baryons last measured almost 20 years ago
- Recent LHCb measurement of Ω⁰_c lifetime 4× larger than previous average
 PRL 121 (2018) 092003
- Reconstruct baryons produced in semimuonic decays of b-baryons and decaying to hadronic final states
- Λ_c^+ and Ξ_c^- consistent with previous averages
- Ξ_c^0 shows 3.3 σ discrepancy

- $\frac{f_c}{f_u+f_d}$ determined from $B_c^+ \to J/\psi \, \mu^- \overline{\nu}$ decays
- Analysis performed at $\sqrt{s} = 7$ TeV and 13 TeV
- Normalised to inclusive B⁰ and B⁺ semimuonic rates
- Production asymmetry consistent with zero

 $\begin{array}{l} \frac{f_c}{f_u+f_d} = (3.63\pm0.08\pm0.12\pm0.86)\times10^{-3} \text{ at 7 TeV} \\ \frac{f_c}{f_u+f_d} = (3.78\pm0.04\pm0.15\pm0.89)\times10^{-3} \text{ at 13 TeV} \end{array}$

NFW

- Run I & II datasets continue to provide new results
 - Both in flavour physics and beyond
- Work to upgrade the detector for Run III+ continues in parallel
- Many more exciting results to come...