

(Doubly-) Charmed Baryon Lifetime Measurements at LHCb

Michael Wilkinson of Syracuse University on behalf of LHCb

16 October 2019 USLUA 2019

- $\tau(\Omega_c^0, \Lambda_c^+, \Xi_c^+, \Xi_c^0)$
- Ξ_{cc}^{++} observation
- $\tau(\Xi_{cc}^{++})$

Measurement of the Ω_c^0 baryon lifetime, 31 August 2018, <u>arXiv:1807.02024</u> Precision measurements of the Λ_c^+ , Ξ_c^+ and Ξ_c^0 baryon lifetimes, 19 June 2019, <u>arXiv:1906.08350</u>

$$\tau(\Omega_c^0), \tau(\Lambda_c^+), \tau(\Xi_c^+), \tau(\Xi_c^0)$$

Decay Modes and Selections

- $\Lambda_b^0 \to \Lambda_c^+ \mu^- \bar{\nu}_\mu X$ $-\Lambda_c^+ \to p K^- \pi^+$
- $\Xi_b^0 \to \Xi_c^+ \mu^- \bar{\nu}_\mu X$ - $\Xi_c^+ \to p K^- \pi^+$
- $\Xi_b^- \to \Xi_c^0 \mu^- \bar{\nu}_\mu X$ - $\Xi_c^0 \to p K^- K^- \pi^+$
- Semileptonic decays
 - H_b reconstructed as $H_c \mu^-$
 - Separation of H_c from primary vertex reduces lifetime bias in selections

Decay Modes and Selections

 $au_{H_{\mathcal{C}}}$

$\tau_D^{}+$

- Reduce systematics
- $\ B \rightarrow D^+ \mu^- \bar{\nu}_\mu X$
 - $D^+ \rightarrow K^- \pi^+ \pi^+$
- $\int \mathcal{L} = 3.0 \text{ fb}^{-1}$ at 7 & 8 TeV in Run 1
- All modes require a set of kinematic, vertexing, and Particle IDentification (PID) selections to eliminate background
- Ω⁰_c, Ξ⁺_c also use a Boosted Decision Tree (BDT) trained on simulation and mass sidebands to improve signal-tobackground ratio

Fits to $m(H_c)$

Fits to $m(H_c)$ using a sum of two Gaussians for the signal and an exponential function for the background (used for background subtraction of the decay time distributions)

 $\times 10^{3}$

Candidates / (0.5 MeV/*c*²)

20

10

2 3 D^+ decay time [ps]

times

- signal templates taken from simulation •
- linear correction for differences in ulletefficiency between data and simulation
- floating weight for real vs. simulated lifetime

Signal yield / 0.02 ps 0. 0. 0.

 $B \rightarrow D^+ \mu^- \overline{\nu} X$

+ Data

- Fit

LHCb

Fits to background-subtracted decay

0.5

 $\Omega_b^- \to \Omega_c^0 \mu^- \overline{\nu} X$

+ Data

Fit

Fits to $\tau(H_c)$

LHCb

Signal

10²

$\tau_{\Omega_c^0} = 268 \pm 24 \pm 10 \pm 2 \text{ fs}$ $\tau_{\Lambda_c^+} = 203.5 \pm 1.0 \pm 1.3 \pm 1.4 \text{ fs}$ $\tau_{\Xi_c^+} = 456.8 \pm 3.5 \pm 2.9 \pm 3.1 \text{ fs}$ $\tau_{\Xi_c^0} = 154.5 \pm 1.7 \pm 1.6 \pm 1.0 \text{ fs}$

result ± statistical ± systematic ± due to uncertainty on τ_D^+

Results and Implications

- $au_{\Omega_c^0} = 268 \pm 24 \pm 10 \pm 2$ fs
- $au_{\Lambda_c^+} = 203.5 \pm 1.0 \pm 1.3 \pm 1.4$ fs
- $au_{\Xi_c^+} = 456.8 \pm 3.5 \pm 2.9 \pm 3.1 \, \text{fs}$
- $\tau_{\Xi_c^0} = 154.5 \pm 1.7 \pm 1.6 \pm 1.0$ fs

result ± statistical ± systematic ± due to uncertainty on τ_{D^+}

- $\tau_{\Lambda_c^+}, \tau_{\Xi_c^+}$, and $\tau_{\Xi_c^0}$ have 3-4x smaller uncertainties than previous world averages
- $\tau_{\Xi_c^0} 3.3\sigma$ larger than previous world average 112^{+13}_{-10} fs

- $\tau_{\Omega_c^0} 6.9\sigma$ larger than previous world average 69 \pm 12 fs
 - Changes lifetime hierarchy
 - Previous world averages

$$\tau_{\Xi_c^+} > \tau_{\Lambda_c^+} > \tau_{\Xi_c^0} > \tau_{\varrho_c^0}$$

- LHCb measurements $\tau_{\Xi_c^+} > \tau_{\Omega_c^0} > \tau_{\Lambda_c^+} > \tau_{\Xi_c^0}$
- Highlights theoretical uncertainties:
 - Higher-order terms in Heavy Quark Expansion (HQE)
 - Degree of interference between spectator squarks and that from $c \rightarrow sW^+$ transition $(\Omega_c^0 = css)$
 - Role of spectator *ss* system spin

Observation of the doubly charmed baryon Ξ_{cc}^{++} , 14 September 2017, <u>arXiv:1707.01621</u>

Ξ_{cc}^{++} OBSERVATION

Decay Mode and Selections

- Look for $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$ - $\Lambda_c^+ \rightarrow p K^- \pi^+$
- Measure $m_{\text{cand}}(\Xi_{cc}^{++}) \equiv$ $m(\Lambda_c^+ K^- \pi^+ \pi^+) - m_{\text{cand}}(\Lambda_c^+) +$ $m_{\text{PDG}}(\Lambda_c^+)$
- $\int \mathcal{L} = 1.7 \text{ fb}^{-1}$ at 13 TeV in Run 2
- Pass a set of kinematic, vertexing, and PID selections to eliminate background
- Neural network (MLP) trained on simulation and data control samples discriminates kinematic and vertexing parameters

Mass Fit

- Fit signal with the sum of a Gaussian and a double-sided Crystal Ball with the same means
 - Mass, yield, resolution float, other parameters fixed to simulation
- Fit background with 2nd order polynomial
- 313 ± 33 signal yield
 - > 12σ local significance, verified with 8 TeV sample

Results and Implications

- $m(\Xi_{cc}^{++}) = 3621.40 \pm 0.72 \pm 0.27 \pm 0.14 \text{ MeV}/c^2$
 - result ± statistical ± systematic ± due to uncertainty on $m(\Lambda_c^+)$
- Consistent with most theoretical expectations (3.5 GeV $< m(\Xi_{cc}^{++}) < 3.7$ GeV)
- 12σ significance even for candidates with decay time 5x > uncertainty - Indicates weak decay
- Mass splitting too large to be SELEX Ξ_{cc}^+ isospin partner
 - SELEX observed a state identified as Ξ_{cc}^+ in 2002 ($\Xi_{cc}^+ \rightarrow \Lambda_c^+ K^- \pi^+$, 6.3 σ , arXiv:0208014) and 2004 ($\Xi_{cc}^+ \rightarrow pD^+K^-$, 4.8 σ , arXiv:0406033).
 - FOCUS (<u>Nucl. Phys. Proc. Suppl. 115 (2003) 33</u>), BaBar (2006, <u>arXiv:0605075</u>), Belle (2006, <u>arXiv:0606051</u>), and LHCb (2013, <u>arXiv:1310.2538</u>) have null results when looking for this state...
 ...but SELEX used hyperon beam on fixed nuclear targets.
 - If SELEX measurement wrong, this is the 1st observation of a doubly-charmed baryon.
 - $m_{\text{LHCb}}(\Xi_{cc}^{++}) m_{\text{SELEX}}(\Xi_{cc}^{+}) = 103 \pm 2 \text{ MeV}/c^2$

Measurement of the lifetime of the doubly charmed baryon Ξ_{cc}^{++} , 31 July 2018, <u>arXiv:1806.02744</u>

Decay Modes and Selections

- Look for $\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+$ $-\Lambda_c^+ \to p K^- \pi^+$
- Measure $\frac{\tau_{\Xi_{CC}^{++}}}{\tau_{\Lambda_b^0}}$ - $\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^- \pi^+ \pi^-$
- $m = M(\Lambda_c^+ h \pi \pi) M([pK^-\pi^+]_{\Lambda_c^+}) + M_{\text{PDG}}(\Lambda_c^+)$

- $\int \mathcal{L} = 1.7 \text{ fb}^{-1}$ at 13 TeV in Run 2
- All modes require a set of kinematic, vertexing, and PID selections to eliminate background, as well as hardware triggers designed to minimize bias
- Neural network (MLP) trained on simulation and data control samples discriminates kinematic and vertexing parameters
- Largely mimics Ξ_{cc}^{++} observation analysis

Fits to m using the sum of a Gaussian and a double-sided Crystal Ball for the signal and a 2nd order Chebychev polynomial for the background

 304 ± 35 signal Ξ_{cc}^{++} and 3397 ± 119 normalization Λ_b^0 candidates

Lifetime Fit

Results and Implications

- $\tau_{\Xi_{cc}^{++}} = 256_{-22}^{+24} \pm 14 \text{ fs}$
 - result ± statistical ± systematic
- First measurement
 - Verifies weak decay
 - Favors the lower end of theoretical predictions
- From theoretical predictions,

$$\tau_{\Xi_{cc}^{++}} \simeq 3.5 \times \tau_{\Xi_{cc}^{+}} \Rightarrow \tau_{\Xi_{cc}^{+}} \simeq 60 - 90 \text{ fs}$$

- Theoretically, $\tau_{\Xi_{cc}^{++}} > \tau_{\Xi_{cc}^{+}}$ because
 - Ξ_{cc}^{++} *u*-quark and decay products interfere destructively.
 - Ξ_{cc}^+ c- and d-quarks contribute additional W-exchange.
- Inconsistent, according to theoretical models, with SELEX result (90% CL, arXiv:0208014):

$$au_{\Xi_{cc}^+} < 33 ext{ fs}$$

CONCLUSIONS

Conclusions

- LHCb has recently advanced our knowledge of (doubly-) charmed baryon lifetimes.
 - Changed lifetime hierarchy:

$$\tau_{\Xi_c^+} > \tau_{\Lambda_c^+} > \tau_{\Xi_c^0} > \tau_{\Omega_c^0} \to \tau_{\Xi_c^+} > \tau_{\Omega_c^0} > \tau_{\Lambda_c^+} > \tau_{\Xi_c^0}$$

- $-\tau_{\Xi_c^0} \sim 3.3\sigma$ greater than previous world average
- Greater precision for $\tau_{\Lambda_c^+}$, $\tau_{\Xi_c^+}$, $\tau_{\Xi_c^0}$
- First observation of Ξ_{cc}^{++}
- First measurement of $au_{\Xi_{cc}^{++}}$

FIN

BACKUP

Results and Implications

LHCb (no fits): RS: $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$ WS: $\Lambda_c^+ K^- \pi^+ \pi^-$ SB: $m(\Lambda_c^+)$ sideband