Using charged particles to study jet quenching in heavy ion collisions with CMS

Austin Baty for the CMS Collaboration Rice University

October 17
US LHC Users Association Annual Meeting 2019

Introduction - jet quenching

- Heavy ion collisions produce Quark-Gluon Plasma
- Can use jets to probe QGP's short-range structure
- QGP induces additional radiation
 - Jets appear to lose energy
 - · 'jet quenching'

Cold Nuclear Matter

Nuclear Modification Factor

- High-p_T hadrons come from jets
- Quenching quantified by charged hadron R_{AA}
- R_{AA} = 1 means no jet quenching
- Run 2 data lets us compare different ion sizes
- Unprecedented PbPb luminosities
 - Can probe high-p_T region
- First time XeXe data analyzed at LHC 0.5

$$R_{\rm AA}(p_{\rm T}) = \frac{1}{T_{\rm AA}} \frac{dN^{\rm AA}/dp_{\rm T}}{d\sigma^{pp}/dp_{\rm T}}.$$

EPJC 72 (2012) 1945

RAA - similar centrality

- Compare head-on collisions circular QGP
- XeXe less suppressed than PbPb at high pT
 - Expected from smaller path length

RAA - similar centrality

- Compare head-on collisions circular QGP
- XeXe less suppressed than PbPb at high p⊤
 - Expected from smaller path length

- Ratio can not be predicted by all models
- What if we compare similar-sized QGPs?

Comparing similar QGP size

• Look at 1 p_T bin and vary * dimpact parameter

- N_{part} measures QGP 'size'
- Similar suppression for similar QGP size
- Can constrain path-length dependence of quenching

Research Impact

 One of first analysis of ions smaller than Pb at LHC

 Quenching signal observed even in small QGPs

 Informed discussion of running lighter nuclei

Oxygen-Oxygen run planned ~2023^{0.2}

Complementary to RHIC studies

Table 4: Parameters and performance for a range of light nuclei with a moderately optimistic value of the scaling parameter p = 1.5 in (5).

CERN-LPCC-2018-07	$^{16}{ m O}^{8+}$	$^{40}{ m Ar}^{18+}$	$^{40}{\rm Ca}^{20+}$	$^{78}{ m Kr}^{36+}$	$^{129}{ m Xe}^{54+}$	$^{208}\text{Pb}^{82+}$
$\overline{\gamma}$	3760.	3390.	3760.	3470.	3150.	2960.
$\sqrt{s_{ m NN}}$ /TeV	7.	6.3	7.	6.46	5.86	5.52

Research Impact

 Simple models can tried to extract path-length dependence

$$\frac{dE}{dx} \propto L^{0.3 \pm 0.5}$$

- Other projects, such as JETSCAPE, are also attempting to do global fits of R_{AA} data
 - Useful input to such analyses

Summary

- Charged particle R_{AA} measured in PbPb and XeXe collisions
 - Quenching signal depends on size of system, regardless of ion producing QGP
- Motivates further study of lighter nuclei in Runs 3 & 4
- Path-length dependence of jet quenching can be constrained
 - Teaches us about QGP short-range structure

Backup

Charged Particle Spectra

RpPb

Comparing to lower energies

