

The ALICE Time Projection Chamber Upgrade

Presented by Charles Hughes on behalf of the ALICE Collaboration

PHYSICS MOTIVATION FOR UPGRADES

- Quark Gluon Plasma (QGP) hot, thermalized partonic state of matter
- Wish to study QGP thermodynamic properties
- Higher luminosity
 - More hard probes (increase in triggered data -> 10x)
 - More soft probes (increase in min. bias data -> 100x)

Run 3 Instantaneous Luminosity -> 6 x 10²⁷ cm⁻² s⁻¹

UPGRADING THE TPC

- ~ 3 kHz readout rate not enough to handle higher luminosity
- Heavy ion interaction rate to increase from 1 kHz to 50 kHz
- Eliminate ~400 μs dead time
- Replace MWPCs with GEM foils: 3kHz -> Continuous Readout

Gaseous Electron Multiplier (GEM) FOILS

- Kapton Foil Polyimide film insulator (poly-oxydiphenylene-pyromellitimide)
- Upper and lower copper (kupfer) conducting layer
- Kupfer

 Kapton

 Kupfer

 Kapton

 Kupfer

 Kupfer

 Base

 Elektronen

- 70 µm diameter holes
 - etched with photo-lithography
- 4 Layers of foil with varying GEM pitch
 - -LP SP SP LP

READOUT CHAMBER PRODUCTION

Charles Hughes | University of Tennessee | US LHC UA Meeting 2019

ALICE

A Large Ion Collider Experiment

INNER READ OUT CHAMBER PRODUCTION

- Ingredients:
 - 4 GEM STACK
 - PAD PLANE (SENSORS)
 - ALUBODY
 - STRONG BACK

INNER READ OUT CHAMBER ASSEMBLY

- Cooling System
- Epoxy:
 - Padplane + Strongback + Alubody
- LEMO connectors

UPGRADE STATUS

SUMMARY

- ALICE: 1 kHz interaction rate -> 50 kHz interaction rate (in heavy ion)
- ALICE TPC rebuilt
 - Replace MWPCs with GEM foils
 - New readout electronics
- New ROCs installed in TPC, FEC testing underway

Backup

A Large Ion Collider Experiment

Comparison of old to new

GEM Configuration and Settings

- Nominal GEM Voltages:
 - GEM 1 TOP: ~ -3.5 kV
 - ΔU_{GEM1} : 270 V
 - ΔU_{GEM2} : 230 V
 - ΔU_{GEM3}: 288 V
 - ΔU_{GEM4}: 359 V
- Nominal Transfer Fields:
 - Gap 12: 4.0 kV/cm
 - Gap 23: 4.0 kV cm
 - Gap 34: 0.1 kV/cm
 - Gap 4PP: 4.0 kV/cm

A Large Ion Collider Experiment

TPC READOUT ELECTRONICS

- Prototyped at Oak Ridge National Lab in Tennessee
- 2 x Versatile Links
 - VTRx-
 - VTTx ____
- 2 x GBTx ASICs
- 5 x SAMPA ASICs -
- Thermal Pads + Copper Cooling Jacket

TPC READOUT ELECTRONICS (continued)

- 3276 new FECs
- 160 channels, deadtime-less digitization at 5 MHz
- Collective output of FECs is 3 TB/s continuous data stream
- FEC production 97.7 % yield

GAIN

 Collimated X-ray source measures cathode and anode current on a per pad basis

GEM QA: SPARK TEST

- Plexiglass HV drawer flushed with dry N₂
- Multichannel floating pico-ammeter for spark monitoring and current leak

• 10 nA rejection criteria

IN SITU ROC TESTING

- Real time spark rate monitoring as function of nominal GEM voltages
- Rocs just under beam line in front of PMD in mini-frame
- Tested during end of Run 2 in Fall 2018. Includes high luminosity pp run and PbPb run.
- Also tested in GIF++ facility before & after start of LS2

