COSINE Experiment current status and prospect

Hyun Su Lee Center for Underground Physics (CUP) Institute for Basic Science (IBS)

Long-term Strategy of High Energy Physics in Korea September 20-21, 2019

Current status of direct dark matter searches

- Well progressed for high mass search to10⁻⁴⁶cm² @ 50 GeV
- Exploring low-mass dark matter
- Unresolved signal from DAMA

DAMA/LIBRA experiment

- Located at LNGS, Italy
- 25 x 9.70 kg Nal(Tl) detectors ~ 250 kg
- Search for the annual modulation signal
- Crystals grown by Saint-Gobain
 - Extensive R&D for low-background crystals
 - ✤ 0.85 ~ 1.3 counts/keV/kg/day (dru) background
- Light yield of 5~10 NPE/keV

- DAMA/Nal (100 kg, 1996~2003) First modulation result, PLB 424, 195 (1998)
- DAMA/LIBRA-phase1 (250 kg, 2003-2010)
- DAMA/LIBRA-phase2 (250 kg, 2010~current)

Annual modulation signal from DAMA/LIBRA

Global Nal(TI) efforts

COSINE collaboration (Since 2015)

KIMS and DM-Ice joint effort to search for dark matter interactions in NaI(TI) scintillating crystals. (Goal to test DAMA/LIBRA experiment)

COSINE organization

COSINE-200 R&D (Hyunsu)

Purification (KunA), Crystal growing (Sejin), Detector encapsulation (Changhyon) + others

COSINE-100 detectors

Eur. Phys. J. C 78 (2018) 107 Eur. Phys. J. C 78 (2018) 490 JINST 13 (2018) P09006 JINST 13 (2018) T02007 JINST 13 (2018) T06005

Physics run since Sept/2016

COSINE-100 detector configuration

Costs

Items	price
Crystals	10 (<mark>5</mark>)
3" PMTs	0.5 (<mark>0.2</mark>)
Shielding	2
Lead	4.5
Copper	0.5
LS	0.2
5" PMTs	0.3
Muon	1
2" PMTs	0.4
DAQ	0.5
High Voltage	0.3
Total	20.2억원

Contribution from Yale ~ 5.2

Unit : 0.1 billion KRW (1억원)

COSINE-100 operation

temperature (°C)

COSINE-100 exposure

- Stable physics run
 - >90% physics data
 - ✤ >95% good runs
- Operating more than 2.8 years
 - 2.5 years good data

Background understanding

First physics result (two month data)

Inelastic boosted dark matter search (two month)

PHYSICAL REVIEW LETTERS 122, 131802 (2019)

Editors' Suggestion

April/2019

First Direct Search for Inelastic Boosted Dark Matter with COSINE-100

Effectively ton scale detector taking advantages of 2 ton liquid scintillator

Annual modulation result with COSINE-100 (1.7 years)

Publication summary (2014 - 2019)

Nature	1
PRL	2
JHEP	3
JCAP	1
PRD	1
EPJC	4
AP	4
NIMA	2
JINST	4
JRNC	1
IEEE	1
Total	24

Total	24
2019	6+(?)
2018	8
2017	2
2016	3
2015	3
2014	2

Ph.D students

Three Ph.D Theses so far

SNU, Sejong, Bangdung

Current Ph.D students

IBS-UST	2
Sejong	1
SNU	1 (+1)
KNU	1
SKKU	1
Korea	1
Yale	2
Sheffield	1
Sao Paulo	2 (+3)
Total	11 (+5)

COSINE-200 crystal development

• Goal : Background less than DAMA/LIBRA (1 dru)

Needs a factor two or more improvement

Powder purification/crystal growing/detector assembly will be done at IBS, Korea

Purification factory ~ 70 kg powder load

Hyun Su Lee,

Powder purification performance K.A. Shin et al., J. Rad. Nucl. Chem. 317, 1329 (2018)

	K (ppb)	Pb (ppb)	U (ppb)	Th (ppb)
Initial Nal	248	19.0	<0.01	<0.01
Purified Nal	<16	0.4	<0.01	<0.01

COSINE-200 crystal development

- Demonstrated quick detector assembly and underground measurements!!
- Good optical quality
- If we reduce ²¹⁰Pb contamination, we can reach to DAMA level (1dru)

COSINE-200 crystal development

Aug/2019

Pure Nal

<Quartz cover>

< Impurity>

<Body growth>

<u>Tl doped</u>

2019.9.19

1.2 kg

ICP-MS measurement

	K (ppb)	Pb (ppt)	U (ppt)	Th (ppt)
Powder	<14	<300	<5.2	<4.6
Aug/2018	300	9000	<5.2	<4.6
Mar/2019	100	17000	<4.3	<2.6
Aug/2019	100	<240	<4.3	<2.6

To understand ²¹⁰Pb, we need underground measurement

Competitors

SABRE

Arrived at LNGS on August 6, 2019

First crystals Total Alpha : 0.4 mBq/kg 0.4 ppt ²³⁸U

0.2 ppt ²³²Th

PICO-LON

RI	Ingot26 (2015)	Ingot37 (2016)	Ingot71 (2018)	Ingot76 (2019)	Goal
Size	3"фХ3"	4" \$X3#	3"фХЗ"	5" фX4"(*)	5″фХ5″
⁴⁰ K (ppb)	2630	120	<20	<20	<20
²³² Th (ppt)	0.4±0.5	3.7±0.5	1.7±0.2		<4
²³⁸ U (ppt)	4.7±0.3	5.9±0.3	9.7±0.8	4.4±0.2	<10
²¹⁰ Pb (µBq/kg)	30±7	2300	1076	~560	<50
Method	Resin for Pb Factor	126+cation resin ory moved.	double re- crystallizat ion	Pb resin + double re- crystallizat ion	

COSINE is frontier in low-background NaI crystal (CUP has all technologies)

COSINE-200 sensitivity (similar for all future project)

1 counts/kg/keV/day background (same as DAMA/LIBRA)

COSINE-200 costs (2021~)

- Current COSINE-100 shield is designed for 200 kg experiment
- We just need to replace all crystals
- COSINE-200 may start around 2020-2021
- Yale won NSF funding for COSINE experiment since 2019 fall

Items	price
Crystals	2
3" PMTs	0.5
Shielding	-
Lead	-
Copper	-
LS	0.2
5" PMTs	-
Muon	-
2" PMTs	-
DAQ	0.5
High Voltage	0.3
Total	3.5 억원

Already 2.3 억원 was spent

1.2 억원 will be supplied (2020~2021)

COSINE-200 in the South Pole (2023?)

If we observe similar modulation as DAMA

Southern hemisphere experiment is needed

• South Pole has good option at 2022-2023 with IceCube upgrade

We can provide low-background NaI(TI) detectors

Close-Packed Detector Array

COSINE-200 in Gran Sasso (?)

• If we do not see similar modulation as DAMA/LIBRA

It may be local environmental (or scientific?) issue

It seems to be required to do same experiment in same place
 SABRE in Gran Sasso

MOU between IBS and INFN

한국-이탈리아 손잡고 우주의 비밀 푼다

IBS, 이탈리아 국립핵물리연구소(INFN)와 업무협약(MOU) 체결

COSINE-200 in Gran Sasso (?)

• If we do not see similar modulation as DAMA/LIBRA

It may be local environmental (or scientific?) issue

It seems to be required to do same experiment in same place
SABRE in Gran Sasso

COSINUS

MOU between IBS and INFN

한국-이탈리아 손잡고 우주의 비밀 푼다

IBS, 이탈리아 국립핵물리연구소(INFN)와 업무협약(MOU) 체결

COHERENT

DAMA-1ton

Low-background NaI has large interests from community

General direction for dark matter detector

Nal(TI) for dark matter detector

- Nal(TI) is easy to scale up with affordable background &cost
- Affordably low energy threshold

0.1 dru background?

- Cosmogenic
 - ²²Na, ³H may be issue
 - Our own growing make much less contribution
 - May consider underground crystal growing lab
- Internal background
 - Further development of powder purification & crystal growing
- External background
 - At low energy, it is already low enough. Can consider crystal capsuled with LS

May consider larger LS thickness between PMT to crystal

0.1 dru background?

- Cosmogenic
 - ✤ ²²Na, ³H may be issue
 - Our own growing make much less contribution
 - May consider underground crystal growing lab
- Internal background
 - Further development of powder purification & crystal growing
- External background
 - At low energy, it is already low enough. Can consider crystal capsuled with LS

May consider larger LS thickness between PMT to crystal

Current COSINE crystal

0.1 dru background?

- Cosmogenic
 - ✤ ²²Na, ³H may be issue
 - Our own growing make much less contribution
 - May consider underground crystal growing lab
- Internal background
 - Further development of powder purification & crystal growing
- External background
 - At low energy, it is already low enough. Can consider crystal capsuled with LS

May consider larger LS thickness between PMT to crystal Internal (1/30)

cosmogenic (1/20)

Background reduced crystal

Further lower background

 External background can be rejected if we put active tagging (liquid scintillator) between PMT and crystal

Low energy threshold with multivariable analysis

Low energy threshold from COSINE-100 detector

COSINE-1ton experiment ? (2025~)

• 0.1 dru background, 0.5 keV threshold, 1 ton year exposure

price **Crystals** 10 3" PMTs 5 5 Shielding 15 Lead LS 5" PMTs 0.5 Muon 2 2" PMTs DAQ High Voltage

Total

~40 억원

COSINE-200 will be precursor for COSINE-1ton

It can be reduced to half if we reuse all materials of COSINE-200

COSINE-1ton experiment ? (2025~)

• 0.1 dru background, 0.5 keV threshold, 1 ton year exposure

Items	price
Crystals	10
3" PMTs	5
Shielding	5
Lead	15
LS	1
5" PMTs	0.5
Muon	2
2" PMTs	1
DAQ	1
High Voltage	1
Total	~40 억원

Good detector to study ⁸B solar neutrino

COSINE-1ton experiment ? (2025~)

• 0.1 dru background, 0.5 keV threshold, 1 ton year exposure

Items	price
Crystals	10
3" PMTs	5
Shielding	5
Lead	15
LS	1
5" PMTs	0.5
Muon	2
2" PMTs	1
DAQ	1
High Voltage	1
Total	~40 억원

Pulse shape discrimination

COSINE-1ton for spin-dependent interaction

- Both Na (Z=11) and I (Z=53) are proton spin-odd
 - Sensitive detector for spin-dependent WIMP-proton interaction
 - Most of dark matter detector has proton even element

Optimize crystal encapsulation for high light yield

Assembly

• 25 NPE/keV would be possible

NEO-1 ~2ONPE/keV

~23NPE/keV

Institute for Basic Science (IBS)

NEON : Neutrino Elastic-scattering Observation with NaI(TI)

Tendon Gallery of Hanbit Nuclear Power Plant (Yeonggwang)

- Use same place of NEOS experiment
- Put ~ 10 kg commercial NaI(TI) detectors

Largest mass between similar experiments at reactor

Background of commercial crystals

- Commercial crystals
- ~ 10 dru background
 & COSINE crystal is 3 dru
- Low threshold below 0.5 keV
- Further studies are ongoing

S)

Sensitivity

Threshold >= 4 PE

1000 Pseudo experiments $\Delta \chi^2$ distribution

Estimate $\Delta \chi^2 = \chi^2 (null) - \chi^2 (best fit)$

Significance : 4. 5 \pm 0. 7 σ

Strategy & costs

2019	2020	2021	2022	2023	2024	2025
	NEON-pilot	t				
		N	EON-phase	1		
				N	EON-phase	2

- NEON-pilot (~2021) ~ 1억원 (+2억원 already spent)
 - ~ 10 kg commercial quality crystals (Expect ~10 dru background)
 - We will install detector by the end of this year $> 3 \sigma$ evidence
 - Goal : demonstration of detector performance and some hints of CNNS signals
- NEON-phase1 (~2023) ~ +1억원 (crystal +5억원) Recycle COSINE-100 crystal?
 - ~ 50 kg COSINE-100 quality crystals (~3 dru background)
 - Goal : observation of CNNS from reactor $> 5 \sigma$ observation
- NEON-phase2 (~2025) ~ +2억원 Can use COSINE-200 crystals
 - ~100 kg further purified crystals (< 1 dru background) $> 10 \sigma$
 - Goal : precision measurement and explore new physics interaction

$\overline{v_e} - e$ scattering at below 3 MeV

Summary

- Primary goal of COSINE experiment is to prove (disprove) DAMA annual modulation
 - COSINE-100 has produced interesting understanding for this purpose
 - COSINE-200 will make final conclusion
- NaI(TI) detector R&D for COSINE-200 is well progressed
- Beyond DAMA modulation has been studied and a few interesting directions are available
 - Spin-dependent WIMP-proton interaction
 - Coherent neutrino scattering

Backup

COSINE-100 construction

Light yield with different temperature

))

Test setup for 150K
 We observe ~20% increase of light yield

- In addition, alpha quenching is increased ~ 20%
- Total 40% increase (?)

Nal(TI) crystals

Pro

- High light output
 40,000 photons/MeV
 >60,000 photons/MeV?
- Easy to grow
 - Cheap
 - ✤ Large size
- The most widely used scintillator

Con

- Huge hygroscopic materials
- Contamination of natural Potassium

 ~ 3keV X-ray from ⁴⁰K

Center for Underground Physics (CUP),

No good identification of NR

Hyun Su Lee,

The first 32 inch diameter Nal(TI) crystal. Pictured from left to right are Dr. Swinehart Ed Jablon, Joe Knaus and Marko Sfilgoi.

Properties From Sai	int-Gobain
Density [g/cm³]	3.67
Melting point [K]	924
Thermal expansion coefficient [C ¹]	47.4 x 10 ⁻⁶
Cleavage plane	<100>
Hardness (Mho)	2
Hygroscopic	yes
Wavelength of emission max [nm]	415
Refractive index @ emission max.	1.85
Primary decay time [ns]	250
Light yield [photons/keVγ]	38
Temperature coefficient of light yield	-0.3%C ⁻¹

Institute for Basic Science (IBS)

Improving Background Understanding

with 1 keV threshold