

YEONGDUK KIM DIRECTOR OF CUP

Long-term Strategy of High Energy Physics in Korea

한 덕 첩 공

I will talk about

- 1. Overview of AMoRE project
- 2. Achievements
- 3. Comparison
- 4. Budget
- 5. Yemilab construction
- 6. CUP Infra
- 7. Schedule
- 8. Rare-beta, SIMP (Preliminary Project)

Non-accelerator Projects in Korea

AMoRE

Principle of AMoRE Detector

• Use Mo containing Scintillating Bolometer : (⁴⁰Ca,X)¹⁰⁰MoO₄ + MMC

5

• For Each crystal, phonon and photon sensors made of MMCs+SQUIDs to separate alphas (background) and betas (signal). Highly Technical !

Planned Phases of AMoRE Project

ckky : counts/ (keV kg year)

	AMoRE-Pilot	AMoRE-I	AMoRE-II
Crystal Mass (kg)	1.9	6	200
Backgrounds(ckky)	10-2	10-3	10-4
T _{1/2} (year)	1.1×10^{24}	8.2×10^{24}	8.2×10^{26}
m _{bb} (meV)	380-719	130-250	13-25
Schedule	2015-2018	2019-2022	2022-2026

It took long time to get ready for AMoRE-II !

Achievements 1. – Demonstration of detectors

Alpha Backgrounds are effectively rejected with PSD & Light/Heat raio.

Energy (keV ee)

arXiv:1903.09483, Accepted to EPJC

10

10

10 ⁰

10

Counts / (keV kg y)

2. Background Modeling

Active components harmful at ROI are identified.

3. Background reduction

Two major background sources are removed.

The goal for AMoRE-I starting this Oct. is to understand the background better. More shielding are added for this test.

Estimation for AMoRE-II backgrounds

- Tried to identify critical components in the setup for AMoRE-II experiment.
- For AMoRE-II, the Crystal Bulk activity for zero background has been set.

AMoRE-II requirement

10

4. Ultra-pure Crystal R&D

Enriched Li₂¹⁰⁰MoO₄ crystal grown at CUP

We have grown an enriched LMO crystal without any purification to check what level of contamination would be reached by only from crystal growing process.

 $Li_2CO_3 + MoO_3 \rightarrow Li_2MoO_4 + CO_2$

CZ02-L1803E

- 1. mass : 607.2 g (including seed)
- 2. diameter : 50.0 ~ 51.3 mm
- 3. Total length : 136.0 mm
- 4. Body length : 64.4 mm

- □ Natural LMO tested at wet dilution refrigerator.
- \square 300 g crystal + MMC
- □ Light/Heat ratio gave DP~12.
- A problem of Au foil attachment. After a few months, the Au phonon collector seems unstable.

Purities of CUP grown LMO crystals

	Single crystallized I (with purified Mo	EMO O3)	Dr th 3 si	ouble crystal ingle crystall	ITT IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	vi Poliski su	L MO tace						
Element		Al	K	Ba	Sr	Pb	Th	U					
No.	sample	(ppb)	(ppb)	(ppb)	(ppt)	(ppt)	(ppt)	(ppt)					
	Single crystallized natural LMO (w/o purification)												
CMD 113	L1701-1	48.1	347.3	5.445	<15	<300	<15	<16					
CMD 113	L1701-2	21.7	449.2	5.401	75	<300	<15	<16					
		Single cr	ystallized natu	Iral LMO (Mo	O ₃ sublimed)								
CMD163.1	CZ02-L1706-T	<11	38	7.579	<50	<100	<8	<8					
CMD163.2	CZ02-L1706-B	<11	83	9.617	<50	<100	<8	<8					
		Double cr	rystallized nati	ural LMO (Mo	O_3 sublimed)								
CMD191.1	CZ02-L1801-T	<11	<30	4.744	<50	<100	<8	<8					
CMD191.2	CZ02-L1801-B	<11	<30	5.814	<50	<100	<8	<8					
]	Enriched LMC) (w/o purifica	tion)								
CMD00236.2	CZ02-L1803E-T	1437	<40	6.82	<31	<225	<6	<6					
CMD00236.3	CZ02-L1803E-B	1484	<40	7.07	<31	<225	<6	<6					
CMD00236.1	CZ02-L1803E-RM	3824	249	28.58	4110	12290	71	472					

- Li2MoO4 crystal is pure enough for AMoRE-II.
- CUP can purify & Grow the crystals. Another provider for satisfactory crystal is AMoRE collaboration.

13

5. Purification & Measurements

- Purification by recrystallization, sublimation, etc..
- Measurements by ICP-MS, HPGe-Array, Alpha counters....All techniques are developed well.
 - ICP-MS : sub-ppt(10⁻⁹) level for U, Th with solid extraction method.
 - HPGe-Array : 14 HPGe crystals, $2\nu\beta\beta$ to an excited state is observed !!
 - Alpha counter : Surface contamination ...

Yemilab for AMoRE-II

- Important Concepts
- An independent entrance (vertical lift for human) from mine activity.
- The construction starts early of 2019 and be completed by end of 2020.

Bird's eye view of Handuk Iron Mine

Large (>2000m²), deeper (1100m depth)

The floor plan

- ~ 500m tunnel is excavated at present.
- 8 experiments with 12 space, 10 utility rooms

Construction

Design for AMoRE-II experiment

Fab facility for MMC @ CUP

CUP produces MMC sensors. Squids are provided by our collaboragtors in Heidelberg group.

Fabrication facility						
Motel this film sustance	Metallic magnetic calorimeter sputtering system					
Metal thin him system	Radon free environment e-beam evaporator system					
	Maskless Micro Pattern Generator					
Pattern ithography equipment	Dual Focus Micro-Pattern Mask Aligner					
Metal film etching equipment	ICP-RIE (Inductively Coupled Plasma- Reactive Ion Etching) system					
Insulation film growth equipment	LT-PECVD (Low-Temperature Plasma-enhanced chemical vapor deposition)					
	Anodizing unit					
Thick Au layer fabrication	Simple electroplating unit					
Chip dicing	Dicing saw					
Resist coating unit	Spin coating system Hot plate					
Expringion atom varification	3D Measuring Laser Microscope					
	Optic Microscope					
Collector annealing system	Rapid thermal process system					

18

Comparison with other experiments.

- AMoRE-II is comparable to CUPID, LEGEND-200, KamLAND2-ZEN.
- IBS(CUP) has a MOU with INFN(Gran Sasso) to collaborate between AMoR E and CUPID.

Budget

BUDGET OF AMORE-II FULLUntil 2023CONSTRUCTION (~23 M\$)

20

Work force for AMoRE-II

2	1
	24

Overall Planning	Yeongduk Kim, Hongjoo Kim
LT	Yong-Hamb Kim
 Crystal Tests 	Jungho So, Seungcheon Kim
DR & Cryostat Design	Chanseok Kang
 MMC & SQUIDS 	Hejin Lee, Sora Kim, Jinha Jeon, Sanggon Kim
Crystal	Moohyun Lee
 Crystal growing 	Sejin Na, Daeyon Kim, Jukyung Son
 Purification 	Olga, GeonA Sin
 NIIC crystals 	Schlegel
Infra	
Cryostat, Shielding	Chanseok Kang
Clean Room	Kangsoon Park
 DAQ, Muon Veto 	Jaison Lee
Simulation	Eunjoo Jeon
Data Analysis	Yoomin Oh
 Developers 	Kazalov, Youngsoo Yoon + 13 students.
	Overall Planning LT • Crystal Tests • DR & Cryostat Design • MMC & SQUIDS Crystal • Crystal growing • Purification • NIIC crystals Infra • Cryostat, Shielding • Clean Room • DAQ, Muon Veto Simulation Data Analysis • Developers

AMoRE Collaboration

• Total 105 members from 23 institutes at 8 countries.

• Two meetings per year.

Korea	CUP, Institute of Basic Science (CUP)		
	Kyungpook National University (KNU)	11	Simulation, Crystal Tests
	Soongsil University (SSU)	3	Theory
	Seoul National University (SNU)	4	Low Temp., Data Analysis
	Ehwa Womans University (EWU)	3	HPGe
	Semyung University (SMU)	1	
	KRISS	3	DR, Cryostat
	Sejong University (SJU)	3	Data Analysis, Muon
	Chung-Ang University (CAU)	3	Theory
Russia	JSC FOMOS-Materials (FOMOS)	2	CMO crystals
	Baksan Neutrino Observatory of INR RAS (BNO)	8	HPGe, Simulation
	National Research Nuclear University (NRNU)	1	Backgrounds, Crystals
	Nikolaev Institute of Inorganic Chemistry (NIIC)	3	Enriched Crystal
Germany	Physikalisch-Technische Bundesanstalt (PTB)	2	SQUID
-	Kirchhoff-Institute for Physics (KIP)	3	MMC, Photon Detector
Ukraine	Institute for Nuclear Research (INR)	7	Simulation, Background
China	Tsinghua University (THU)	3	
Thailand	Nakhon Pathom Rajabhat University (NPRU)	6	
Indonesia	Institut Teknologi Bandung (ITB)	2	Muon Veto
	University of Mataram (UM)	1	
Pakistan	Abdul Wali Khan University (AWKUM)	1	
	Kohat University of Science and Technology (KUST)	2	

Schedule

Construct AMoRE-II until Oct. 2021, and Upgrade to 100 kg of ¹⁰⁰Mo by 2023.

23

		2018				2019									2020										2021												
ltem	Description		Q1		Q2		Q	3	(Q4		Q1		Q2		Q	5		Q4		Q1		Q2	2		Q3		Q4		Q1		Q2	2	Q	3		Q4
		1	2 3	3	4 5	6	7 8	9	10	11 12	2 1	2	3 4	5	6	7 8	9	10	11	12 1	2	3	4 5	6	7	8 9	10	11	12	1 2	3	4 5	6	7 8	3 9	10	11 13
_	Elevator																																				
	Tunnel											•	-		+									+													L_
Infra	Electricity/Air/Network																			_					-												L_
	Hoist																									•	İ.	▶ .									L_
	AMoRE Room																									•		-									L_
	Electricity/Air/Network					\downarrow									$ \rightarrow$		⊢						_					•	\pm	-						\vdash	\square
	Design								-		t i		+		+		E		•																		L-
Shielding	NFEC												-	-																							L-
omenang	Bidding/Manufacturing																			1		►¢				-											L_
	Installation																									•		-	4							\perp	⊢
	Manufacture				•	*		-												÷																	\vdash
	Installation HQ (incl. can test)																										-		÷		-						\vdash
	Vacumm can production																			•																	L_
DR	Move to Yemi																															+					L_
Dir	vib. care production and install																			1		+	-			\rightarrow	•		÷	\rightarrow							L_
	Lead shield design production																												÷			→					L_
	Yemi Installation (incl. lead shield)																												_			-		•			L-
	wiring Yemi					$ \rightarrow$																							\perp				•	-			
	Crystal Decision							-					+		+		F	→					_														
	Crystal Production																			*	-								•								L_
	MMC target + sensor production test						_														•								÷								L_
	SQUID production test																	•											٠								L.
	Phonon collector fab.																			_	•								Ť	•							L_
Detector	Heater fab.																											•									
Detector	detector tower storage						_																		→												
	Detector Cu frame design production																					+			-				+			\rightarrow	•				
	Sensor assembly & test																							•					+			\rightarrow					
	Module assembly (incl. gold bonding)																							•					t								
	SC shield design production																							•					+			\rightarrow					
	Installation																																	•	-		

Further

Modular expansion is possible.

After AMoRE-II, ton scale experiment can be done. ~ CUPID 1ton.

24

Low threshold detectors for DM exp - by LT group

To use low temperature sensor for dark matter detector, we need to reduce the threshold energy.

25

Baseline resolution indicates ~ 140 eV threshold @ 30 mK. It is just beginning, and need to optimize the crystal size etc.

Low mass WIMP search

	Threshold	Background	Mass
Phase0	1 keV	1.0 dru	10 kg
Phase1	0.5 keV	0.1 dru	50 kg
Phase2	0.1 keV	0.01 dru	200 kg

^{180m}Ta decay as a SIMP dark matter signal

- 1. ^{180m}Ta is the rarest isotope (0.012%), the only isomer abundant natu rally.
- 2. Its decay has never observed yet. ($t_{1/2}$ >10¹⁶ years)

27

3. The abundance of ^{180m}Ta is not explained well, and it's decay mode and lifetime will help to understand the astrophysical origin of ^{180m}Ta.

Maxim Pospelov et al., arXiv:1907.00011

"Metastable Nuclear Isomers as Dark Matter Accelerators"

- Parameter space not explored yet for the Strongly Interactive Massi ve Particles (SIMP).
- □ SIMPs interacts strongly, so can't reach the underground detectors.
- □ Ground experiments limits the SIMP-nucleon cross sections.

Heavy, thermalized dark matter pa rticle can deplete ¹⁸⁰Ta isomeric st ate to ground state.

Sensitivity for SIMP-nucleon interaction

If experimental lifetime limit > 10^{21} years, then DM-nucleon scattering cross section is set smaller than 10^{-32} cm² for 10GeV-10TeV.

A proposal - Low temperature tantalate crystal

- 1. A LiTaO₃ crystal is available commercially.
- 2. $Li^{180m}TaO_3 + MMC$ sensor with energy resolution ~ keV.
- 3. Depletion Signals are simulated.

30

Ta-180 enrichment necessary

- Ta-180 (0.012% natural abundance) should be enriched to have lower background.
- In Russia, 0.0123% → 0.5 % can be done with thermal diffusion column.
- For ~ 1g, expect 1M\$.

Fig. 1. Isotopic production facility, lower level of the column equipment.

•With ~ 1g of ^{180m}Ta, it is almost guaranteed to discover the decay of ^{180m}Ta, which has been pursued for last 50 years.

Summary

- AMoRE-II aim to be sensitive to 10²⁷ year range for ¹⁰⁰Mo isotope. AMoRE-Pilot demonstrated detector performance and identified the background sources.
 Collaborative work with CUPID-Mo group is anticipated.
- AMoRE-II construction began and will be installed by end of 2021.
- AMoRE-II is the largest scale bolometer DBD experiment with concrete plan.
- Construction of Yemilab for AMoRE-II is going well. Need full budget for completion of the lab.
- The LT technology for underground physics are developed and can be applied to other experiments, such as Low mass DM or SIMP search.

AMoRE-Pilot Setup

- To demonstrate the detection principle and low backgrounds.
- 6 crystals making total mass 1.89 kg.

33

• Two vibration reduction systems are installed.

Thermal detectors at low Temp. for AMoRE

- 34
 - Particle interaction is detected through a temperature change at mK temperature.

Energy (Heat) absorption

- \rightarrow Change in Temperature in an absorber
- → Change in Magnetization in a paramagnetic alloy(Au,Ag:Er) in a constant magnetic field
- \rightarrow Induced current measured with a SQUID.

