Axion Dark Matter Experiment in Korea

정우현 (Woohyun Chung)

Center for Axion and Precision Physics Research (CAPP)

Institute for Basic Science (IBS)

Sep 20th 2019

OUTLINE

• Introduction

- Dark Matter Axion
- CULTASK (CAPP's Ultra Low Temperature Axion Search in Korea)

• CAPP-PACE (Pilot Axion Cavity Exp.)

- First complete axion experiment in Korea
- ➢ Physics data (10*KSVZ and KSVZ runs) in 2018

• Improvements

- High Field Magnets
- Quantum Amplifiers
- High Q-factor (superconducting) and dielectric cavity
- Summary

- Peccei and Quinn (1977) postulated an elegant solution by adding a new global symmetry to resolve the Strong CP Problem in Standard Model
- Axion is an excellent (and attractive) dark matter candidate
 - Pseudo Goldstone Boson
 - Small Mass (1µeV<m_a<10meV)
 - Extremely Weakly Interacting
 - Local Halo Density of 0.45 GeV/cm³
 - $\beta \sim 10^{-3} \rightarrow Q_a \sim 10^6$

a

$$\gamma$$

 $L_{a\gamma\gamma} = g_{\gamma} \frac{\alpha}{\pi} \frac{a}{f_a} \vec{E} \cdot \vec{B}$

- Detection scheme by P. Sikivie (PRL 51:1415 1983) : Haloscopy
 - Axions will convert to photons in a strong magnetic field

DM Axion

Killing Two Birds With One Stone

Georg Raffelt, MPI Physics, Munich

Physics Colloquium, Univ. Sydney, 3 March 2014

DM Axion

Axion dark matter search

 The axion mass is unknown, like any number in a phone book. The way we look for it:

Once it's discovered, anyone will be able to dial in... and talk to it.

- Cosmic Axion Search
 - Haloscopes (Microwave Cavity)
 - Dish Antenna
 - Dielectric Haloscope
 - LC Circuit
 - > NMR techniques
 - Atomic Transitions
- Solar axion search
 - Axion Helioscopes
 - Bragg Diffraction Scattering
 - Geomagnetic Conversion
- Laboratory Axion Search
 - Light Shining through Wall
 - Polarization Experiment
 - > 5th Force

Most sensitive so far

Axion Landscape

Axion Detection Scheme (CULTASK)

P. Sikivie's Haloscope:

Sep 20th 2019

Axion Laboratory with 7 Low Vibration Pads in KAIST Munji campus

CAPP Experimental Hall (LVP) in 2018

Sep 20th 2019

Woohyun Chung

Refrigerators and Magnets

Refrigerators							Magn	EXP			
Vendor	Model	Base T (mK)	Cooling power	Install	B field	Bore (cm)	Material	Vendor	Delivery		
BlueFors (BF3)	LD400	10	18μW@20mK 580μW@100mK	2016	26T	3.5	HTS	SUNAM	2016	BF3 & BF4 for testing RF, QA and cavities	
BlueFors (BF4)	LD400	10	18μW@20mK 580μW@100mK	2016	18T	7	HTS	SUNAM	2017		
Janis	HE3	300	25µW@300mK	2017	9 T	12	NbTi	Cryo- Magnetics	2017	CAPP-MC	
BlueFors (BF5)	LD400	10	18µW@20mK 580µW@100mK	2017	8 T	12	NbTi	AMI	2016	CAPP-PACE	
BlueFors (BF6)	LD400	10	18µW@20mK 580µW@100mK	2017	8 T	16.5	NbTi	AMI	2017	CAPP-8TB	
Oxford	Kelvinox	<30	400µW@120mK	2017	25 T	10	HTS	BNL/CAPP	2020	Preparing for CAPP-12TB and CAPP-25T	
Leiden	DRS1000	100	1.3mW @120mK	2019	12T	32	Nb ₃ Sn	Oxford	2020		

CAPP-PACE (Pilot Axion Cavity Experiment)

- Originally, R&D Project and testbed for
 - Cavity development
 - Frequency Tuning System (FTS)
 - RF receiver components (Optimization with cryo-RF)
 - DAQ and Controls
- Has grown into the first complete axion experiment in Korea
 - Achieved cavity physical temperature below 40 mK
 - Flawless operation of FTS w/ Piezo actuators (sapphire and Cu rod)
 - System noise temperature below 1.2 K
 - Complete DAQ and Controls including automatic Safety Warnings
- Physics Data in 2018
 - ➢ 10*KSVZ runs: 2.45 − 2.70 GHz scanned
 - ➢ KSVZ run: around 2.59 GHz, ~ 1 MHz scanned

CAPP-PACE (innovations)

Cavity: OFHC Cu "split" type Unloaded Q-factor of ~100,000

Tuning: Piezoelectric actuators (Attocube) Thermal link to 1K plate Sapphire rod to cavity by cryo bearing Rotator resolution of 1/1000 deg → 16 kHz/step Vibration free: w/ ball and spring

Linear and Rotational Piezo Actuators

RF read-out chain & Controls

CAPP-PACE (DAQ and Monitoring)

CAPP-PACE (Online Monitor)

In 2018

	10*KSVZ (1)	10*KSVZ (2)	10*KSVZ (3)	KSVZ	10*KSVZ (4)
Date	1/19 - 2/13	7/23 - 8/01	8/14 - 8/23	9/01 - 10/26	11/1 - 11/24
Frequency [GHz]	$\begin{array}{r} 2.450 - \\ 2.500 \end{array}$	$\begin{array}{r} 2.500 - \\ 2.548 \end{array}$	2.547 – 2.613	2.5905 – 2.5915	2.613 – 2.710
Volume [liter]	0.59	0.59	1.12	1.12	1.12
T _{system} [K]	1.05	1.05	1.14	1.16	1.16
$< B_0 > [T]$	7.0	7.0	7.2	7.2	7.2
coupling	1.9	1.9	2.0	1.9	2.0
C (form factor)	.50	.50	0.55	0.66	0.55

CAPP-PACE results

How to improve?

- Maximize Signal (B²VQ)
 - 25T 10cm bore HTS magnet by BNL (2021)
 - 12T 32cm bore LTS magnet by Oxford (2019)
 - Higher frequencies without shrinking volume
 - Pizza Cavity (S. Youn)
 - Dielectric rings $(TM_{030} \text{ and } TM_{050})$ (O. Kwon)
 - Improve Q-factor of cavity YBCO cavity (D. Ahn)
- Minimize Noise $(T_{system} = T_{physical} + (T_{amp}))$
 - Quantum Amplifier SQUID and/or JPA
 - Optimize cryo-RF receiver chain
- Others (DAQ efficiency)
 - Dead-time-less DAQ

High Field & Big Bore Magnets

- 25T 10cm bore HTS magnet by BNL (2021) Funding limited!
 - The first 16 (of 28) pancakes wound!
 - No-insulation coil design (ReBCO tapes)
 - > 5 km of SC tape will be delivered

- 12 T 32 cm bore LTS magnet by Oxford Inst. (end of 2019)
 - ➢ Nb₃Sn
 - Powerful Leiden DRS1000

- Led by A. Matlashov and S. Uchaikin (from D-Wave)
- First batch of JPAs for PACE frequency range (2.4 GHz) from U. of Tokyo (Nakamura's group): taking adv. of their know-hows
- Noise measurement in test bench: < 200 mK and keeps shrinking...
- Implemented into CAPP-PACE in Aug. (2019)
- Crucial to speed up the search (20~100 times) w/ squeezing

R&D Projects (Superconducting cavity)

Superconductivity disappears in high magnetic field!

Whole Wire Critical Current Density (A/mm², 4.2 K)

Superconducting cavity with YBCO tapes (grain alignment) > 12 piece polygon cavity concept works!

KAIST

Maintains Q-factor up to 8 T!

Improvement in YBCO surface is in order

2.0

Magnetic Field (Tesla)

2.5 3.0 3.5 4.0

1.0 1.5

1.2x10⁵ 8.0x10⁴ 4.0x10⁴ 0.0 0.5

CAPP Axion Dark Matter Search Timeline

CULTASK Prospects

• All the ingredients together, we will reach the DFSZ sensitivity even for 10% axion content in the local dark matter halo.

CAPP-9T MC

CAPP-25T

- CAPP has successfully established multiple haloscope axion dark matter experiments in Korea.
- CAPP's pilot experiment, CAPP-PACE started to take physics data in 2018 (10*KSVZ and KSVZ runs).
- 2 more experiments, CAPP-8TB and CAPP-MC, are ready to take data soon.
- CAPP will focus on taking data with JPA and YBCO cavity for axion search in 2019.
- Major improvement is expected with big bore (12 T, 32 cm bore) magnet (end of 2019) and high field (25 T, 10 cm bore) HTS magnet delivery.
- **R&D** on superconducting cavity looks promising!

Upcoming Publications in 2019

- Design and Operation of a Microwave Cavity Axion Detector for the 10 20 μeV For PRD
- First results from the CAPP-PACE microwave cavity axion experiment For Physical Review Letters
- A superconducting microwave cavity made of YBCO tapes in a high magnetic field For Nature (rapid communication) or PRR

- And Many More on...
 - SQUID and/or JPA test results
 - LVP
 - Physics results from CAPP-8TB
 - Results from CAPP-MC
 - Another from SC cavity development
 - Dielectric cavity for high frequency results

-

Thank You For Your Attention!

IBS/CAPP

Center for Axion and Precision Physics Research (CAPP) Funded by the Institute for Basic Science (IBS)

- 6 years old in Oct.
- Led by Director, Yannis Semertzidis (first gen. axion hunter)
- Physics at CAPP:
 - Dark Matter Axion Search (Cosmic Frontier)
 - Storage Ring Proton EDM (Strong CP Problem, BAU)
 - Muon g-2, J-PARC, COMET, CAST, ARIADNE
- Located at and working with KAIST (Korea Advanced Institute of Science and Technology)
- ~50 members

Director's Lab Tour Course.

Center for Axion and Precision Physics Research

TUTE OF SCI

KAIST

· BARBARS

- direct touch between tuning rod and cavity wall VIBRATION FREE DESIGN

Setup - Photos

Backup Slides(YBCO Cavity)

TM010 & TM011 modes

- TM010: Current density is large at the middle wall.
- TM011: Current density is large at the top and bottom.

Backup Slides(YBCO Cavity)

Figure 1 The architecture of the AMSC tape [19]*

Backup Slides(YBCO Cavity)

Figure 2 The structure of polygon cavity.~

Backup Slides (YBCO Cavity)

Magnetic Field Dependency

