차세대 암흑물질 탐색 실험 제안

HyangKyu Park Department of Accelerator Science, Korea Univ. IBS, Sep. 20, 2019

가속기 3종 세트 구비@KU-Sejong Campus Proton Heavy Ion

2-1 HV Termina

Electron & THZ Free Electron Laser

We are welcoming proposals !

Model for Dark Photon and Dark Matter

- 3
- A simple model to include the dark matter
 - Contains Dark photon (A') and Dark matter

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + \frac{1}{2} m_{A'}^2 A'^2 - \sum_f q_f e(A_\mu + \varepsilon A'_\mu) \bar{f} \gamma^\mu f + \mathcal{L}_{DM},$$

Dark matter sector: $\mathcal{L}_{DM} = \begin{cases} \bar{\chi}(i \not\!\!D - m_{\chi})\chi, & \text{fermionic DM }(\chi), \\ |D_{\mu}\varphi|^2 - m_{\varphi}^2 \varphi^* \varphi, & \text{bosonic DM }(\varphi), \end{cases}$ $D_{\mu} = \partial_{\mu} + ig' A'_{\mu}$

- Dark Photon and DM coupling: g' (U(1)' charge)
- Dark Photon and EM charged matter coupling: εe

Worldwide map for Dark photon search

Ongoing and proposed accelerator-based experiments

Constraints for A'

5

Astrophysics and other non-accelerator exps. (m_{A'} < 1 MeV)

A' production with electron accelerator (I)

6

Production rate: ~ $\epsilon^2 \sigma_{brem}$

- m_{A'} > 2 m_e: A' -> e+ e-
- m_{A'} < 2 m_e: A' -> 3 γ (Highly suppressed)

~ 10 keV < m_{A'} < 1 MeV -> Dark-Photon Dark Matter

A' production with electron accelerator (II)

• A' production rate in a thick target approximation:

$$N_{A'} \sim 10 \times N_e \epsilon^2 \frac{m_e^2}{m_{A'}^2}$$

*N*_e: No. of incident electrons on target

Decay length of A' for m_{A'} > 2 m_e

$$L_{dec} \sim 10^{-3} \text{ m}(\gamma/10)(10^{-4}/\epsilon)^2 (100 \text{MeV}/m_{A'})$$

For $m_{A'}$ =1 MeV and ϵ =10⁻⁷ , L_{dec} > 10 km

A' and Dark matter detection@Underground Lab.

A' detection with Compton-like process

$$e^{-}$$

8

-
$$\sigma \sim \alpha^2 \epsilon^2$$

- X-section is dominant in ~ 100 keV - MeV

Dark matter detection

A Proposal for A' and Dark matter searches(I)

We are considering the following features for the proposal,

- A large scale multipurpose detector at a deep underground lab.
 - 2 kton of Liquid Scintillator
 - Energy threshold: ~ 200 keV
 - Radiopurity: ²³⁸U < ~10⁻²⁰ g/g, ²³²Th < ~10⁻¹⁹ g/g

Note: Borexino: 278 tonnes

A Proposal for A' and Dark matter searches(II)

Electron accelerator near by the LS detector

10

- 100 kW power with continuous beam
- e-beam energy: 20 MeV -> 100 MeV upgrde.

Sensitivity for A' search

m_A['] < 1 MeV search with 100 kW and 20 MeV e-beam</p>

11

Using Compton-like process for stable A'
 ε < 1.8x10⁻⁸ @ 90% C.L. for m_{A'} < 1 MeV
 Visibly Decaying A'

Several Phases of the Experiment

Phase I: Solar Neutrino / Reactor Neutrino

Phase II:

Dark-Photon and Dark Matter search with e-accelerator

Phase III: Neutrinoless Double Beta Decay

- Loading 10 tones of ^{nat}Mo (9.7%) or other one

Coherent Elastic Neutrino-Nucleus Scattering (CEvNS)

Recent observation with 14.6 kg Csl crystals: (D. Akimov et al., Science, 2017) It takes 43 years !

$\sigma \propto N^2$ (or A^2) X-sections are same for all nu flavors

Cross section and Recoil energy

15

Number of events & Recoil energy

X-section and systematics

R&D for CEvNS

 Cryogenic calorimeter with low threshold (< 100 eV)
 Gram-Scale Cryogenic Calorimeters

Growing various ultra-pure target crystals:

Low A to High A:
 LiF crystal... CaWO₄ crystal

- Find out neutrino source elsewhere
 ✓ J-PARC, SNS, RAON...
 - ✓ Mci source of ⁵¹Cr

18

Neutrino sources

Reactor neutrino:

- High flux: ~10¹⁴/cm²/s at 10 m
- up to ~ 10 MeV
- Difficult to manage experiment at a site
- Need very good shielding
- Accelerator: Stopped pion

 $\begin{array}{ccc} \pi^{+} \longrightarrow & \mu^{+} \, \nu_{\mu}, \ \mu^{+} \longrightarrow & e^{+} \, \overline{\nu}_{e} \, \nu_{\mu} \\ \succ & \text{High energy } \nu \end{array}$

Pulsed beam: Good background rejection

Lower flux than reactor

- Proton(Deuteron) & IsoDAR target
- Mci of ⁵¹Cr source

RAON Layout

µSR beam line in RAON

400 kW of 600 MeV proton on target

21

 Propose a dedicated target and beam line for coherent neutrino scattering.

Neutrino source at RAON

Concrete (probably need

substantially more)

Proton Cyclotron: 70 MeV & 0.75 mA

p + Be-target $\rightarrow n^{7}Li \rightarrow {}^{8}Li \rightarrow {}^{8}Be e^{-}v_{e}$

Beam Water cooling Li or FLIBE Graphite reflector

Be target

Very pure \overline{v}_e ~ 13 MeV endpoint

Fractional Rate / 0.01 MeV

Antineutrino Energy (MeV)

Neutrino source with Deuteron-beam

- Build Compact Deuteron accelerator
 - ECR ion source, RFQ and Target
 - Beam energy and current: ~3 MeV and > 10 mA D + Be-target \rightarrow n $^{7}Li \rightarrow {}^{8}Li \rightarrow {}^{8}Be e^{-}v_{e}$

Neutrino flux for each neutrino source

*also: IsoDAR, β beams...

KNU Advanced Positronium Annihilation Experiment

- Positronium annihilation physics:
 - New particle search (Hidden sector dark mater, Dark photon, axion), C,CP,CPT violation in lepton sector
- Experiment design & concept : 4π segmented BGO calorimeter / ²²Na radiation source
- Status and prospect
 - Under construction / one order better than previous experiment.

Summary

- We should prepare several R&Ds
 - Ultra-low-background LS production (Need purification technique)
 - Low-temperature detector with low-threshold
 - High-power accelerator system and target system electron, proton, deuteron
- We should pursue on neutrino coherent scattering
 Look for possible neutrino sources elsewhere

Let's build a neutrino source domestic !

Backup

J. Billard, E. Figueroa-Feliciano, and L. Strigari, arXiv:1307.5458v2 (2013). L. Strigari

Back-of-envelope estimation for A' search

 $m_{A'}$ < 1 MeV search with 100 kW and 20 MeV e-beam

•Sensitivity for 1 year running:

29

 $N_{A'} x \sigma_{comp} x N_e \sim \epsilon^4 \rightarrow \epsilon < 1.8 x 10^{-8} @ 90\%$ C.L.

 N_e : number of electron in fiducial mass (2 kton) of LS.

THE ⁵¹CR NEUTRINO SOURCE

The **neutrino** spectrum consists in four mono-energetic lines:

THE SOURCE PRODUCTION

The GALLEX (INFN) sample:

Mass: 36 kg Volume: 2 dm³ with 3.6 g/cm³ effective density in metallic chips of 1-5 mm

Isotopic composition: ⁵⁰Cr 38.6% ⁵²Cr 60,7% ⁵³Cr 0,7% ⁵⁴Cr < 0,3% enriched in ⁵⁰Cr and depleted in isotope ⁵³Cr (high neutron capture cross section)

Activation of the sample at reactor

GALLEX:

Siloé reactor in Grenoble with an estimated neutron flux 2 10¹⁴ neutrons cm⁻² s⁻¹ 23.8 Days of irradiation Final activity of ⁵¹Cr: 1.7 MCi **Challenging numbers:** neutron flux 5 10¹⁴ neutrons cm⁻² s⁻¹ 24 days of irradiation Final activity of ⁵¹Cr: 3.5-7 MCi

Recently a new ⁵¹Cr source has been produced in Russia (Dimitrovgrad)!!!

By BEST experiment (3.2MCi) 5th July 2019

THE PROPOSED LAYOUT

for maximizing the detected event

Tungsten shield: 12 cm between source and detector

Ag gamma flux (GBq): reduced of 10⁻⁶

Cr Bremsstrahlung (PBq): reduced of 10⁻¹¹

THE SIMULATION RESULTS

Initial activity: 5 MCi Detector volume: 2 dm³ Exposure: 55 days (2 half lives)

Average neutrino flux: 1 10¹³ v/cm²s

Minimal extension of SM

34

The SM allows a new massive or massless U(1)' field (A') coupled to the SM U(1) field (A) via the kinetic mixing.

Δ ······ Δ '

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} - \frac{\epsilon}{2} F_{\mu\nu} F'^{\mu\nu} + \frac{1}{2} m_{A'}^2 A'^2 + e J^{\mu}_{em} A_{\mu}$$
$$F_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu}, \qquad F'_{\mu\nu} = \partial_{\mu} A'_{\nu} - \partial_{\nu} A'_{\mu}$$

 By rotation of A and A' fields and redefine the fields, one can get as follows,

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} F_{\mu\nu}' F'^{\mu\nu} + \frac{1}{2} m_{A'}^2 A'^2 + e(A_{\mu} + \epsilon A_{\mu}') J_{em}^{\mu}$$

$$A'_{em}$$

$$e^{-\frac{\mathbf{E} \mathbf{e}_{\mu} \mathbf{e}_{\mu}}{\mathbf{E} \mathbf{e}_{\mu} \mathbf{e}_{\mu}}}$$

KNU Advanced Positronium Annihilation Experiment

- Positronium annihilation physics : New particle search (Hidden sector dark mater, Dark photon, axion), C,CP,CPT violation in lepton sector search and rare decay measurement [p-Ps (2γ) : 4 γ , o-Ps (3γ) : 5 γ]
- Experiment design & concept : 4π segmented BGO calorimeter Actual experiments consist of SiPM, ²²Na radiation isotopes, plastic scintillators(Ej-296 or PEN film), reflectors(3M VM2000), Aerogels, 14x14 BGO crystal scintillators (7.5x7.5x150 mm).
- Status and prospect : Under construction. It will give one order better sensitivity than previous experiments. In phase 2, BGO thickness can be increased from 4 to 15 cm (2 order better sensitivity)

 For <u>dual readout</u> both sides of the BGO scintillators are coupled with 7 x 7 arrangement of 2 x 2 arrays for a total of 14 x 14 SiPMs

