Theoretical Issues in Neutrino Physics

2019.09.20-21 고에너지 물리학 미래전략 회의

Sin Kyu Kang (Seoul Tech)

Outline

- Current status of neutrino oscillations
- Theoretical Issues
 - Origin of neutrino mixing matrix
 - Origin of neutrino masses
 - New Physics in Neutrino Oscillations
- Prospect
- Conclusion

Current status of neutrino oscillations

- Two big discoveries over past two decades :
 - Neutrinos are massive
 - Leptons mix

T. Kajita A. McDonald

 They have been achieved by the observation of neutrino oscillations

(lots of sources: the sun, atmospheric, reactors and accelerators)

- Specific parameterization of lepton mixing matrix

$$U_{PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & -s_{23} \\ 0 & s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & -s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & -s_{12} & 0 \\ s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{i\alpha} & 0 \\ 0 & e^{i\beta} \\ 0 & 0 \end{pmatrix}$$

How do we probe neutrino mixing ? neutrino oscillation

In vacuum, $\nu_{\alpha} \rightarrow \nu_{\beta}$ transition probability :

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4\sum_{j\neq i}^{n} \operatorname{Re}[U_{\alpha i}^{\star}U_{\beta i}U_{\alpha j}U_{\beta j}^{\star}]\sin^{2}\left(\frac{\Delta_{ij}}{2}\right) + \sum_{j\neq i} \operatorname{Im}[U_{\alpha i}^{\star}U_{\beta i}U_{\alpha j}U_{\beta j}^{\star}]\sin\left(\Delta_{ij}\right)$$

$$\frac{\Delta_{ij}}{2} = \frac{(E_i - E_j)L}{2} = 1.27 \frac{(m_i^2 - m_j^2)}{\text{eV}^2} \frac{L/E}{\text{Km/GeV}}$$

=0 if δ =0 in U,

 $\alpha = \beta$

• From v oscillation exps. we can determine

-
$$\Delta m_{21}^2$$
, Δm_{31}^2
- θ_{12} , θ_{23} , θ_{13}
- δ

How precisely determined?

Not-so-well measured

- CP conservation allowed at $\Delta \chi^2 = 1.8$ but bf at $\delta = 217^{\circ}$
- Octant of θ_{23} : 2nd octant preferred, bf at $sin^2\theta_{23} = 0.58$
- Mass ordering : NO is preferred over IO. (adding SK I-IV to the global fit \rightarrow IO disfavored at 3σ)

MSW matter effect

(Minakata, Pena-garay, 2012)

$$P_{ee}^{D} = \cos^{4}\theta_{13} \left[1 - \frac{1}{2} \sin^{2}2\theta_{12} (1 + \cos 2\theta_{12}\xi_{S}) \right] + \sin^{4}\theta_{13}, \text{ Low } E$$

$$P_{ee}^{D} = \cos^{4}\theta_{13} \left[\sin^{2}\theta_{12} + \frac{1}{4} \sin^{2}2\theta_{12} \cos 2\theta_{12} \left(\frac{1}{\xi_{S}}\right)^{2} \right] + \sin^{4}\theta_{13} \text{ High } E$$

$$\xi_{S} \equiv \frac{l_{v}}{l_{0}} = 0.203 \times A_{MSW} \cos^{2}\theta_{13} \left(\frac{E}{1 \text{ MeV}}\right) \left(\frac{\rho_{S}Y_{e}}{100 \text{ g cm}^{-3}}\right)$$

$$a^{\frac{a}{2}} \stackrel{0.8}{} \frac{0.8}{(averaged) vacuum} \text{ matter effect is} \text{ dominant} \text{ domina$$

BOREXINO (Barbara Caccianiga 2019)

Precision Measurements

parameter	best fit $\pm 1\sigma$	3σ range	
$\Delta m^2_{21} \ [10^{-5} { m eV}^2]$	$7.55\substack{+0.20\\-0.16}$	7.05 - 8.14	2.4%
$ \Delta m_{31}^2 [10^{-3} \text{eV}^2] \text{ (NO)} \Delta m_{31}^2 [10^{-3} \text{eV}^2] \text{ (IO)}$	$2.50{\pm}0.03\\2.42{}^{+0.03}_{-0.04}$	2.41 – 2.60 2.31 - 2.51	1.3%
$\sin^2 \theta_{12} / 10^{-1}$	$3.20\substack{+0.20\\-0.16}$	2.73 - 3.79	5.5% Ve 10
$\frac{\sin^2 \theta_{23} / 10^{-1} \text{ (NO)}}{\sin^2 \theta_{23} / 10^{-1} \text{ (IO)}}$	$\begin{array}{c} 5.47\substack{+0.20\\-0.30}\\ 5.51\substack{+0.18\\-0.30} \end{array}$	4.45 - 5.99 4.53 - 5.98	4.7% uncertain 4.4% entry
$\frac{\sin^2 \theta_{13} / 10^{-2} \text{ (NO)}}{\sin^2 \theta_{13} / 10^{-2} \text{ (IO)}}$	$2.160^{+0.083}_{-0.069}\\2.220^{+0.074}_{-0.076}$	$1.96 – 2.41 \\ 1.99 – 2.44$	3.5% ainty
$\frac{\delta}{\pi}$ (NO) $\frac{\delta}{\pi}$ (IO)	${\begin{array}{c} 1.32\substack{+0.21\\-0.15}\\ 1.56\substack{+0.13\\-0.15}\end{array}}$	0.87 - 1.94 1.12 - 1.94	10% 9%

(de Salas, Forero, Temes, Tortola, Valle, PLB782, 1708.01186)

- Implications of global fit:
- ✓ $\theta_{12} + \theta_C = \pi/4$ satisfied within 2 σ .
 - → quark-lepton complementarity (Raidal, Smirnov, Minakata, SK, Kim,....'04)
- ✓ Non-maximal θ_{23} is favored at 2 (1.5) σ level for NO (IO)
 - \rightarrow could be related to $\sqrt{m_2/m_3}$ similar to Gatto-Sartoti-Tonin
- ✓ Zero θ_{13} is excluded at 10 σ . → test for flavor models
- Two large angles \rightarrow hint for discrete flavor symmetry?
- ✓ $\delta \simeq 3\pi/2$ is favored by LBL exps.

 \rightarrow could be related with mixing angles, flavor symmetries etc. ?

Theoretical Issues

- Origins of neutrino mixing & CP violation
 - flavor symmetry
 - predictions
- Origins of tiny neutrino mass
 - seesaw variants
 - radiative generation
- New physics in neutrino oscillation

I. Origin of mixing pattern

• From fit to neutrino data in 3-neutrino paradigm

$$|U_{PMNS}| = \begin{pmatrix} 0.800 - 0.844 & 0.515 - 0.581 & 0.139 - 0.155 \\ 0.229 - 0.516 & 0.438 - 0.699 & 0.614 - 0.790 \\ 0.249 - 0.528 & 0.462 - 0.715 & 0.595 - 0.776 \end{pmatrix}$$

Looks different from quark mixing matrix !!

$$|V_{CKM}| = \begin{pmatrix} 0.97434 & 0.22506 & 0.00357 \\ 0.22492 & 0.97351 & 0.0414 \\ 0.00875 & 00403 & 0.99915 \end{pmatrix}$$
PDG(2016)

• How do we understand ν mixing matrix ?

Before measuring θ_{13} , tri-bimaximal mixing hypothesis :

$$- U^{TBM} = \begin{pmatrix} \frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & 0\\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

Harrison & Perkins & Scott (2002)

$$\theta_{13} \approx 0; \quad \theta_{23} \approx 45^\circ; \quad \theta_{12} = \sin^{-1} \left(\frac{1}{\sqrt{3}}\right) \approx 35.3^\circ$$

- generates specific neutrino mass matrix

$$UM_{\nu}^{D}U^{T} = \begin{pmatrix} m_{1} & m_{2} & m_{2} \\ \cdot & \frac{1}{2}(m_{1} + m_{2} + m_{3}) & \frac{1}{2}(m_{1} + m_{2} - m_{3}) \\ \cdot & \cdot & \frac{1}{2}(m_{1} + m_{2} + m_{3}) \end{pmatrix}$$

$$(1 - 0 - 0) = (1 - 1 - 1) = (1 - 0)$$

$$=\frac{m_{1}+m_{3}}{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \frac{m_{2}-m_{1}}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} + \frac{m_{1}-m_{3}}{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$A_{4} \text{ symmetric}$$

- Integer matrix elements suggest non-Abelian discrete symmetry

Mixing understanding from discrete symmetries

-setting $U_{PMNS} = (\vec{u}_1, \vec{u}_2, \vec{u}_3)$, we construct group generators: $S_1 = \vec{u}_1 \vec{u}_1^+ - \vec{u}_2 \vec{u}_2^+ - \vec{u}_3 \vec{u}_3^+$ $S_2 = -\vec{u}_1 \vec{u_1}^+ + \vec{u}_2 \vec{u_2}^+ - \vec{u}_3 \vec{u_3}^+$ (CSLam'06) $S_3 = -\vec{u}_1 \vec{u_1}^+ - \vec{u}_2 \vec{u_2}^+ + \vec{u}_3 \vec{u_3}^+$ • $S_1 = \frac{1}{3} \begin{pmatrix} 1 & -2 & -2 \\ -2 & -2 & -1 \\ 2 & 1 & 2 \end{pmatrix} \quad S_2 = \frac{1}{3} \begin{pmatrix} -1 & 2 & -2 \\ 2 & -1 & -2 \\ 2 & 2 & 1 \end{pmatrix} S_3 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 2 \end{pmatrix}$ then, $S^T \overline{M}_{\nu} S = \overline{M}_{\nu}$ C.S.Lam, PRD98(2008) arXiv:0809.1185

• For charged lepton, $T^+\overline{M}_eT = \overline{M}_e$ with $\overline{M}_e = M_e^+M_e \otimes T^n = 1$

(Mixing matrices diagonalize M_{ν} and \overline{M}_{e} also diagonalize S and T)

• Simplest group with a triplet representation: A_4 A_4 has subgroups: three Z_2 , four Z_3 , one $Z_2 \times Z_2$

 A₄ is spontaneously broken to subgroups: Neutrino sector preserves, Z₂ × Z₂: Charged lepton sector preserves, Z₃:

> arXiv: 1402.4271 King, Merle, Morisi, Simizu, Tanimoto

Many discrete groups reproducing TBM mixing

Group	d	Irr. Repr.'s	Presentation
$D_3 \sim S_3$	6	1, 1', 2	$A^3 = B^2 = (AB)^2 = 1$
D_4	8	$1_1, 1_4, 2$	$A^4 = B^2 = (AB)^2 = 1$
D_7	14	1, 1', 2, 2', 2''	$A^7 = B^2 = (AB)^2 = 1$
A_4	12	1, 1', 1'', 3	$A^3 = B^2 = (AB)^3 = 1$
$A_5 \sim PSL_2(5)$	60	1, 3, 3', 4, 5	$A^3 = B^2 = (BA)^5 = 1$
T'	24	1, 1', 1'', 2, 2', 2'', 3	$A^3 = (AB)^3 = R^2 = 1, \ B^2 = R$
S_4	24	1,1',2,3,3'	$BM: A^4 = B^2 = (AB)^3 = 1$
			$TB: A^3 = B^4 = (BA^2)^2 = 1$
$\Delta(27) \sim Z_3 \ \rtimes \ Z_3$	27	$1_1, 1_9, 3, \overline{3}$	
$PSL_2(7)$	168	$1,3,\overline{3},6,7,8$	$A^3 = B^2 = (BA)^7 = (B^{-1}A^{-1}BA)^4 = 1$
$T_7 \sim Z_7 \rtimes Z_3$	21	$1,1',\overline{1'},3,\overline{3}$	$A^7 = B^3 = 1, \ AB = BA^4$

(Altarelli, Feruglio, 1002.0211)

Each group has many models!

(Barry, Rodejohann, PRD81(2010)

Туре	L_i	ℓ^c_i	$ u_i^c$	Δ
A1	3	1. 1′. 1″		
A2	-	_, _ , _		$\underline{1},\underline{1}',\underline{1}'',\underline{3}$
B1	3	1. 1′. 1″	3	
B2	<u>×</u>	<u>,</u> , <u>,</u> , <u>,</u>	<u>v</u>	$\underline{1}, \underline{3}$
C1				
C2	3	3		<u>1</u>
C3	<u>0</u>	<u>5</u>		$\underline{1}, \underline{3}$
C4				$\underline{1},\underline{1}',\underline{1}'',\underline{3}$
D1		3	<u>3</u>	
D2	3			<u>1</u>
D3	<u>u</u>	5		<u>1</u> ′
D4				$\underline{1}', \underline{3}$
Е	<u>3</u>	<u>3</u>	$\underline{1}, \underline{1}', \underline{1}''$	
\mathbf{F}	$\underline{1},\underline{1}',\underline{1}''$	<u>3</u>	<u>3</u>	$\underline{1}$ or $\underline{1}'$
G	<u>3</u>	$\underline{1}, \underline{1}', \underline{1}''$	$\underline{1}, \underline{1'}, \underline{1''}$	•••
Н	<u>3</u>	$\underline{1}, \underline{1}, \underline{1}$		
Ι	<u>3</u>	<u>1, 1, 1</u>	<u>1, 1, 1</u>	
J	<u>3</u>	$\underline{1}, \underline{1}, \underline{1}$	<u>3</u>	

- Modification of Tri-Bimaximal Mixing
 - Simple possible forms :

 $\begin{cases} U_{TBM} \ U_{ij}(\theta) \\ U_{ij}^{+}(\theta) \ U_{TBM} \end{cases}$

- θ possibly gives rise to non-zero θ_{13} and deviation from maximal θ_{23}

(He & Zee, PLB645(2007), SK & Kim PRD90(2014) See also, Goswami, Petcov, Ray, Rodejohann, PRD80(2009))

- Best fit achieved by (SK & Kim, PRD90(2014))

$$U_{TBM} \cdot U_{23} \sim \begin{pmatrix} \frac{\sqrt{2}}{\sqrt{3}} & -\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} \lambda \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{2}} \lambda & \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} \lambda \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{2}} \lambda & \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} \lambda \end{pmatrix} \quad (c_{23} \sim 1, \ s_{23} \sim \lambda)$$

Unchanged columns may reflect the remnants of flavor symmetry \rightarrow residual symmetry

Predictions of CP phase

- Any forms of neutrino mixing matrix should be equivalent to U_{PMNS} presented in the standard parameterization :
- $U_{PMNS} = U_{23}(\theta_{23})U_{13}(\theta_{13}, \delta_D)U_{12}(\theta_{12})P_{\phi}$

$$= \begin{pmatrix} c_{12}c_{13} & -s_{12}c_{13} & s_{13}e^{i\delta_{D}^{*}} \\ * & * & -s_{23}c_{13} \\ * & * & c_{23}c_{13} \end{pmatrix} \cdot \begin{pmatrix} e^{i\phi_{1}} \\ e^{i\phi_{2}} \\ e^{i\phi_{3}} \end{pmatrix}$$
$$= P_{\alpha} \cdot V \cdot P_{\beta} \quad , V = U^{TBM} \cdot U_{23(13)}(\theta, \xi)$$
$$\longrightarrow \quad V_{ij}e^{i(\alpha_{i}+\beta_{j})} = (U_{PMNS})_{ij}$$

• Predictions : (SK & CSKim, PRD90(2014), SK & Tanimoto, PRD91(2015))

$$s_{12}^{2} = 1 - \frac{2}{3(1 - s_{13}^{2})}$$

$$s_{12}^{2} = \frac{1}{3(1 - s_{13}^{2})}$$

$$cos \,\delta_{D} = \frac{1}{2\tan 2\theta_{23}} \cdot \frac{1 - 5s_{13}^{2}}{s_{13}\sqrt{2 - 6s_{13}^{2}}}$$

$$cos \,\delta_{D} = \frac{1}{\tan 2\theta_{23}} \cdot \frac{1 - 2s_{13}^{2}}{s_{13}\sqrt{2 - 3s_{12}^{2}}}$$

• A_4 model easily realizes non-vanishing θ_{13} & CPV

Ahn, SK, PRD86 (2012) Ahn, SK, CSKim, PRD87 (2013) SK, Shimizu, Takagi,Shunya Takahashi,Tanimoto, PTEP(2018)

Additional Matrix

$$M_{\nu} = a \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + b \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} + c \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
$$a = \frac{y_{\phi_{\nu}}^{\nu} \alpha_{\nu} v_{u}^{2}}{\Lambda}, \quad b = -\frac{y_{\phi_{\nu}}^{\nu} \alpha_{\nu} v_{u}^{2}}{3\Lambda}, \quad c = \frac{y_{\xi}^{\nu} \alpha_{\xi} v_{u}^{2}}{\Lambda}, \quad d = \frac{y_{\xi'}^{\nu} \alpha_{\xi'} v_{u}^{2}}{\Lambda} \qquad a = -3b$$

Both normal and inverted mass hierarchies are possible.

$$M_{\nu} = V_{\text{tri-bi}} \begin{pmatrix} a+c-\frac{d}{2} & 0 & \frac{\sqrt{3}}{2}d \\ 0 & a+3b+c+d & 0 \\ \frac{\sqrt{3}}{2}d & 0 & a-c+\frac{d}{2} \end{pmatrix} V_{\text{tri-bi}}^{T} \text{ Tri-maximal mixing: TM2}$$

$$\Delta m_{31}^{2} = -4a\sqrt{c^{2}+d^{2}-cd} , \qquad \Delta m_{21}^{2} = (a+3b+c+d)^{2} - (a+\sqrt{c^{2}+d^{2}-cd})^{2}$$

• A_4 model easily realizes non-vanishing θ_{13} & CPV

Ahn, SK, PRD86 (2012) Ahn, SK, CSKim, PRD87 (2013) SK, Shimizu, Takagi,Shunya Takahashi,Tanimoto, PTEP(2018)

How to test Flavor Symmetry

- UV theories giving rise to flavor symmetry in lepton sector contains new scalars→ probe of signal be test of FlaSy.
- Mixing angle sum rules:

Example:

$$\begin{aligned} \sin^2 \theta_{23} &= \frac{1}{2} \frac{1}{\cos^2 \theta_{13}} \ge \frac{1}{2}, \quad \sin^2 \theta_{12} \simeq \frac{1}{\sqrt{3}} - \frac{2\sqrt{2}}{3} \sin \theta_{13} \cos \delta_{CP} + \frac{1}{3} \sin^2 \theta_{13} \cos 2\delta_{CP} \\ \sin^2 \theta_{12} &= \frac{1}{3} \frac{1}{\cos^2 \theta_{13}} \ge \frac{1}{3}, \quad \cos \delta_{CP} \tan 2\theta_{23} \simeq \frac{1}{\sqrt{2} \sin \theta_{13}} \left(1 - \frac{5}{4} \sin^2 \theta_{13} \right) \\ s_{12}^2 &= 1 - \frac{2}{3(1 - s_{13}^2)}
\end{aligned}$$

- Neutrino mass sum rules in FLaSy \Leftrightarrow different $0\nu\beta\beta$
- Prediction of CP phase (Girardi, Petcov, Titov, NPB894(2015))

(e.g.)
$$\cos \delta_D = \frac{1}{\tan 2\theta_{23}} \cdot \frac{1 - 5{s_{13}}^2}{s_{13}\sqrt{2 - 6{s_{13}}^2}}$$

Neutrino mass sum rules

(King, Merle, Morisi, Shimizu, Tanimoto, New J. Phys. 2014)

Sum Rule	Group	Seesaw Type	Matrix
$\overline{\tilde{m}_1 + \tilde{m}_2} = \tilde{m}_3$	$A_4[167]([175, 178-181]); S_4([182]); A_5[69]^a$	Weinberg	m_{LL}^{ν}
$\tilde{m}_1 + \tilde{m}_2 = \tilde{m}_3$	$\Delta(54)[183]; S_4([163])$	Type II	M_L
$\tilde{m}_1 + 2\tilde{m}_2 = \tilde{m}_3$	<i>S</i> ₄ [120]	Type II	M_{L}
$2\tilde{m}_2 + \tilde{m}_3 = \tilde{m}_1$	A ₄ [165, 167]	Weinberg	$m_{LL}^{\overline{\nu}}$
	([36, 37, 188-194, , , , , , , 178-181]) $S_4([45, 124])^b; T'[195, 196]$ $([46, 134, 197, 198]); T_7([199])$		
$2\tilde{m}_2 + \tilde{m}_3 = \tilde{m}_1$	$A_4([200])$	Type II	M_L
$\tilde{m}_1 + \tilde{m}_2 = 2\tilde{m}_3$	$S_4[201]^{c}$	Dirac ^c	$m^{\tilde{D}}$
$\tilde{m}_1 + \tilde{m}_2 = 2\tilde{m}_3$	$L_e - L_\mu - L_\tau([202])$	Type II	M_L
$\tilde{m}_1 + \frac{\sqrt{3}+1}{2}\tilde{m}_3 = \frac{\sqrt{3}-1}{2}\tilde{m}_2$	A ₅ '([203])	Weinberg	$m_{LL}^{ u}$
$\tilde{m}_1^{-1} + \tilde{m}_2^{-1} = \tilde{m}_3^{-1}$	$A_4[167]; S_4([163, 175]); A_5[176, 177]$	Type I	M_{R}
$\tilde{m}_1^{-1} + \tilde{m}_2^{-1} = \tilde{m}_3^{-1}$	$S_4([163])$	Type III	$M_{\!\Sigma}$
$2\tilde{m}_2^{-1} + \tilde{m}_3^{-1} = \tilde{m}_1^{-1}$	$A_4[135, 164, 165, 167, 204]$ ([37, 137, 145, 205–211]); T' [196]	Type I	M_{R}
$\tilde{m}_1^{-1} + \tilde{m}_3^{-1} = 2\tilde{m}_2^{-1}$	$A_4([212-214]); T'[215]$	Type I	M_{R}
$\tilde{m}_3^{-1} \pm 2i\tilde{m}_2^{-1} = \tilde{m}_1^{-1}$	$\Delta(96)$ [66]	Type I	M_{R}
$\tilde{m}_1^{1/2} - \tilde{m}_3^{1/2} = 2\tilde{m}_2^{1/2}$	$A_4([162])$	Type I	m^{D}
$\tilde{m}_1^{1/2} + \tilde{m}_3^{1/2} = 2\tilde{m}_2^{1/2}$	$A_4([216])$	Scotogenic	$h_{ u}$
$\tilde{m}_1^{-1/2} + \tilde{m}_2^{-1/2} = 2\tilde{m}_3^{-1/2}$	<i>S</i> ₄ [217]	Inverse	M_{RS}

Neutrino mass sum rules

Restrictions on $|\mathbf{m}_{ee}|$ by mass sum rules

King, Merle, Stuart, JHEP2013 King, Merle, Morisi, Shimizu, Tanimoto, New J. Phys. 2014

II. Origin of Neutrino Mass

- Why neutrinos are massless in SM ?
 - no right-handed neutrinos
 - only SU(2) doublet Higgs scalars
 - prohibiting non-renormalizable terms
- How can neutrinos have mass ?
 broaking those restrictions

-breaking those restrictions

Seesaw Origins

Type-I Seesaw

Introducing L-conserving right-handed neutrinos

$$Y_{\nu} \Phi \bar{\nu}_L \nu_R \rightarrow Y_{\nu} < \phi^0 > \bar{\nu}_L \nu_R \sim 0.2 \text{ eV}$$

- → $Y_{\nu} \sim 10^{-12}$: why so small?
- No principle prohibit $M_R \overline{\nu_R^C} \nu_R$
- Seesaw mechanism :
 - $-\nu_R$ can have large mass (L-violation: Type-I)_{Minkowski} '77 Gellman Ramond Slansky '80

Type-II Seesaw

- Introducing SU(2) triplet Higgs (Δ) (type-II): hLL $\Delta \leftarrow \langle \Delta \rangle < 8$ GeV from ρ parameter. majorana mass
- Due to additional possible terms: $\mu \Phi \Delta^+ \Phi + M_{\Delta}^2 Tr[\Delta^+ \Delta]$ $\rightarrow \langle \Delta \rangle = \frac{\mu \langle \Phi^0 \rangle^2}{M_{\Delta}^2}$

(Magg, Wetterich; Lazarides, Shafi; Mohapatra, Senjanovic; Schechter, Valle)

Type-III Seesaw

• Introducing SU(2) triplet fermions

÷.,

Foot, Lew, He, Joshi; Ma; Ma, Roy;T.H., Lin, Notari, Papucci, Strumia; Bajc, Nemevsek, Senjanovic; Dorsner, Fileviez-Perez;.... • Non-renormalizable term

$$\frac{\lambda}{M} LL \Phi \Phi \rightarrow \frac{\lambda}{M} \langle \phi^0 \rangle^2 \quad \text{same as type-I seesaw}$$

Radiative generation of neutrino masses
 talk by Ramond Volkas

- Scotogenic (Ma) Cocktail (Gustafusson etal.)
- R-parity violating SUSY model

Seesaw for Dirac Neutrino

Type-I Seesaw

Chulia, Srivastava, Valle, PLB761 (2016), Chulia, Ma, Srivastava, Valle ,PLB767 (2017)

The Dirac type-I seesaw mechanism. Φ_i and χ_i are triplets under $\Delta(27)$

Type-II Seesaw

(Valle, Vaquera-Araujo, PLB755(2016),

Addazi et al PLB759 (2016)) Anomaly free $SU(3)_C \times SU(3)_L \times U(1)_x$

Matter content of the model, where $\hat{u}_R \equiv (u_R, c_R, t_R, U_R)$ and $\hat{d}_R \equiv (d_R, s_R, b_R, D_R, D'_R)$.

	ψ_L^ℓ	ℓ_R	$S^{\ell}_{R}, \tilde{S}^{\ell}_{R}$	$Q_{L}^{1,2}$	Q_L^3	û _R	\hat{d}_R	ϕ_0	ϕ_1	ϕ_2
SU(3) _c	1	1	1	3	3	3	3	1	1	1
$SU(3)_L$	3*	1	1	3	3*	1	1	3*	3*	3*
$U(1)_{X}$	$-\frac{1}{3}$	-1	0	0	$+\frac{1}{3}$	$+\frac{2}{3}$	$-\frac{1}{3}$	$+\frac{2}{3}$	$-\frac{1}{3}$	$-\frac{1}{3}$
\mathcal{L}	$-\frac{1}{3}$	-1	1	$-\frac{2}{3}$	$+\frac{2}{3}$	0	0	$+\frac{2}{3}$	$-\frac{4}{3}$	$-\frac{4}{3}$
\mathbb{Z}_3^{aux}	ω	ω	ω	ω^2	ω^2	ω^2	ω^2	1	1	1

Seesaw for Dirac Neutrino

• Type-II Seesaw

Bonilla, Valle, PLB762(2016) Reig et al., PRD94(2016)

	\overline{L}	ℓ_R	ν_R	H	Φ	σ
$SU(2)_L$	2	1	1	2	2	1
\mathbb{Z}_5	ω	ω^4	ω	1	ω^3	ω
\mathbb{Z}_3	α^2	α	α	1	1	1

Neutrino mass generation in type-II Dirac seesaw mechanism

Chulia, Srivastava, Valle, PLB781(2018)

Neutrino mass generation in type-III Dirac seesaw There can be d=5 op. leading to tiny Dirac mass.

Inverse seesaw

Inverse seesaw

 S_L

 N_R

 ν_L

 ν_L

Mohapatra, PRL56(1986) Mohapatra, Valle, PRD34(1986)

 S_I^C

 N_R

Radiative Inverse seesaw

Carcamo Hernandez et al JHEP 1902 (2019)

Scotogenic inverse seesaw

arXiv:1907.07728

• Inverse seesaw+1-loop (A. Das et al, 1704.02078)

$$m_{\nu}^{\text{tree}+1-\text{loop}} = \begin{pmatrix} 0 & m_D^* & \delta_1^* \\ m_D^\dagger & 0 & m_{NS} \\ \delta_1^\dagger & m_{NS}^T & M_S \end{pmatrix}$$

• Dirac Inverse seesaW (Borah, Karmakar, PLB780(2018))

What is the Seesaw scale ?

- For $m_D \sim m_t$, neutrino mass of $m_v \leq 1$ eV implies $M_R \sim 10^{14}$ GeV - close to the scale of Grand Unification ~ 10^{16} GeV
- For $m_D \sim m_e$, neutrino mass of $m_v \leq 1$ eV implies $M_R \sim 1$ TeV. -potentially testable at collider

Deppisch, Dev, Pilaftsis, 1502.06541

What is the Seesaw scale ?

- vMSM (Asaka, Blanchet, Shaposhnikov, PLB631(2005)):
 - $M_{R1} \sim \text{keV}$ scale warm dark matter
 - $M_{R2(R3)}$ ~few GeV with tiny Yukawa couplings
- Minimal SM accommodating DM, baryogenesis at the price of fine tuning.

III.New Physics in v Oscillation

- What causes deviation of standard oscillations
 - Non-standard Interactions(NSI)
 - Unitarity violation in U_{PMNS}
 - light sterile neutrinos
 - long-range forces
 - Lorentz/CPT violation
 - General neutrino interactions
 - decay etc.

NSI

• Existence of NSI indicates new physics beyond the SM

$$\delta \mathcal{L}_{\text{NSI}} = -2\sqrt{2} G_F \sum_{f,P} \epsilon^{fP}_{\alpha\beta} \left(\overline{\nu_{\alpha}} \gamma^{\mu} P_L \nu_{\beta} \right) \left(\overline{f} \gamma_{\mu} P f \right)$$

• effect of NSI in propagation can be presented through modification of matter potential $\varepsilon_{\alpha\beta}^{f} = \varepsilon_{\alpha\beta}^{fL} + \varepsilon_{\alpha\beta}^{fR}$

$$H_{\text{mat}} = \sqrt{2}G_F N_e(x) \begin{pmatrix} 1 + \epsilon_{ee}(x) & \epsilon_{e\mu}(x) & \epsilon_{e\tau}(x) \\ \epsilon^*_{e\mu}(x) & \epsilon_{\mu\mu}(x) & \epsilon_{\mu\tau}(x) \\ \epsilon^*_{e\tau}(x) & \epsilon^*_{\mu\tau}(x) & \epsilon_{\tau\tau}(x) \end{pmatrix}$$

- Even if no mixing in vacuum, $\nu_{\alpha} \rightarrow \nu_{\beta}$ can occur in matter
- Complex phases of off-diag. could be new source of CPV

Current conservative model independent bounds

$$\begin{pmatrix} |\epsilon_{ee}| < 4.2 & |\epsilon_{e\mu}| < 0.33 & |\epsilon_{e\tau}| < 3.0 \\ |\epsilon_{\mu\mu}| < 0.07 & |\epsilon_{\mu\tau}| < 0.33 \\ |\epsilon_{\tau\tau}| < 21 \end{pmatrix}$$

Deepthi, Goswami, Nath, PLB936 (2018)

- NSI may affect neutrinos at the production point as well as detection point.
- To see those effects, we use different parameters ;

(ex) for production, $2G_F \sum_{\alpha} \varepsilon_{l\alpha}^{CC} \left[\bar{l} \left(1 - \gamma_5 \right) \gamma^{\rho} \nu_{\alpha} \right]$

Results from global fit to solar data and KamLAND

	LMA	$LMA \oplus LMA-D$
$ \begin{bmatrix} \varepsilon^u_{ee} - \varepsilon^u_{\mu\mu} \\ \varepsilon^u_{\tau\tau} - \varepsilon^u_{\mu\mu} \end{bmatrix} $	$\begin{bmatrix} -0.020, +0.456 \end{bmatrix} \\ \begin{bmatrix} -0.005, +0.130 \end{bmatrix}$	$\oplus[-1.192, -0.802]$ [-0.152, +0.130]
$arepsilon^u_{e\mu} \ arepsilon^u_{e au} \ arepsilon^u_{e au} \ arepsilon^u_{\mu au}$	$\begin{array}{l} [-0.060, +0.049] \\ [-0.292, +0.119] \\ [-0.013, +0.010] \end{array}$	$\begin{bmatrix} -0.060, +0.067 \end{bmatrix}$ $\begin{bmatrix} -0.292, +0.336 \end{bmatrix}$ $\begin{bmatrix} -0.013, +0.014 \end{bmatrix}$
$ \begin{array}{c} \varepsilon^{d}_{ee} - \varepsilon^{d}_{\mu\mu} \\ \varepsilon^{d}_{\tau\tau} - \varepsilon^{d}_{\mu\mu} \end{array} \end{array} $	$[-0.027, +0.474] \\ [-0.005, +0.095]$	$\oplus [-1.232, -1.111]$ [-0.013, +0.095]
$arepsilon^d_{e\mu} \ arepsilon^d_{e au} \ arepsilon^d_{e au} \ arepsilon^d_{e au} \ arepsilon^d_{\mu au}$	$\begin{array}{l} [-0.061, +0.049] \\ [-0.247, +0.119] \\ [-0.012, +0.009] \end{array}$	$\begin{matrix} [-0.061, +0.073] \\ [-0.247, +0.119] \\ [-0.012, +0.009] \end{matrix}$
$\varepsilon^{p}_{ee} - \varepsilon^{p}_{\mu\mu}$ $\varepsilon^{p}_{\tau\tau} - \varepsilon^{p}_{\mu\mu}$	[-0.041, +1.312] [-0.015, +0.426]	$\oplus[-3.328, -1.958]$ [-0.424, +0.426]
$arepsilon^p_{e\mu} \ arepsilon^p_{e au} \ arepsilon^p_{e au} \ arepsilon^p_{\mu au}$	[-0.178, +0.147] [-0.954, +0.356] [-0.035, +0.027]	$egin{array}{llllllllllllllllllllllllllllllllllll$

(Esteban et al., 1805.04530)

NSI

• NSI can prevent determination of CP violation

Masud, Mehta, PRD94(2016)

NSI

• 2σ tension for Δm_{21}^2 could be due to NSI

A(D/N) consistent with SK Δm_{21}^2 is also Consistent with KL Δm_{21}^2 and $\varepsilon_{ee}^{u(d)} \sim 0.1$

(JUNO and HyperK would reject no NSIsolution by 7σ)

0.8

Origin of NSI

- ϵ from integrating out scalar of type II seesaw: $\varepsilon_{\alpha\beta}^{e} \propto (m_{\nu})_{\alpha\beta}$ (Malinsky, Ohlsson, Zhang, 0811.3346)
- ε from integrating out leptoquarks (Wise, Zhang, 1404.4663)
- ε from integrating out charge +1 scalar singlet:
- ε from loop effects, including secret neutrino interactions (Bischer, Rodejohann, Xu, 1807.08102)
- ε from higher dimensional operators (Gavela et al., 0809.3451); within flavor symmetry models have information on flavor symmetry (Wang, Zhou, 1801.05656)
- ε from integrating out Z' (Heeck, Lindner, Rodejohann, Vogl, 1812.04067)

Non-unitarity

- Source of non-unitary : sterile neutrino, effective op... (minimal unitarity violation: Antusch et al, 2006)
- Parametrization (Z. Xing, PLB 2008, Escrihuela et al. PRD92(2015))

$$N = N^{NP}U = \left(\begin{array}{ccc} \alpha_{11} & 0 & 0\\ \alpha_{21} & \alpha_{22} & 0\\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{array}\right) U$$

- Constraints from experimental data: ν oscillations, W
 & Z decays, rare lepton-flavor-violating decays, lepto n universality tests,
- Sensitivity to CPV in LBL exps. can be affected by the presence of non-unitarity.

	One parame	All parameters		
	(1 d.o.f.)	(6 d.o.f.)		
	90% C.L.	3σ	90% C.L.	3σ
	Neutr	inos + charg	ed leptons	
$\alpha_{11} >$	0.9974	0.9963	0.9961	0.9952
$\alpha_{22} >$	0.9994	0.9991	0.9990	0.9987
$\alpha_{33} >$	0.9988	0.9976	0.9973	0.9961
$ \alpha_{21} <$	$1.7 imes 10^{-3}$	2.5×10^{-3}	$2.6 imes 10^{-3}$	4.0×10^{-3}
$ \alpha_{31} <$	$2.0 imes 10^{-3}$	4.4×10^{-3}	$5.0 imes 10^{-3}$	$7.0 imes 10^{-3}$
$ \alpha_{32} <$	1.1×10^{-3}	$2.0 imes 10^{-3}$	2.4×10^{-3}	3.4×10^{-3}
		Neutrinos o	only	
$\alpha_{11} >$	0.98	0.95	0.96	0.93
$\alpha_{22} >$	0.99	0.96	0.97	0.95
$\alpha_{33} >$	0.93	0.76	0.79	0.61
$ \alpha_{21} <$	1.0×10^{-2}	2.6×10^{-2}	2.4×10^{-2}	$3.6 imes 10^{-2}$
$ \alpha_{31} <$	4.2×10^{-2}	9.8×10^{-2}	$9.0 imes 10^{-2}$	$1.3 imes 10^{-1}$
$ \alpha_{32} <$	$9.8 imes 10^{-3}$	$1.7 imes 10^{-2}$	$1.6 imes 10^{-2}$	$2.1 imes 10^{-2}$

Escrihuela, Forero, Miranda, Tortola, Valle, New.J.Phys.19(2017)

Non-unitarity predicts "zero-distance effect"

$$P(\nu_{\mu} \rightarrow \nu_{e}) = \alpha_{11} |\alpha_{21}|^{2}$$

• Thus, at very short distances from the neutrino source, # of detected electron neutrinos, N_e , is given by

$$N_e = \phi_{\nu_e}^0 + |\alpha_{21}|^2 \phi_{\nu_{\mu}}^0$$

• Capabilities of SBL as well as LBL as a probe of the unitarity of lepton mixing :(Miranda et al. PRD97(2018); Escrihuela et al ,New.J.Phys.19(2017)

Double Beta Decay

Prospects

- Precisely measuring PMNS mixing angles
 - \rightarrow test of neutrino models with flavor symmetry
 - \rightarrow some hint for grand unification or Q-L symmetry
- Determining mass ordering
 - \rightarrow implication on neutrinoless double beta decay
 - \rightarrow test of some of neutrino mass model
- Observing CP violation
 - \rightarrow implication on baryogenesis
 - \rightarrow hint for Q-L symmetry or grand unification
- Search for new physics beyond the SM
- Measuring neutrino mass scale
- Neutrino properties : Dirac vs. Majorana
- Search for sterile neutrinos
 light sterile → neutrino oscillation, low energy experiments
 heavy sterile → collider experiments

Conclusion

- Lots of progress in neutrino physics in the past years
 → PMNS parameters approach CKM precision
- Still lots to learn about neutrino
 - \rightarrow mass ordering, CP violation, Majorana or Dirac etc.
- Lots of theoretical idea proposed to understand our universe via neutrino
 - \rightarrow More idea will emerge in future
- Lots of experimental programs and proposals exist
 - \rightarrow New era of neutrino physics

Minimal Seesaw (type-I)

- 2 RH neutrinos : Frampton, Glashow, Yanagida, PLB548(2002), Endoh, SK, Kaneko, Morozumi, Tanimoto, PRL89(2002)
- Littlest Seesaw : Dirac texture zero & 2 RH ν (S.F. King, JHEP1307(2013))
- Littlest Seesaw from S_4 (Chen, Ding, King, Li : 1906.1141)

$$m_{\nu} = m_a \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix} + m_s e^{i\eta} \begin{pmatrix} 1 & 2-x & x \\ 2-x & (x-2)^2 & (2-x)x \\ x & (2-x)x & x^2 \end{pmatrix}$$

$$(x, \eta) = (-1/2, -\pi/2)$$

$$0.593 \le \sin^2 \theta_{23} \le 0.609$$

$$-0.358 \le \delta_{CP}/\pi \le -0.348$$