

Results of a CEvNS Search with the CENNS-10 Liquid Argon Detector

Jacob Zettlemoyer, for the COHERENT Collaboration Indiana University, Bloomington 2019 Magnificent CEvNS Workshop Chapel Hill, NC November 9, 2019 The COHERENT Experiment

- Suite of detectors to measure Coherent Elastic Neutrino-Nucleus Scattering (CEvNS) at ORNL
 - First predicted in 1974, first measured in 2017 on CsI target by COHERENT
 - Largest low-energy neutrino (<50 MeV) cross section
 - Low energy nuclear recoil, need lowbackground and low-threshold detectors
 - N² dependence of cross section
 - · Measure on Csl, Ar, Nal, Ge
 - Physics accessible includes supernova neutrinos, nuclear physics, sterile neutrinos, reactor monitoring, nu magnetic moment

Neutrinos at the SNS

- Pulsed proton beam
 - 1.4 MW
 - 5000 MWhr/yr (1.5E23 POT/yr)
 - ~350 ns FWHM, 60 Hz
- Liquid mercury target

Neutrinos produced through p + Hg collisions

and pi-decay at rest

Liquid Argon (LAr) for CEvNS

- Low N nucleus for CEvNS measurement
 - Map out N² dependence of CEvNS cross section after CsI measurement
- Large scintillation yield of 40 photons/keVee
- Well-measured quenching factor
- Pulse shape discrimination (PSD) capabilities for nuclear/electron recoil separation
 - Two scintillation time constants
 - ~6 ns singlet light
 - \sim 1.6 μ s triplet light
 - Electron recoil (ER) events mostly triplet light, Nuclear recoil (NR) events mostly singlet light

The CENNS-10 Detector

- Originally built in 2012 by J. Yoo et al. at FNAL for CENNS effort at FNAL
- ~24 kg fiducial volume
- 2x 8" Hamamatsu PMTs, 18% QE at 400 nm
- Tetraphenyl butadiene (TPB) coated side reflectors/PMTs
- 10 cm Pb/ 1.25 cm Cu/ 20 cm H₂O shielding
- SAES MonoTorr Zr getter for LAr purity management
- Moved to SNS for use in COHERENT late 2016
 - Engineering Run (early 2017) with TPB coated acrylic parts, ~80 keVnr threshold, no lead shielding, blind analysis finished (1.8 GWhr), published results (arXiv:1909:05913 [hep-ex], accepted to Phys. Rev. D)
 - Production Run (July 2017-present) after upgrade to TPB coated Teflon/PMTs, ~20 keVnr threshold, expect ~140 CEvNS events/SNS-yr, blind analysis with two parallel groups in end stages (6.12 GWhr)

CENNS-10 Analysis

- Read out 33 μs around each beam spill
 - Pulse finding algorithm to find events
- Calibrate detector with variety of sources
- Characterize backgrounds
 - Measure and subtract beam unrelated backgrounds with beamoff trigger
 - Measure beam related neutrons with no-water shielding runs
- Optimize cuts using signal/noise in energy, pulse shape (PSD), and time
- Analysis consists of two steps
 - Counting experiment, "prompt", and "delayed"
 - Full likelihood analysis

LAr Quenching Factor

- Multiple measurements of LAr quenching factor in CEvNS region of interest
- Analysis performed within collaboration to fit quenching factor model
 - Use linear fit model to describe quenching factor
 - $\chi^2/\text{ndf} = 138.1/36$
 - Scale error band such that $\chi^2/\text{ndf} = 1$
 - 2% average uncertainty on quenching factor value in ROI
 - O(1%) uncertainty on predicted CEvNS counts

Engineering Run Cuts

- Cuts to waveforms include
 - Saturation, baseline
 - > 99% of waveforms pass
 - Event specific cuts
 - Pile-up, etc.
 - > 98% events pass
 - Beam-related events
 - Threshold and pulse shape discrimination cuts

Engineering Run Results

- Threshold not low enough for sensitive CEvNS search
 - Understand beam related neutron (BRN) backgrounds
- Counting experiment results
 - · Optimized cuts based on signal/noise
- Excess after cuts seen in time with beam consistent with prompt beam related neutron (BRN) rate
 - Delayed window excess consistent with zero
 - Place limit on CEvNS cross section
 - Place constraint on beam related neutrons for Production Run

Engineering Run Results, arXiv:1909:05913 [hep-ex], M. R. Heath (IU PhD Thesis) (2019) http://inspirehep.net/record/1744690?ln=en Accepted to Phys. Rev. D

Engineering Run Results

- Full likelihood analysis
 - New limits on CEvNS cross section
 - SM predicted cross section of 1.8 x 10⁻³⁹ cm²
 - Non-standard interaction (NSI) constraints
 - Confirms constraints from 2017 COHERENT Csl result

sample size	4663
beam-unrelated background	4700 ± 34
fit BRN	$126 \pm 18 (\mathrm{stat.}) \pm 28 (\mathrm{syst})$
1σ (68 % C.L.) CEvNS events	< 7.4
1σ cross section	$< 3.4 \times 10^{-39} \mathrm{cm}^2$
1σ cross section sensitivity	$< 7.1 \times 10^{-39} \mathrm{cm}^2$

Engineering Run Results, arXiv:1909:05913 [hep-ex], M. R. Heath (IU PhD Thesis) (2019) http://inspirehep.net/record/1744690?ln=en Accepted to Phys. Rev. D

Production Run Analysis

- Detector upgraded to TPB coated Teflon/PMTs
- Same strategy as Engineering Run
 - Measure and subtract beam unrelated backgrounds
 - Measure beam related neutrons with no-water shielding runs
 - Counting experiment, likelihood analysis
- Calibration determined light yield as ~4.5 photoelectrons/keVee
- Improved nuclear recoil pulse shape discrimination (PSD)
- Pulse shape discrimination, background rates, energy resolution, threshold (~20 keVnr) sufficient for measurement of CEvNS in ⁴⁰Ar
- SM prediction of ~130 CEvNS events in 6.12 GWhr Production Run dataset
- Results soon!

CENNS-10 Production Run Light Yield

CENNS-10 Production Run

Beam-Unrelated Background

- With addition of lead shielding, largest background is ³⁹Ar
 - Cosmogenic background in atmospheric Ar at ~1 Bq/kg
 - CENNS-10 simulations ran of beam-unrelated background
- Other components measurable are naturally occurring U/Th backgrounds
- ³⁹Ar backgrounds reduced via extraction of ⁴⁰Ar from underground
 - Idea for future COHERENT LAr operation, see talk by R. Tayloe tomorrow

CENNS-10 Production Run

200 220 Energy (keVee)

Summary

- Liquid Argon is low N target for CEvNS measurement due to high scintillation yield and PSD capabilities
- CENNS-10 detector built at FNAL and moved to SNS for COHERENT measurement of CEvNS on ⁴⁰Ar
- Engineering Run placed new limits on CEvNS cross section on ⁴⁰Ar and confirms CsI constraints for non-standard interactions
- CENNS-10 upgraded, production data taking continues, results from first physics run soon!
 - For future COHERENT LAr program, see talk by R. Tayloe

Thank you! Questions?

https://coherent.ornl.gov

arXiv:1803.09183v2

KΔIST

Backup Slides

Engineering Run SPE

Event Quality Cuts

Bad Fit Result (usually too close to beginning for valid baseline)

Bad Peak (typically pileup)

Engineering Run Beam- Unrelated Background

Engineering Run No-Shielding Data

Beam-Related Neutron Normalization

- Beam-related neutron predictions from IU-built SciBath detector
 - Measured neutron flux in CENNS-10 location in Neutrino Alley
 - Energy shape agreement with measured no-shielding data in Engineering Run
 - Best fit shows 30% increase in normalization from SciBath predicted flux

Engineering Run Likelihood Results

Engineering Run Likelihood Results

Nitrogen Contamination

arXiv:0804.1217[nucl-ex]

