Status of the COHERENT Nal[TI] Detector

Samuel Hedges Magnificent CEvNS 2019 11/09/2019

Motivation for a ton-scale NaI[TI] ν -detector at the SNS

CEvNS N² scaling

- CEvNS only recently measured, still testing standard model predictions (N²)
- ²³Na light—low cross section, but energetic recoils

Motivation for a ton-scale NaI[TI] ν -detector at the SNS

CEvNS N² scaling

- CEvNS only recently measured, still testing standard model predictions (N²)
- ²³Na light—low cross section, but energetic recoils

²³Na axial contributions

.

Sodium has unpaired proton, uncertainties in axial contributions may be measured

Courtesy of K. Scholberg

Motivation for a ton-scale NaI[TI] ν -detector at the SNS

CEvNS N² scaling

- CEvNS only recently measured, still testing standard model predictions (N²)
- ²³Na light—low cross section, but energetic recoils

²³Na axial contributions

Test ¹²⁷I CEvNS

- Sodium has unpaired proton, uncertainties in axial contributions may be measured
- Measure CEvNS of two nuclei in same detector
- Test results from Csl[Na] measurement

Motivation for a Ton-Scale NaI[TI] ν -Detector at the SNS

CEvNS N² scaling

- CEvNS only recently measured, still testing standard model predictions (N²)
- ²³Na light—low cross section, but energetic recoils

Sodium has unpaired proton, uncertainties in axial

²³Na axial contributions

Test ¹²⁷I CEvNS

¹²⁷I chargedcurrent events

DUKC

- Measure CEvNS of two nuclei in same detector
- Test results from Csl[Na] measurement

contributions may be measured

- Can measure electron neutrino charged-current interactions on ¹²⁷I with same detector
- Test g_A quenching with weak process at intermediate momentum transfer (~30 MeV)

Additional Motivation

- Collaboration has access to 7-9 tons of NaI[TI] crystals left over from Advanced Spectroscopic Portal program
- Can deploy a several ton detector at modest cost of bases, digitization, high voltage, and shielding
- Free detectors come with drawbacks:
 - Not designed to be low background detectors
 - 10-stage Burle PMTs attached
 - Crystals need to be tested and characterized

Initial Tests—Intrinsic Backgrounds

- Needed to test intrinsic backgrounds
 - Eight crystals tested in a 4" thick lead shield
 - Threshold ~3 keVee
- Reject background events spanning multiple crystals, CEvNS recoils limited to single crystal

Initial Tests—Intrinsic Backgrounds

- Needed to test intrinsic backgrounds
 - Eight crystals tested in a 4" thick lead shield
 - Threshold ~3 keVee
- Reject background events spanning multiple crystals, CEvNS recoils limited to single crystal
- Initial measurement saw backgrounds sufficiently low
 - ~200-500 counts/keVee/kg/day in ROI
 - Rejecting coincident events cuts backgrounds $^{-1}/_{2}$
 - Additional rejection of steady-state backgrounds from pulsed beam
 - ~3000x for 5µs window

Prototype Detector at the SNS

- Constructed NalvE (Nal v-Experiment) detector for further tests at SNS
- Consists of twenty-four 7.7kg Nal[Tl] scintillators (~185kg total)
- Dual-purpose:
 - 1. Measure in-situ backgrounds for CEvNS
 - 2. Measure inclusive electron neutrino charged-current cross section on ¹²⁷I
- Ran in two configurations:
 - 9" water shielding (summer 2016-fall 2017)
 - Iron shielding + vetoes (fall 2017-present)

NalvE Results

- Beam-off backgrounds consistent with initial measurements
 - Self-shielding from outer crystals
 - Muon vetoes gave small improvement after rejecting coincident backgrounds
- Beam-on backgrounds higher due to off-gas pipe in neutrino alley
 - Modest gamma shielding around detector + shielding around pipe
- Charged current analysis ongoing

Building a Better Base

- Issues with PMTs:
 - PMTs designed to run up to 1700V, but noisy at high voltages
 - PMTs saturate at high voltages
- Worked with Lorenzo Fabris at ORNL to develop base with built-in amplification, capable of low thresholds at modest voltages
- Two outputs:
 - 1. CEvNS output: threshold of ~1 keVee
 - Charged-current output: no saturation up to ~55 MeV
- Completed test production of 18 bases, finalizing design before making more

Crystal Characterization Efforts

- Several hundred crystals needed to be characterized
 - PMT gains, intrinsic crystal backgrounds, geometric response
- Procedure developed by UW group for characterizing crystals running at multiple voltages and scanning source across crystal
- Working on process for measuring internal backgrounds, choose lower background detectors
- Characterization procedure implemented at Duke, still need to start on ORNL crystals
- See poster by Erem Ujah

Duke

Courtesy of J. Detweiler

Quenching Factors

- Quenching factors need to be well-known, affect signal above threshold
- Existing measurement of ²³Na, ¹²⁷I QF in NaI[TI] show some discrepancies in the measurements, want to improve

Quenching Factor Measurement at TUNL

- Collaborating with COSINE-100 and ANAIS collaborations
- Measurement completed with several Nal crystals of different sizes and impurities
- 2.7 MeV protons incident on LiF
- 18 liquid scintillator backing detectors, use timing and PSD
- Goal to measure quenching factor down to 1-2 keVee
- Analysis in progress

Current Design for Ton-Scale Detector

- Opted for modular design
 - 30"x38"x60", 485 kg NaI[TI]
 - 5" of water shielding, 2" of gamma shielding
 - Some detectors to be replaced with plastic scintillator for measuring prompt neutron backgrounds in-situ
- Have on hand DAQ and HV for five modules (2.425 tons)
 - Mass can increase based on total costs and available space

 Simulations for 7 modules of NaI[TI] detectors (~3.4 tons)

13 keVnr threshold for ²³Na, above ¹²⁷I

- Simulations for 7 modules of NaI[TI] detectors (~3.4 tons)
 - 13 keVnr threshold for ²³Na, above ¹²⁷I
 - Used intrinsic backgrounds from tests

- Simulations for 7 modules of NaI[TI] detectors (~3.4 tons)
 - 13 keVnr threshold for ²³Na, above ¹²⁷I
 - Used intrinsic backgrounds from tests
 - Used best fits of prompt neutron, neutrinoinduced neutrons from CsI[Na] result in MCNP simulation

- Simulations for 7 modules of NaI[TI] detectors (~3.4 tons)
 - 13 keVnr threshold for ²³Na, above ¹²⁷I
 - Used intrinsic backgrounds from tests
 - Used best fits of prompt neutron, neutrinoinduced neutrons from CsI[Na] result in MCNP simulation
 - Use existing quenching factor data, assume flat in energy region of interest

Full-Scale Detector Simulations—CEvNS

- Simulations for 7 modules of NaI[TI] detectors (~3.4 tons)
 - 13 keVnr threshold for ²³Na, above ¹²⁷I
 - Used intrinsic backgrounds from tests
 - Used best fits of prompt neutron, neutrinoinduced neutrons from CsI[Na] result in MCNP simulation
 - Use existing quenching factor data, assume flat in energy region of interest
- Significance of $\sim 3\sigma$ /year for ²³Na recoils for counting experiment
 - Errors shown are statistical

Duke

 Work on improving bases for access to lower-energy ¹²⁷I recoils, much larger cross section

Full-Scale Detector Simulations—Charged Current

- Charged-current simulations with the same detector
 - Backgrounds from NalvE prototype
 - Assumed 99% efficient muon veto
 - Charged-current signal simulated in detector using modified version of MARLEY (Model of Argon Reaction Low-Energy Yields)
- NalvE prototype designed to produce initial measurement, fullscale detector would make highprecision measurement, study energy dependence

https://github.com/sjgardiner/marley

Other Approaches to Identifying Muons

- Muons largest background for charged-current signals
 - Space in shielding limited
 - Vetoes would replace gamma or neutron shielding
 - CEvNS measurement doesn't benefit from vetoes
- Some approaches being investigated:

Duke

- Hough transformation to identify muon tracks
- Machine-learning approach to distinguish muon and chargedcurrent events, testing simulations with NalvE data

Courtesy of P. An

Summary

- Ton-scale Nal will allow us to test CEvNS physics and N² scaling, study at charged-current interactions
- In preparation for ton-scale detector:
 - Crystal backgrounds studied, manageable
 - Prototype detector deployed to the SNS, collecting data
 - Bases developed for improved thresholds at lower voltages
 - Crystals currently being characterized for detector
 - Quenching factor measurement completed, analysis in progress
 - Finalizing full-scale design to start construction

Acknowledgements

