

Possibility to suppress the installation of MS in Q10 in IR1 & 5

F. Plassard, R. De Maria Thanks to: S. Fartoukh, M. Giovannozzi, F. Van der Veken

WP2 Meeting 10/09/2019

- ➤ The Baseline HL-LHC lattice foreseen the installation of 4 additional sextupoles MS in Q10 → 1 additional MS on each side of IP1 & IP5
- The additional MS10 allows to allow to keep the machine DA to a viable level by providing a better compensation of the geometrical aberrations generated by the MS in the high β regions, adjacent to IR1 and IR5.
- Alternative sextupole lattices have been studied and can restore self-compensation of the non-linear resonances to the same level as the Baseline optics but without MS10.

The comparison of the different lattices are based on the **round optics at** $\beta_{x,y}^*$ =15 cm and using the latest HLLHCV1.4 optics

Baseline optics

No MS10 (LHC configuration)

Odd number of sextupoles on each side of IP1&5

Arcs	Circuit (strong)	
B1: 81, 45	SF1 (9), SD2 (12)	
B2: 81, 45	SF1 (10), SD2 (11)	
B1: 12, 56	SF1 (10), SD2 (11)	
B2: 12, 56	SF1 (9), SD2 (12)	

No MS10 vs Baseline Average sextupole RDTs computed at $\beta^*_{x,y}$ =15 cm with the crossing scheme and disp. correction

Self-compensation of the geometrical aberrations excited during the ATS can be obtained if the strong sextupole families contain an even number of magnets

No MS10 vs Baseline

DA computation:

xing = **295** μrad, Q_x = 62.31 / Q_y = 60.32, δ_p = 2.7× 10⁻⁴, without imperfections, with dispersion correction, Q'=**15**, **MO** = -**570 A**, 10⁶ turns, 60 angles

Optics	Avg. DA (B1/B2)	Min. DA (B1/B2)
No MS10	8.7 / 9.6	7.1 / 8.2
Baseline	12.0 / 10.9	10.5 / 9.6

Alternative Optics without MS10: No MS14F optics

- No additional sextupole and MS14F disconnected (in 81 & 45)
- Change of phase and optics rematch (in 12 & 56)
- Even number of strong sextupoles on each side of IP1&5 -> geom. aberr. Cancellation
- Orbit and dispersion correction knobs have been modified accordingly

Arcs	Circuit (strong)
B1: 81, 45	SF1 (8), SD2 (12)
B2: 81, 45	SF1 (10), SD2 (12)
B1: 12, 56	SF1 (10), SD2 (12)
B2: 12, 56	SF1 (8), SD2 (12)

Alternative Optics without MS10: No MS14F & MS14D optics

No change in phases & even number of sextupoles by disconnecting MS14D

- Requires an increase of ~20% of the sextupole strength for chromaticity correction
- Strong family strength in IR15 kept constant and weak sextupoles family strength increased in 23, 34, 67, 78
- ➢ Worse chromatic correction in the vertical plane: $W_y = 220 \text{ in IP7 } (W_y = 80 \text{ for Baseline}) ; Q''_y = 10983 (Q''_y = 7630 \text{ for Baseline})$

Arcs	Circuit (strong)
B1: 81, 45	SF1 (8), SD2 (12)
B2: 81, 45	SF1 (10), SD2 (12)
B1: 12, 56	SF1 (10), SD2 (10)
B2: 12, 56	SF1 (8), SD2 (10)

Alternative Optics without MS10: RDT comparison

Similar compensation of the geometrical aberrations for the No MS14F optics and the No MS14F & MS14D optics w.r.t to the Baseline

Alternative Optics without MS10: DA comparison

- Alternative optics shows
 larger DA than the No
 MS10 optics for both
 beams
- Large difference between
 B1 & B2 for the No
 MS14F optics
- DA in B2 very similar between Baseline and alternative optics

. .

Beam 1 75° No MS14F MS No MS14F No MS10	Beam 2 75°
0.0 2.5 5.0 7.5 10.0 12.5 0°	6 0.0 2.5 5.0 7.5 10.0 12.5 ^{0°}
σ_x	σ_x
Beam 1	Beam 2
$- \bullet \cdot$ Mean values	12
9 9	9
8	8
7 Baseline No MS10 No MS14F No MS14F	7 Baseline No MS10 No MS14F No MS14F

Baseline

Optics	Avg. DA (B1/B2)	Min. DA (B1/B2)
No MS10	8.7 / 9.6	7.1 / 8.2
Baseline	12.0 / 10.9	10.2 / 9.1
No MS14F	9.5 / 11.2	8.3 / 9.0
No MS14F		
& MS14D	11.5 / 11.0	9.8 / 9.2
	•	•

IP1-5 phase advance optimization

We investigated the possibility to **improve the DA** and **reduce the difference between B1 and B2**, for all optics, by **optimizing** $\Delta \mu_{x,y}^{IP1 \rightarrow 5}$

important impact on the compensation of some fourth and higher order resonant driving terms and on the tune diagram which can improve DA

- 2D scan of the x,y phase advance between IP1 & 5 while keeping the overall tune constant
- The new optimized optics take into account the limitation of the horizontal phase between MKD-TCT in IP1 for machine protection, and all other contraints for the HL-LHC optics

IP1-5 phase advance optimization: **Baseline**

xing = **295** μ rad, Q_x = 62.31 / Q_y = 60.32, δ_p = 2.7× 10⁻⁴, without imperfections, with dispersion correction, Q'=15, MO = -570 A, 10⁶ turns, 60 angles Beam 1 30.181 -13.0 12.5 30.231 -12.0 30.281 - 10.33 10.91 11.38 11.62 Average DA $[\sigma]$ 11.5 30.331 - 11.06 11.34 12.02 12.37 12.3 $\Delta u_{\omega}^{IP1-5}$ [2 π] 11.0 12.45 13.05 13.28 12.12 12.9 30.381 11.68 10.5 30.431 11.41 11.94 12.19 12.16 12.08 - 10.0 30.481 - 10.71 11.28 11.34 11.25 - 9.5 31.28 31.33 31.38 31.43 31.48 31.23 $\Delta \mu_x^{IP1-5} [2\pi]$ **B1:** $\Delta \mu_x^{IP1 \rightarrow 5} = +\frac{\pi}{10}, \ \Delta \mu_y^{IP1 \rightarrow 5} = +\frac{\pi}{10} \rightarrow \Delta DA = +1.26\sigma$

B2: $\Delta \mu_x^{IP1 \rightarrow 5} = +0$, $\Delta \mu_y^{IP1 \rightarrow 5} = +\pi$ $\rightarrow \Delta DA = +1.16\sigma$

 $\Delta \mu_y^{IP1-5} [2\pi]$

Compatible with IR6 constraints (MKD-TCT phase in IP1 below 20°)

IP1-5 phase advance optimization: No MS14F

- ➤ The IP^{1→5} phase advance for Beam 1 for No MS14F optics was originally set far from an optimal point for RDTs compensation
- > The optimum phase point for DA was found at a $\Delta \mu_{\chi}^{IP1 \rightarrow 5}$ not compatible with MKD-TCT phase contraints

IP1-5 phase advance optimization: No MS14F

 New DA optimum for B1 compatible with IR6 constraints found for larger Δμ^{IP1→5}

B1:
$$\Delta \mu_x^{IP1 \rightarrow 5} = +\frac{\pi}{10'}$$

 $\Delta \mu_y^{IP1 \rightarrow 5} = +\frac{9\pi}{10} \rightarrow \Delta DA = +1.8\sigma$

B2:
$$\Delta \mu_x^{IP1 \to 5} = -\frac{\pi}{10}$$
,
 $\Delta \mu_y^{IP1 \to 5} = +\frac{\pi}{10} \rightarrow \Delta DA = +0.3\sigma$

Beam 2 phase was already close to optimum DA point

Average DA $[\sigma]$

IP1-5 phase advance optimization: No MS14F & MS14D

> Optimal phases $\Delta \mu_{x,y}^{IP1 \rightarrow 5}$ for the No MS14F &MS14D optics are very similar to the ones of the optimized Baseline

B1: $\Delta \mu_{x}^{IP1 \rightarrow 5} = 0^{\circ}$, $\Delta \mu_{y}^{IP1 \rightarrow 5} = +\frac{\pi}{10} \rightarrow \Delta DA = +0.9\sigma$

B2:
$$\Delta \mu_x^{IP1 \rightarrow 5} = 0^\circ$$
,
 $\Delta \mu_y^{IP1 \rightarrow 5} = +\pi \rightarrow \Delta DA = +0.7\sigma$

IP1-5 phase advance optimization: DA comparison

xing = 295 µrad, Q_x = 62.31 / Q_y = 60.32, δ_p = 2.7× 10⁻⁴, with imperfections, with dispersion correction, Q'=15, MO = -570 A,

10⁵ turns, 7 angles

After optimization of the IP^{1→5} phase advance the minimum and average DA are improved for all optics and both beams, taking into account field imperfections (using the corrected mask from Frederik and without MCBRD and MCBXFA field errors)

IP1-5 phase advance optimization: Footprint comparison (MO=-570 A)

IP1-5 phase advance optimization: Amplitude Detuning (MO=-570 A)

Alternative Optics without MS10: Chromatic Properties

At $\delta_p = 3 \times 10^{-4}$

Alternative Optics without MS10: Chromatic Properties

The residual chromatic β -beating could be further optimized by adjusting the phase advance between MS and the IP1-5

Alternative Optics without MS10: IR6 constraints

- ➢ Optics in IR6 within the constraints after optimization of the IP^{1→5} phase advance
- \blacktriangleright Phase advance $\Delta \mu_{x,MKD-TCT,IP1}$ below 20° to keep the protected aperture at 11.2 σ

Param. B1 / B2	Target values	Baseline	No MS14F	No MS14F&MS14D
$\Delta \mu_{x,\text{MKD-TCDQ}}$ [°]	$90^{\circ} \pm 4^{\circ}$	86.3 / 93.6	91.5 / 93.6	86.3 / 93.6
$\beta_y^{ m TCDS}$ [m]	≥ 200	$238.3 \ / \ 260.6$	$283.2 \ / \ 200.0$	238.3 / 271.0
$\beta_x^{ m TCDQ}$ [m]	-	736.4 / 473.3	$513.9 \ / \ 460.0$	736.4 / 474.6
β_y^{TCDQ} [m]	$\geq \! 145$	$180.5 \ / \ 145.0$	$145.0 \ / \ 176.2$	$180.5 \ / \ 145.0$
$ \mathbf{\hat{D}}_{x,\mathrm{TCDQ}} $ [m]	-	$0.6 \ / \ 0.4$	$0.02 \ / \ 0.38$	$0.5 \ / \ 0.42$
$\operatorname{Gap}_{\operatorname{TCQD},\min}$ [mm]	≥ 3	4.0 / 3.05	$3.3 \ / \ 2.99$	4.0/3.05
$\beta_x^{ ext{TDE}} ext{ [km]}$	≥ 4	$6.37 \ / \ 4.92$	5.06 / 4.83	$6.37 \ / \ 4.93$
β_y^{TDE} [km]	≥ 3.2	$3.36 \ / \ 7.23$	$8.2 \ / \ 6.33$	$3.36 \ / \ 7.72$
$(\beta_x \beta_y)_{\text{TDE}}^{\frac{1}{2}} \text{ [km]}$	≥ 4.5	$4.62 \ / \ 5.98$	$6.44 \ / \ 5.53$	$4.62 \ / \ 6.17$
$ \Delta \mu_{x,\text{MKD-TCT,IP1}} $ [°]	≤ 20	$19.8 \ / \ 18.8$	$9.8 \ / \ 18.6$	5.0 / 19.6
$ \Delta \mu_{x,\text{MKD-TCT,IP5}} $ [°]	≤ 30	$29.5 \ / \ 31.4$	36 / 30.1	$29.5 \ / \ 31.9$
Q5.L6 [T/m]	160	163 / -164	160 / -162	$163 \ / \ -165$
Q5.R6 $[T/m]$	160	-159 / 151	-161 / 151	-159 / 152

IP1-5 phase advance optimization: DA comparison

xing = **295** μrad, Q_x = 62.31 / Q_y = 60.32, δ_p = 2.7× 10⁻⁴, with imperfections, with dispersion correction, Q'=**15**, MO = -**570 A**, 10⁵ turns, 7 angles

Optics	Avg. DA (B1/B2)	Min. DA (B1/B2)
No MS10	11.5 / 11.2	9.0 / 8.6
Baseline	12.9 / 12.2	10.9 / 10.4
No MS14F	12.0 / 12.5	9.5 / 10.0
No MS14F & MS14D	12.4 / 12.1	10.1 / 10.0

Alternative optics with only 1 MS10 in IR1&5

Alternative optics with only 1 MS10 in IR1&5

xing = **295** µrad, Q_x = 62.31 / Q_y = 60.32, δ_p = 2.7× 10⁻⁴, with imperfections, with dispersion correction, Q'=15, MO = -570 A,

Optics	Avg. DA (B1/B2)	Min. DA (B1/B2)
Baseline	12.9 / 12.2	10.9 / 10.4
No MS10F & MS14F	12.9 / 12.0	10.7 / 10.3
No MS10D & MS14D	12.6 / 11.9	10.6 / 9.2

- Optimize the Landau Octupole circuit currents to improve DA
- Reducing the RDTs generated at the octupoles by lowering their strength at the orbit bumps for dispersion correction where $\beta_{x,y}$ are larger
- DA simulations without Beam-Beam included → Octupole power varied for direct detuning terms almost constant
- \circ Assume amplitude detuning with nominal octupole setting for HL-LHC \rightarrow -300 A
- IMO37 refers to the octupole currents in sectors 23,34,67,78
- IMO15 refers to the octupole currents in sectors 81,12,45,56

 $\delta \epsilon_x$

 $\delta \epsilon_y$

0.312

0.312

RDTs from a₄, b₄ and a₃, b₃ reduce with reduced octupole strength in Sec. 81,12,45,56

- > DA increases with reduced octupole strength in Sec. 81,12,45,56 thanks to the lower a_4 , b_4 and feed-down to sextupole fields a_3 , b_3
- For (IMO37,IMO15) = (-570,-230) -> +2σ for B1 ; +1.3σ for B2 in avg

CONCLUSIONS

- \circ DA comparison for B1 & B2 on all alternative optics without MS10 at collision with round β^* =15 cm using the latest HLLHCV1.4 mask without beam-beam
- The DA has beam improve for all optics by optimizing the phase advance between IP1 and IP5 taking into account optics constraints in IR6
- DA difference w.r.t to **Baseline** optics **with imperfections** (B1 / B2) :

No MS10 : $DA_{avg} = -1.4 / -1.0 \sigma$; $DA_{min} = -1.9 / -1.8 \sigma$

No MS14F : $DA_{avg} = -0.9 / +0.3 \sigma$; $DA_{min} = -1.4 / -0.4 \sigma$

No MS14F&MS14D : DA_{avg} = -0.5 / -0.1 σ ; DA_{min} = -0.8 / -0.4 σ

- Alternative optics should be validated with Beam-Beam included
- Alternative configuration studied with only half additional MS10 w.r.t Baseline: No MS10F & MS14F : $DA_{avg} = 0.0 / -0.2 \sigma$; $DA_{min} = -0.2 / -0.1 \sigma$ No MS10D & MS14D : $DA_{avg} = -0.3 / -0.3 \sigma$; $DA_{min} = -0.3 / -1.2 \sigma$
- DA can be further improved by reducing the RDTs contribution from octupoles in sector 81,12,45,56 where β^* is large and where orbit bumps are used for dispersion correction: **Reduced power in IMO15 while increasing power in IMO37 with constant amplitude detuning** \rightarrow **increase of DA**

BACKUP SLIDES

IP1-5 phase advance optimization: DA comparison

xing = **295** µrad, Q_x = 62.31 / Q_y = 60.32, δ_p = 2.7× 10⁻⁴, without imperfections, with dispersion correction, Q'=15, MO = -570 A, 10⁶ turns, 60 angles

Alternative Optics without MS10: Chromatic Properties

Alternative optics with only 1 MS10 in IR1&5

xing = **295** µrad, Q_x = 62.31 / Q_y = 60.32, δ_p = 2.7× 10⁻⁴, without imperfections, with dispersion correction, Q'=**15**, MO = -**570** A, 10⁶ turns, 60 angles

Alternative Optics with only 1 add. MS10: Chromatic Properties

Alternative Optics with only 1 add. MS10: Chromatic Properties

Changing Octupole Powering: Impact on RDTS (No MS14F)

Changing Octupole Powering: Impact on RDTS (No MS14F & MS14D)

Changing Octupole Powering: Impact on RDTS (No MS10)

