

ALICE data flow

ALICE - Data Data Preparation Group Analysis Tutorial 25 October 2019 Group

- Reconstruction steps from raw data to ESDs
 - Track, primary vertex, decay vertices
- Calibration and CDB
 - Online and offline calibration, reconstruction passes
- Monte Carlo simulation chain
- ESD and AOD
 - ESD and AOD contents, ESD->AOD filtering
- Event properties and selection
 - Physics selection, pileup rejection, centrality determination
- Track properties and selection
 - Track cuts (ESD vs. AOD), TPC-ITS matching efficiency, ...

- central barrel: |η| < 0.9
- some with limited acceptance
- forward acceptance
- MUON
- cosmics

RECONSTRUCTION: FROM RAW DATA TO ESD

- z axis along the beam direction
 - Muon arm in the negative z direction (negative pseudorapidity η)
- x axis points towards the centre of the LHC
- **y axis** points upwards

DPG ALICE · Data Preparation Group Group Group

- Local detector reconstruction: clusterization step
 - Raw data of each detector data are converted into **clusters**
 - Clusterization is performed separately for each detector
- **Cluster** (or **RecPoint**) = groups of adjacent detector cells firing
 - Corresponds to a hit (energy deposition) produced by a *crossing particle* (or by a *shower* in the calorimeters)
 - Characterized by:
 - Positions, signal amplitudes, signal times, cluster shapes...
 - ... and their associated errors
 - Used as input for track (and tracklet) reconstruction for tracking detectors (ITS, TPC, TRD)
 - Matched to tracks for PID detectors (TOF, HMPID, EMCAL...)
 - Clusters from calorimeters (EMCAL, PHOS) stored in ESDs
 - Used, e.g. for photon reconstruction: a cluster with no tracks in the vicinity is a neutral particle candidate

Primary vertex from SPD

- Interaction vertex position reconstructed from pairs of SPD points (tracklets)
 - Search for **pileup** from SPD tracklets not pointing to the "main" interaction vertex
- 3D reconstruction

- Default in pp and p-A
- Not used in A-A where the faster Z-only vertex is used
- Z-only reconstruction
 - Fallback in pp and p-A if the 3D fails (low multiplicity events)
 - Default in A-A

Tracking: Kalman filter

- Local method: the track parameters are estimated 'locally' at a given point in space
 - Naturally accounts for local track peculiarities: stochastic physics processes (multiple scattering, energy loss), B field
- Simultaneous **track recognition** (*track finding*) and **reconstruction** (*track fitting*)
 - Needs "state vector" (= track parameterisation) + "evolution equation" (= how state vector varies from current to next "step")
 - Requires to **start from a track "seed"** (first track candidate)
- Tracking **procedure**:
 - Extrapolate the current estimate to the next "step" (prediction)
 - Combine the prediction with the next state vector measurement (*filtering*) -> improved determination of track parameters
 - Repeat prediction and filtering steps as many times as we have measurements of the state vector.

Tracking: seeding

Preparation Group

- Track seeds built using SPD primary vertex and pairs of TPC RecPoints in adjacent pad rows
 - Seeding starts at outer TPC radius, where hit density is minimal
 - Seeds for candidate secondary tracks built from 3 TPC points w/o using the SPD vertex

Tracking: 1st phase -> inward

- Track seeds are **projected inward** using a Kalman filter algorithm
 - Updated at each step with the nearest TPC cluster provided that it fulfils a proximity cut
 - Continue until the inner radius of the TPC is reached
 - Preliminary particle id. based on TPC dE/dx (used for energy loss correction in next steps)
- Track prolongation to the ITS
- **ITS standalone tracker:** find tracks from ITS points not attached to TPC prolongations

DPG ALICE · Data Preparation Group Tracking: 2nd phase -> outward

- **Back propagation** of tracks with the Kalman filter
 - From the interaction vertex to the TPC outer radius, using the clusters found in previous step
 - Update particle id. based on TPC dE/dx (used for energy loss correction in next step)
- Prolongation to TRD, TOF, HMPID, EMCAL, PHOS
 - Association of reconstructed points in these detectors
 - Track length calculation
- ITS standalone tracks propagated only up to the outer ITS radius

DPG ALICE · Data Preparation Group Tracking: 3rd phase -> refit inward

- **Re-fit** of the track in the **inward** direction with the Kalman filter
 - Clusters from the previous steps used in the refit
 - Best determination of the track parameters and covariance matrix
- Tracks propagated to their Distance of Closest Approach (DCA) to the SPD vertex

- Global (TPC+ITS) tracks = TPC tracks prolonged to ITS with successful refit inward step
- ITSsa = ITS only tracks, built from ITS clusters not attached to TPC prolongations
 - Complementary to global tracks
 - Recover: low-p_T tracks not reconstructed in TPC, high-p_T tracks in regions between TPC sectors
- ITS pure SA: ITS-only tracks built using all ITS clusters
 - Enabled only in pp and p-Pb
 - For checks+specific analyses

• **NOTE:** ITS-only tracks have worse p_{τ} resolution than TPC+ITS

- **Kink** = topological signature of charged particles decaying into 1 charged + 1 neutral particles (e.g. $K \rightarrow \mu V$, $\pi \rightarrow \mu V$)
- Search for kinks inside the volume of the TPC after the first inward tracking step
 - Large decay angle kinks = pairs of tracks with same charge that intersect each other in a fiducial volume
 - Small decay angle kinks = "breakpoint" (i.e. change in direction) between the upstream and downstream parts of a track

Primary vertex from tracks

- Primary vertex determined from reconstructed TPC+ITS tracks
 - Better resolution than SPD vertex
 - Lower efficiency (at low multiplicity) than SPD vertex
 - Pileup tagging via multiple vertices (MultiVertex)
- Primary vertex also determined from track parameters using only TPC information (TPC-only)
 - Poor resolution, not to be used in analysis

Secondary vertices

- Search for photon conversions and secondary vertices from weak decays of long-lived (strange) hadrons
 - Tracks with **large DCA** to the primary vertex
 - Select on decay topology

- V0 candidates:
 - К⁰ →пп
 - Λ→рп
 - γ→ee
- Cascade candidates
 - Ξ→Λп→рпп

V0 candidates: Λ and K^0_s

On-the-fly V0s: clusters -> V0 candidate

- V0s found during tracking
- Good: Raw cluster info used: ideal resolution + causality cut (no clusters before decay point)
- **Bad**: cannot be replayed at analysis level e.g. with looser selections

Offline V0s: Tracks -> V0 candidate

- V0s found based on reco'ed tracks
- **Good**: high level of abstraction: runs on ESD tracks and can be replayed and reconfigured at will
- **Bad**: less-than-ideal resolution because of cluster association before decay point

Cascades: V0 + track -> cascade candidate

- Only cascades based on offline VOs have been used in ALICE so far
- Same strategy as VOs, but larger number of topological selections (total: 10 selections)
- A selection on Λ invariant mass is also performed (typically we select a window of 6-10 MeV/c² around the PDG mass)
- However, for the cascade invariant mass calculation, we use the perfect Λ mass for the V0 daughter

RAW DATA PRODUCTION CHAIN

DPG ALICE · Data Preparation Group Group

Raw data processing steps

Preparation Group

muon_calo reconstruction

- Aim: fast reconstruction for detectors that do not need the automatic calibration of CPass0/1
- Involved detectors:
 - MUON, EMCAL, PHOS, TO, ITS, VO, ZDC, AD

// Set reconstruction flags (skip detectors here if neded with -<detector name>
rec.SetRunReconstruction("ALL -TPC -TRD -TOF -HLT -PMD");

- Performed for all good PHYSICS runs in the logbook
- Starts promptly after the data taking
 - In parallel with CPass0/1
- QA performed in parallel with CPass1 QA

Raw data processing steps

Preparation Group

DPG ALICE · Data Preparation Group Offline Analysis Data Base (OADB)

- Calibrations needed at the analysis level, e.g.
 - **Splines** to parametrise the expected **TPC dE/dx** for particle species
 - <u>https://twiki.cern.ch/twiki/bin/view/ALICE/TPCSplines</u>
 - **Centrality/multiplicity** percentiles from estimators
 - <u>https://twiki.cern.ch/twiki/bin/viewauth/ALICE/AliMultSelectionCalibStatus</u>
 - Event plane flattening corrections
- Calibration files produced asynchronously w.r.t. reconstruction pass
 - Usually slightly after muon_calo or PPass completion
- Stored in OADB
 - Directories in AliPhysics, under \$ALICE_PHYSICS/OADB or on EOS (for large files)
 - Need to use recent enough AliPhysics tag in your analysis if you need latest calibrations

MONTE CARLO SIMULATIONS

Monte Carlo chain

ESD EVENTS AND TRACKS

PesdTree;1 Murses a

Calo Clusters

EMCALCells.

PHOSCells.

AliESDs.root contents (1)

ESD run

UInt t

Int t

UShort t

UChar t

Float t	fCurrentL3;	<pre>// signed current in the L3 (LHC co</pre>
Float t	fCurrentDip:	<pre>// signed current in the Dipole (LHC co</pre>
Float t	fBeamEnergy:	// beamEnergy entry from GRP
Double32 t	fMagneticField	: // Solenoid Magnetic Field in kG : for
Double32 t	fMeanBeamInt[2	1[2]: // mean intensity of interacting and
Double32 t	fDiamondXY[2]:	<pre>// Interaction diamond (x.v) in RUN</pre>
Double32 t	fDiamondCovXY[31: // Interaction diamond covariance (x,v)
Double32_t	fDiamondZ:	<pre>// Interaction diamond (z) in RUN</pre>
Double32 t	fDiamondSig2Z:	<pre>// Interaction diamond sigma^2 (z) in R</pre>
UInt t	fPeriodNumber:	// PeriodNumber
Int t	fRunNumber:	// Run Number
Intt	fRecoVersion:	<pre>// Version of reconstruction</pre>
Intt	fBeamParticle[2]: // A*1000+Z for each beam particle
TString	fBeamType;	<pre>// beam type from GRP</pre>
	21 2	
ESD header		
<pre>// Event Ident:</pre>	ification	NAMES OF A DESCRIPTION OF
ULong64_t f	TriggerMask;	<pre>// Trigger Type (mask) 1-50 bits</pre>
ULong64 t f	TriggerMaskNext50;	<pre>// Trigger Type (mask) 51-100 bits</pre>
UInt t f	OrbitNumber;	// Orbit Number
UInt t f	TimeStamp;	// Time stamp
UInt t fl	EventType:	// Type of Event
UInt t fl	EventSpecie:	<pre>// Reconstruction event specie (1-</pre>
	Float_t Float_t Float_t Double32_t Double32_t Double32_t Double32_t Double32_t UINt_t Int_t Int_t Int_t Int_t String ESD header // Event Ident ULong64_t ULong64_t UInt_t UInt_t UInt_t UInt_t UInt_t UInt_t UINt_t	<pre>Float_t fCurrentL3; Float_t fCurrentDip; Float_t fBeamEnergy; Double32_t fMagneticField Double32_t fMeanBeamInt[2 Double32_t fDiamondXY[2]; Double32_t fDiamondCovXY[Double32_t fDiamondCovXY[Double32_t fDiamondSig2Z; UInt_t fPeriodNumber; Int_t fRunNumber; Int_t fRecoVersion; Int_t fRecoVersion; Int_t fBeamParticle[TString fBeamType;</pre> ESD header // Event Identification ULong64_t fTriggerMask; ULong64_t fTriggerMask; ULong64_t fTriggerMask; ULong64_t fTriggerMask; ULong64_t fTriggerMask; ULong64_t fTriggerMask; ULong64_t fTriggerMask; ULong64_t fTriggerMask; ULong64_t fTriggerMask; ULong64_t fTriggerMask; UInt_t fEventType; UInt_t fEventType; UInt_t fEventType; UInt_t fEventSpecie:

fPeriodNumber;

- // Period Number
- fEventNumberInFile; // Running Event count in the file
- fBunchCrossNumber; // Bunch Crossing Number fTriagerCluster:
 - // Trigger cluster (mask)

AliESDs.root contents (2)

AliESDs.root contents (3)

ARRAY OF PILEUP VERTICES FROM SPD

ARRAY OF PILEUP VERTICES FROM TPC+ITS TRACKS (MultiVertex)

+ PILEUP-TAGGING METHODS

virtual Bool_t IsPileupFromSPDInMultBins() const;

AliESDs.root contents (4)

AliESDtrack

- Inherits from **AliExternalTrackParam**:
 - Store track parameters and covariance matrix
 - Methods to get momentum, position impact parameter ...
 - Methods to "propagate" the track along its trajectory
- Additional information on track properties, e.g.:
 - Status bit (TPC in,, ITS refit)
 - chi2 of track fit (per detector)
 - Number of attached clusters (per detector), TPC findable clusters, ITS per-layer info, ...
 - PID related information (track length, TOF time, EMCAL cluster...)

Track parameterisation

- STEER/STEERBase/AliExternalTrackParam
- Track parameters in the "local" reference system

Parameterizations in AliESDtrack

- Main parameterization is at the DCA to the primary vertex (note: primary vertex not included in the track fit)
 - Optimal for primary particles
- <u>Five additional parameterizations</u> (snapshots along the trajectory at different tracking steps) stored in AliESDtrack:
 - GetConstrainedParam() = track parameters constrained at the primary vertex
 -> used for analyses that need uniform φ coverage + optimal resolution for primaries (e.g. jets)
 - GetInnerParam() = Track parameters at the inner wall of the TPC (from refit step) -> used for TPC pid
 - GetTPCInnerParam() = TPC-only parameters propagated at DCA to the primary vertex, corrected for material between TPC and vertex (from first inward fit kTPCin)
 - GetOuterParam() = Track parameters at the point of max. radial coordinate reached in the PropagateBack step
 - GetOuterHmpParam() = Track parameters at HMPID

FROM ESD TO AOD

Analysis Object Data (AOD)

- **AOD files** should be the main source for physics analysis
 - Lighter than ESDs
- Produced from ESDs as <u>last step of the PPass</u> (and muon_calo) reconstruction or in <u>dedicated AOD refiltering</u> productions
 - Analysis train for AOD creation defined in the macros AliDPG/AOD/AODtrainRawAndMC.C (both for data and MC)
- The main "wagon" is the analysis task \$ALICE_ROOT/ANALYSIS/ESDfilter/AliAnalysisTaskESDfilter.cxx
 - Creates AliAOD.root and AliAOD.Muons.root files
 - In case of MC productions: the "kinematic tree" of generated particles is converted into a tree of AliAODMCParticle objects and stored in AliAOD.root
 - Additional information, e.g. for D-meson and photon conversion stored in dedicated delta-AOD files: AliAOD.VertexingHF.root and AliAODGammaConversion.root

AliAOD.root

• Similar structure as AliESDs.root

- Inherits from **AliVTrack** and not from AliExternalTrackParam
- Different parameterisation w.r.t. AliESDtrack:

```
// Momentum & position
Double32_t fMomentum[3];
Double32_t fPosition[3];
```

// momemtum stored in pt, phi, theta
// position of first point on track or dca

- Momentum components and position at DCA to vertex
- Covariance matrix
- Only parameters at the DCA to the vertex are stored
- Can be converted to AliExternalTrackParam via AliExternalTrackParam::CopyFromVTrack

• AOD tracks have a **filter-bit mask** (data member *fFilterMap*)

UInt_t	<pre>fFilterMap;</pre>	11	filter	information,	one	bit	per	set	of	cuts
 Store information about whether the track satisfies standard sets of quality criteria Each bit corresponds to a given set of cuts, e.g.: 										
enum AODTrkFi kTrkTPCOnly kTrkITSsa kTrkITSCons kTrkElectro kTrkGlobalN kTrkGlobal	<pre>.lterBits_t {</pre>	/ Standar / ITS sta / Pixel C // PID / standar // standa	rd TPC on andalone OR necessa for the e rd cuts ward cuts wa	ly tracks ary for the elec electrons ith very loose D with tight DCA c	trons CA ut					

kTrkTPCOnlyConstrained = BIT(7) // TPC only tracks: TPConly information constrained to SPD vertex

};

https://twiki.cern.ch/twiki/bin/viewauth/ALICE/PWGPPAODTrackCuts

• The usage of a filter bit is recommended but might not be enough for your analysis! You should be aware what it corresponds to!

DPG ALICE · Data Preparation Group Filter bits: where and how they are defined

The filter bits can change from production to production (documentation <u>here</u>)

- The filter bit scheme used for a given production is defined by the macro \$ALICE_ROOT/ANALYSIS/ESDfilter/macros/AddTaskESDFilter.C
- Run2 samples have an homogeneous definition for the filter bits

NanoAOD (I)

- Basic idea
 - Select only needed events (trigger bit, other properties)
 - Selectively store the content of the AOD
 - Decision can be done at run time (no specific classes needed)
 - Custom fields for derived quantities can be added
- Can be produced on the LEGO train and processed by the next LEGO train
- Using Nano-AODs instead of ESDs/AODs works out of the box if a task can consume AliVTrack
 - If a field is accessed which is not stored \rightarrow AliFatal
 - Minor modifications for tasks that consume a AODs

NanoAOD (II)

Easy setup of the filtering:

```
// Track selection
AliAnalysisNanoAODTrackCuts* trkCuts = new AliAnalysisNanoAODTrackCuts;
trkCuts->SetBitMask((1 << 8) | (1 << 9)); // hybrid 2011
trkCuts->SetMaxEta(0.9);
trkCuts->SetMinPt(1.0);
// Fields to store
task->SetVarListHeader("OfflineTrigger,MagField,CentrVOM"); // event level
task->SetVarListTrack("pt,theta,phi,TOFBunchCrossing,ID"); // track level
```

• Large advantage in terms of computing time/storage

	Storage	CPU		
Correlations	3000	130		
Femtoscopy with V0s, conversions, photons	350	110 – 180		
Nuclei	16000 – 33000			

 Filtering designed specifically for each analysis! Contact <u>Jan.Fiete.Grosse-Oetringhaus@cern.ch</u> or <u>maximiliano.puccio@cern.ch</u> if you are interested!

EVENT SELECTION

Triggers in ALICE

- The ALICE experiment cannot record all events:
 - Large detector readout time (up to 1 ms/event)
 - Data storage limitations
- We need some non-negligible activity in ALICE detectors to start the data acquisition (**Minimum bias triggers**)
 - Mainly based on V0, SPD and T0:
 - pp 2010: SPD | VOA | VOC (INT1)
 - pp 2012: TOA & TOC within a given time window (INT8)
 - pp 2015-2018 and p-Pb: VOA & VOc (INT7)
- We may be interested in rare observables for which we can collect enough statistics only requiring specific signatures in ALICE the detectors (rare triggers)
 - Most common rare triggers (used in coincidence with SPD or V0 or T0 triggers)
 - Muon triggers (single muon, dimuon)
 - Calorimeter triggers (EMCAL, PHOS)
 - Ultra-peripheral collisions (Muon, TOF+SPD)

Trigger aliases

Definitions of trigger aliases in: AliVEvent::E0fflineTriggerTypes

Trigger	Definition				
AliVEvent::kMB	BIT(0), Min. bias trigger in PbPb 2010-11				
AliVEvent::kINT1	BIT(0), V0A V0C SPD minimum bias trigger				
AliVEvent::kINT7	BIT(1), V0AND minimum bias trigger				
AliVEvent::kMUON	BIT(2), Single muon trigger in pp2010-11, INT1 suite				
AliVEvent::kHighMult	BIT(3), High-multiplicity SPD trigger				
AliVEvent::kAny	0xffffffff, to accept any defined trigger				

(See all trigger definitions in \$ALICE_ROOT/STEER/STEERBase/Alivevent.h)

- Assignment of trigger classes to aliases and definition of background and quality checks is stored in OADB. Check details in \$ALICE_PHYSICS/OADB/macros/BrowseAndFillPhysicsSelectionOADB.C
- \rightarrow Several triggers (\rightarrow aliases) can be fired at the same time

The Physics Selection class (AliPhysicsSelection) is used to select collision candidates in data samples collected by ALICE

- Reject background and poor quality events according to predefined requirements
- Select events within the trigger class fired
- Aliases can be used to group similar trigger class names:

Example: alias AliVEvent::kMUSH7

- CMSH7-B-NOPF-MUON
- CMSH7-S-NOPF-MUON
- CMSH7-S-NOPF-ALLNOTRD
- Basic usage: how to select the events in your analysis task

```
// in your UserExec
UInt_t fSelectMask = fInputHandler->IsEventSelected();
Bool_t isINT7selected = fSelectMask & AlivEvent::kINT7;
```

(see more in https://twiki.cern.ch/twiki/bin/view/ALICE/AliDPGtoolsEventProp#Event_selection)

- Basic selections:
 - VOA and VOC time information
 - Cluster-vs-tracklet background cut (now in user hands)
 - ZDC timing cuts (in Pb-Pb and p-Pb)
 - Incomplete event rejection

- Basic selections:
 - VOA and VOC time information
 - Cluster-vs-tracklet background cut (now in user hands)
 - ZDC timing cuts (in Pb-Pb and p-Pb)
 - Incomplete event rejection (in p-Pb, pp2015)
- Further background cuts in Run2
 - V0C012 vs V0C3 asymmetry cut
 - V0C012 vs tracklet background cut

- Basic selections:
 - VOA and VOC time information
 - Cluster-vs-tracklet background cut (now in user hands)
 - ZDC timing cuts (in Pb-Pb and p-Pb)
 - Incomplete event rejection (in p-Pb, pp2015)
- Further background cuts in Run2
 - V0C012 vs V0C3 asymmetry cut
 - V0C012 vs tracklet background cut
- Pileup cuts
 - Out-of-bunch pileup cut based on V0 past-future info
 - Out-of-bunch pileup cut based on online-vs-offline VOM correlation
 - Out-of-bunch pileup cut based on online-vs-offline SPD FO correlation

Pileup removal

Two main categories of pileup:

1. Same bunch-crossing pileup

two or more collisions occurring in the

same bunch crossing

- → seen by all detectors
- → reconstructed points in drift detectors (TPC and SDD) are in the "correct" spatial position
- → can be removed at the *event* selection level with cuts based on multiple reconstructed vertices

2. Out-of-bunch pileup

- one or more collisions occurring in bunch crossings different from the one which triggered the acquisition
- → detectors are affected differently depending on their readout time
- reconstructed points in drift detectors are spatially shifted (z for TPC, rφ for SDD) by Δs=v^{drift}.Δt
- → can be removed at the *event* selection level and also based on track selection cuts

Pileup removal

Tools for pileup tagging, removal, mitigation:

(see dedicated Twiki page for details: <u>https://twiki.cern.ch/twiki/bin/view/ALICE/AliDPGtoolsPileup</u>)

• **Past-Future protection:** allows to remove out-of-bunch pileup within the SPD readout time (300ns)

Out-of-bunch pileup Trigger bc Out-of-bunch pileup

SPD integration time

Should be activated for pp and p-Pb analyses in the Physics Selection task:

AddTaskPhysicsSelection(isMC, <u>kTRUE</u>)

Multiple vertices with the SPD: sensitive to same-bunch and out-of-bunch pileup within the SPD readout window
 → can be accessed via:

AliESDEvent::IsPileUpFromSPD()
AliESDEvent::IsPileUpFromSPDInMultBins() //mult. dep.

Multiple vertices with tracks: simultaneous vertex finding using ITS, TPC and TOF (if available) - wider time coverage than SPD
 → can be accessed via:

AliAnalysisUtils::IsPileUpMV(AliVEvent *event)

Pileup removal

Tools for pileup tagging, removal, mitigation:

(see dedicated Twiki page for details: https://twiki.cern.ch/twiki/bin/view/ALICE/AliDPGtoolsPileup)

• **Correlations between centrality estimators (Pb-Pb):** cut on correlation between V0 and CL0, CL1 centralities

- Removing tracks from out-of-bunch pileup collisions:
 - require tracks with ITS hits (in particular to SPD) does not remove pileup in the ITS readout window
 - require matching to TOF and **TOF bunch crossing ID=0** needs TOF matching
 - require tracks to point to the main vertex via **DCAz cut**

Primary Vertex selection

Primary vertex information can be retrieved from ESD and AOD events

AliVVertex* vtx = event->GetPrimaryVertex();

(AliVVertex can be casted to ESD or AOD vertex)

This method will return (following this order):

- 1. the vertex reconstructed from tracks
- 2. the SPD vertex (if the track vertex is not available)
- 3. the vertex from TPC tracks (if also the SPD vertex is not available)

A set of selections can be applied at the analysis level in order to reject events with poorly reconstructed vertex

- → Selection on contributors to vertex
- → Selection on SPD **vertex type** (3D or z reconstruction)
- → Special selections for SPD vertex (based on z resolution/dispersion)
- → Cut on absolute distance between track and SPD vertices (Pb-Pb 2011)
- → Cut on absolute and nsigma distance between track and SPD vertices (Pb-Pb 2015)

By construction, the main vertex is the one with the largest number of contributors - *additional vertices found are treated as pileup vertices*

A general class for event selections is available:

(see more instructions in: <u>https://twiki.cern.ch/twiki/bin/view/ALICE/AliDPGtoolsEventProp#Event_selection_class</u>)

- → main functionalities similar to those of AliESDtrackCuts
- → provides a method to check if a given AliVEvent is accepted: AliEventCuts::AcceptEvent(AliVEvent *ev)
- → Simple usage:

Add to the class member of your task:

```
class MyAliAnalysisTask {
  public:
    ...
   AliEventCuts fEventCuts; // Event cuts
   ...
}
```

Enable selection QA plots (if wanted):

// fList is your output TList
fEventCuts.AddQAplotsToList(fList);

In your

UserExec *method*:

```
AliVEvent *ev = InputEvent();
if (!fEventCuts.AcceptEvent(ev)) {
   PostData(1, fList);
   return;
}
```


A general class for event selections is available:

(see more instructions in: <u>https://twiki.cern.ch/twiki/bin/view/ALICE/AliDPGtoolsEventProp#Event_selection_class</u>)

- → main functionalities similar to those of AliESDtrackCuts
- → provides a method to check if a given AliVEvent is accepted: AliEventCuts::AcceptEvent(AliVEvent *ev)
- → more information in the <u>backup slides</u>

EVENT CHARACTERISATION

More info here:

https://indico.cern.ch/event/387210/contributions/918223/attachments/120372 3/1753174/DDChinellato-AliMultSelection-PhysicsForum1.pdf

- Selecting events by impact parameter: impossible
- Next best thing: select events based on charged particle multiplicity measured in the V0 detectors: forward η to minimize auto-correlation biases
- Done in the "**AliMultSelection**" framework (also in pp, p-Pb!)

- Selecting events by impact parameter: impossible
- Next best thing: select events based on charged particle multiplicity measured in the V0 detectors: forward η to minimize auto-correlation biases
- Done in the "AliMultSelection" framework (also in pp, p-Pb!)

 Very low multiplicity: discarded due to contamination from EM processes → anchor point

Glauber MC model:

A geometric approach to calculate participating and colliding nucleons **In this plot**: coupled to a negative binominal (NBD) for describing multiplicity

 In MC, the objective of the centrality selection is not to produce percentiles but rather to provide a <N_{ch}> for a given percentile selection that matches what is seen in data: ideal for efficiency correction calculations

- Works fairly well up to a level of approximately ~5%-10%
 - <u>Improved calibration</u> for PbPb 2018 and 2015 available since April 2019
- Strongly centrality dependent corrections usually assigned a small systematic uncertainty due to this
- The <SPD tracklet> plot is available as standard QA in AliMultSelection for x-checks
 - (more info <u>here</u>)

N.B.: pp and p-Pb are also sliced in VOA+VOC amplitudes, with notable differences (see <u>backup</u>)

AliMultSelection: operation

Analysis usage consists of:

1) Get AliMultSelection object **AliMultSelection** *obj = (**AliMultSelection***) IVEvent-> FindListObject("MultSelection");

2) Get desired multiplicity percentile
obj->GetMultiplicityPercentile("V0M");

TRACK SELECTION on ESD and AOD

(also using material from the tutorial prepared by Z Conesa del Valle and A Kalweit for the ALICE Physics Week 2013)

The ALICE detector

Inner Tracking System

- 3 sub-detectors with in total 6 layers
- Silicon Pixel detector: SPD
- Silicon Drift detector: SDD
- Silicon Strip detector: SSD

• Up to 6 hits (clusters) in the ITS can be attached to a track:

AliESDtrack::GetNcls(Int_t idet = 0) AliESDtrack::HasPointOnITSLayer(Int_t i) AliAODTrack::GetITSNcls() AliAODTrack::HasPointOnITSLayer(Int_t i)

- The ALICE TPC provides up to 159 space points (clusters) corresponding to the number of pad rows.
- The signal can be below threshold for low ionizing particles.

Definition of a TPC cluster can be found in the <u>backup</u>

 There are default cut sets available which are a very good starting point for all analyses (however, there is not a default cut set which is perfect for every analysis):

AliESDtrackCuts * fESDTrackCuts = AliESDtrackCuts::GetStandardITSTPCTrackCuts2010(kTRUE); fESDTrackCuts->SetEtaRange(-0.8,+0.8);

• Inside the track loop:

if (!fESDTrackCuts->AcceptTrack(track)) continue;

- Standard cut sets are defined for 2010 and 2011
- The 2011 standard cuts are a valid baseline also for Run2 data

See backup slides for examples of track cuts on <u>TPC</u> and <u>ITS</u> tracking variables \rightarrow E.g. for TPC: number of clusters and/or number of crossed rows

DPG Preparation Group Track properties depend on detector conditions

- The effect of the cuts depends on the detector performance. Typical examples:
 - Phi-homogeneity of SPD-cluster cut depends on the number of active modules which changed with time.
 - Number of TPC clusters depends on the gain of the chambers which also changed with time.
 - Chamber boundaries: high momenta tracks close to the chamber boundaries have naturally less clusters which is difficult to reflect in MC. N.B.: these clusters are not used for PID (a cut on TPC-PID or *track->GetTPCsignalN()* partially removes tracks on the boundaries.

TRACKING: PERFORMANCE and EFFICIENCY

Standard procedure for efficiency systematic uncertainties

https://twiki.cern.ch/twiki/bin/view/ALICE/AliDPGtoolsTrackSystematicUncertainty

- Systematic on tracking efficiency estimated from two contributions:
 - 1. Track finding and selection in the TPC \rightarrow estimated by TPC cut variation
 - 2. TPC-ITS matching (prolongation with a specific set of selections in ITS) \rightarrow estimated by comparing matching efficiency in data and MC

- This is an example, no general recipe for now, since it may depend on the specific analysis
- Stdcuts: n_{TPCcls} >70; χ^2 /cl<4; CrRows/Findb>0.8; $|\eta|$ <0.8
- Variations: add/remove tighter cuts

► stdcuts + TPC crossed rows > 120 - (5/pT)

- stdcuts + TPC N clusters > 0.5 * TPC crossed rows
- stdcuts + TPC signal N > 0.5 * TPC crossed rows
- stdcuts + TPC crossed rows/TPC findable clusters > 0.9
- Compare corrected yields

DPG ALICE · Data Preparation Group Matching efficiency systematic unc.

- A contribution to the systematic uncertainty on the tracking efficiency is commonly estimated by comparing the fraction of TPC tracks prolonged to ITS (+ hit in SPD) in data and MC (matching efficiency)
- The matching efficiency for charged tracks can differ significantly between data and MC (up to 6-8%)
- However: the comparison is affected not only by how well the MC describes the tracking, but also by the relative contributions of primary and secondary particles in data and MC

Physical primary particles

- Physical primary particles:
 - <u>Definition</u>: A primary particle is a particle with a mean proper lifetime T larger than 1 cm/c, which is either a) produced directly in the interaction, or b) from decays of particles with T smaller than 1 cm/c
 - Tagging of primaries implemented in AliRoot <u>code</u> in:
 - ESD/Kinematics: AliStack::IsPhysicalPrimary()
 - AOD: AliAODMCParticle::IsPhysicalPrimary()
- Secondary particles: distinguished in two categories
 - Produced in weak decays of long-lived (strange) hadrons
 - Tagged with: AliStack::IsSecondaryFromWeakDecay
 - Produced in interactions in the detector material
 - Tagged with: AliStack::IsSecondaryFromMaterial

DPG ALICE · Data Preparation Group Primary vs. secondary particles

- Impact parameter (Distance of Closest approach of track to interaction vertex) distribution
 - Peaked at 0 for primary particles
 - Wider for secondaries

- TPC->ITS track prolongation
 efficiency (matching efficiency)
 - Substantially lower matching efficiency for secondaries than for primaries

- Defined from the ratio of matching efficiencies in data and MC, with fraction of secondaries "equalised" in data and MC using DCA fits
 - Procedure introduced for charged-particle p_T spectra and R_{AA} analysis (<u>https://aliceinfo.cern.ch/Notes/node/472</u>)
 - Provided a task for general use (selections can be changed):
 PWGPP/EvTrkSelection/AliAnalysisTrackingUncertaintiesAOT

Example: pp 7 TeV (pass 4)

ALICE • Data Preparation Group

Miscellanea

DPG ALICE · Data Preparation Group MONALISA - data productions

I https://alimonitor.cern.ch/production/raw.jsp

My jobs

... 🖂 🟠

± ⊪ ₪ [onALIS_

MonALISA Repository for ALICE

My home dir Gatalogue browser LEGO Trains 🛊 Administration Section ALICE Reports Alert XML Feed Firefox Toolbar MonaLisa GUI

ALICE Repository ALICE Repository ALICE Repository		JIRA ticket				RAW P	roduction	Cycles	5						AliRoot version	Processing request
Shifter's dashboard Run Condition Table Production Overview							Raw data			Reconst	ructed		Tim	ling	AliRoot	>
Production info	Production	Description		Status	Run Range	Runs	Chunks	Size	Chunks	% Size	%	Events	Running	Saving	version	Er
Run view	LHC18r_muon_calo_pass1	LHC per d LHC18r - Muon+Calorimeters reconstruction pass 1, ALIROOT-8064	0	Running	296690 - 297035	48	590,490	1005 TB	577,457	19.52 TB	1%	197,153,178	54y 251d	6y 24d		v5-09-41d-1
RAW activities	LHC18r_cpass1_pass1	LHC period LHC18r - CPass1 (reconstruction) for pass 1, ALIROOT-8063	0	Running	296690 - 296932	14	163,267	296.9 TB	155,818	504.1 GB	0%	1,416,967	8y 222d	1y 16d		v5-09-41a-1
LEGO trains Analysis train	LHC18r_cpass0_pass1	LHC period LHC18r - CPass0 (reconstruction) for pass 1, AI IROOT-8063	0	Running	296690 - 297035	39	544,900	996.9 TB	529,822	1.932 TB	0%	13,744,871	22y 311d	2y 134d		v5-09-41a-1
MC production cycles	LHC18q_ Production	C period LHC18q - Full production pass 1 uncalibrated, ROOT-8113	0	Running	295581 - 296068	14	79,839	131.9 TB	77,409	75.85 TB	59%	28,299,632	144y 120d	4y 256d		v5-09-42a-1
QA feedback status		C period LHC18q - Full production pass 1, vdM scan, ROOT-8093	0	Running	295915 - 295916	2	26,576	1.691 TB	26,573	3.044 TB	180%	13, <mark>1</mark> 92,380	4y 42d	229d 5:54		v5-09-41a-1
Job Information Job Site views	LHC18q_ name/pass	C period LHC18q - CPass1 (reconstruction) for pass 1, vdM in, ALIROOT-8093	0	Running	295915 - 295916	2	26,576	1.691 TB	26,509	9% 17 GB	0%	5,420,375	348d 17:26	151d 5:47		v5-09-41a-1
User views	LHC18q_cpass0_pass1_vdmscan	LHC period LHC18q - CPass0 (reconstruction) for pass 1, vdM scan, ALIROOT-8093	0	Running	295915 - 295916	2	26,576	1.691 TB	25,365	4.551 GB	0%	1,029,144	1y 35d	115d 17:41		v5-09-41a-1
Aggregated info Per user history All users history Grid packages	LHC16q_pass1_trd	LHC period LHC16q - Pass 1 with 100% ESDfriends, ALIROOT-8081	0	Running	265521 - 265521	1	2,640	4.36 TB	2,596	4.72	110%	5,611,276	2y 38d	184d 16:27		v5-09-41-1
	LHC18p_pass1_trd	LHC period LHC18p - Pass 1 with 100% ESDfriends, ALIROOT-8081	0	Running	294586 - 294586	1	15,223	25.56 TB	15,022	17.32 TB	68%	22,128,180	11y 193d	2y 230d		v5-09-41-1
Quotas	LHC18q_cosmics_pass1	LHC period LHC18q - cosmics, ALIROOT-8078	0	Running	295530 - 295530	1	400	22.12 GB	400 1	3.265 GB	14%	0	6d 13:27	15:35		v5-09-41-1
	LHC18q_muon_calo_pass1	LHC period LHC18q - Muon+Calorimeters reconstruction pass 1 ALIROOT-8064	0	Running	295424 - 296623	153	1,207,612	2.086 PB	1,204,620	66.27 TB	3%	397,753,765	120y 254d	17y 321d	v5-09-41-1, v5-09-41a-1, v5-09-41t	o-1, v5-09-41d-1 🌔
Memory profiles Federation views	LHC18q_cpass1_pass1	LHC period LHC18q - CPass1 (reconstruction) for pass 1, ALIROOT-8063	0	Running	295581 - 296623	143	1,186,657	2.075 PB	1,154,829	22.33 TB	1%	22,235,026	117y 134d	10y 230d	v5-09-41	l-1, v5-09-41a-1
JobAgents	LHC18q_cpass0_pass1	LHC period LHC18q - CPass0 (reconstruction) for pass 1, ALIROOT-8063	0	Running	295581 - 296623	144	1,188,157	2.077 PB	1,163,071	5.412 TB	0%	45,453,514	101y 296d	23y 347d	v5-09-41	l-1, v5-09-41a-1
E Services	LHC18p_pass1_gain_scan	LHC period LHC18p - Reconstruction pass 1 for V0 gain scan, ALIROOT-8034	0	Running	294620 - 294631	6	1,440	1.313 TB	1,440 1	00% 78.1 GB	5%	2,886,144	59d 3:19	10d 14:26		v5-09-29-1
Network Traffic FTD Transfers	LHC18p_pass1	LHC period LHC18p - Full production pass 1, ALIROOT-8009	0	Running	294009 - 294925	84	376,807	620.1 TB	374,791	221.5 TB	35%	549,062,732	325y 193d	27y 191d		v5-09-31a-1
CAF Monitoring CAF Monitoring CAF Monitoring CAF Build system CAF HepSpec CAF Additional Controls	LHC18p_cpass1_pass1	LHC period LHC18p - CPass1 (reconstruction) for pass 1, ALIROOT-8009	0	Running	294009 - 294925	84	376,807	620.1 TB	366,389	31.49 TB	5%	60,521,249	55y 225d	8y 296d	v5-09-3	38-1, v5-09-39-1 🌔
	LHC18p_cpass0_pass1	LHC period LHC18p - CPass0 (reconstruction) for pass 1, ALIROOT-8009	0	Running	294009 - 294925	84	376,807	620.1 TB	370,151	2.693 TB	0%	160,946,160	74y 262d	4y 134d	v5-09-3	38-1, v5-09-39-1
	LHC18p_muon_calo_pass1	LHC period LHC18p - Muon+Calorimeters reconstruction pass 1 ALIROOT-8010	0	Running	294009 - 294925	87	377,251	620.1 TB	376,085	9% 18.14 TB	2%	553,711,518	43y 68d	3y 245d		v5-09-29a-1
close all	LHC18m_cpass1_pass1_test	LHC period LHC18m - CPass1 (reconstruction) for pass 1, test runs, ALIROOT-7931	0	Running	291845 - 291894	11	66,354	109.8 TB	63,838	35.72 TB	33%	22,858,882	55y 235d	2y 172d		v5-09-35-1
	LHC18m_cpass0_pass1_test	LHC period LHC18m - CPass0 (reconstruction) for pass 1, test runs, ALIROOT-7931	0	Running	291845 - 291894	11	66,354	109.8 TB	64,178	1.02 1.02	0%	22,988,860	40y 196d	87d 21:18		v5-09-35-1
This page: bookmark, URL	LHC18o_pass1	LHC period LHC18o - Full production pass 1, ALIROOT-7987	0	Running	293368 - 293898	48	177,814	291.8 TB	176,248	9% 104 TB	35%	278,088,241	150y 22d	23y 73d		v5-09-31-1
Active jobs trend	1110401	LHC period LHC18o - CPass1 (reconstruction) for pass 1,	0	All stars	202200 202000	50	170 004	292.2	177 504	17.89	004	20 400 404	24 2744	2. 174		

€)→ C @	🛈 🔬 http	os://alimonitor.cern.ch/job_deta	ils.jsp									~		1 ☆	<u>↓</u> III\ 🗊
encos ALICE	3			Мо	nALISA	Reposi	tory fo	r ALIC	CE						MONITORING Agents using a L Integrated Services Architecture
		My jobs My	home dir <u>C</u> atalogue brows	er <u>L</u> E	GO Trains 🚖	A <u>d</u> ministratior	Section	LICE <u>R</u> eport	ts Alert XML Feed Firef	ox Toolbar MonaL	isa GUI				
ALICE Repository		JIRA ti	cket,				PRODUCTION	CYCLES			Sof	twar	e ve	ersion	
Shifter's dashboard	Job Details » No filter	see la	ater												Manage »
Run Condition Table Production Overview	Production of the second				Charles		5	Description			Running	Saving	» Output	AliRoot	AliPhysics
Production info	Production	Pb-Pb, 5.02 TeV, Pb-Pb MC production an	ichored to LHC18g with		Status	Run range	Event Count	Requested	Comment	Known Issues	time	time 254 15-01	size	version(s)	version(s)
RAW production cycles		ITSrecopoints, ALIROOT-8108 A_p, 8.16 TeV, MC production for muon Up	osilon analysis anchored to 16s,		Completed	295001-295001	327,900		RAW OCDB		10y 2120	350 15.21	1.29 ID	v5-09-428-1	V5-09-428-01-1
LEGO trains		Geant4, ALIROOT-8056	Ion analysis anchored to 16s,		Completed	266437-267131	21,626,000		RAWOCDB		1y 1050	274 17:39	59.42 CB	v5-09-20b-1	v5.09.20b-01.1
MC production cycles		Production	Ion analysis anchored to 16r,		Completed	265504 266318	21,040,000		RAWOCDB		2704 3-31	244 5:23	60.08 GB	v5.09-20b-1	v5.09.200-01-1
MC activities QA feedback status Job Information	LHC18k7a	namarifyay	lon analysis anchored to 16r,	6 2	Completed	265594.266318	21,020,000		RAW OCDB		241d 1:00	23d 22:52	59.65 GB	v5-09-20b-1	v5.09.20b.01.1
	LHC18k6b cent woSDD	name: ii you	i to LHC17p/q, cc all, CENT w/o	60	Completed	282008-282367	3 857 800		RAW OCDB		12v 162d	58d 14:28	263.5 GB	v5-09-20-1	v5.09.20.01.1
E G User views	LHC18k6b_test	click here	i to LHC17p/q, cc all, FAST,	6	Completed	282008-282367	6 851 200		RAW OCDB		22v 109d	103d 6:42	468.2 GB	v5-09-20-1	v5.09.20.01.1
Aggregated info	LHC18k6a_cent_woSDD	see nevt	i to LHC17p/q, bb all, CENT w/o	6	Completed	282008-282367	3 863 200		RAW OCDB		12v 197d	58d 6:29	267.7 GB	v5-09-20-1	v5.09.20.01.1
All users history	LHC18k6a_fest		i to LHC17p/q, bb all, FAST,		Completed	282008-282367	6 857 800		RAWOCDB		22v 36d	101d 10:53	475 GB	v5-09-20-1	v5.09.20.01.1
Grid packages	LHC18k5b_cent_woSDD	slide	i to LHC17p/q, cc, CENT w/o	00	Completed	282008 282367	1 445 000		RAW OCDB		Av 244d	214.0:11	101 7 GB	v5.09.20.1	v5 09 20 01 1
⊡ Cask queue	LHC18k5b_test	p-p, 5.02 TeV, MC for HF jets in pp anchor	red to LHC17p/q, cc, FAST,		Completed	282008 282367	2 569 800		RAWOCDB		By 02d	374 4:20	180.7 GB	v5-09-20-1	v5.09.20.01.1
Memory profiles	LHC18k5a_cent_woSDD	ALIROOT-8083 p-p, 5.02 TeV, MC for HF jets in pp anchor	red to LHC17p/q, bb, CENT w/o		Completed	282008-282367	1 449 000		RAWOCDB		4v 235d	204 21:34	102.3 GB	v5-09-20-1	v5.09.20.01.1
Federation views JobAgents	LHC18k5a_fast	SDD, ALIROOT-8083 p-p, 5.02 TeV, MC for HF jets in pp anchor	red to LHC17p/q, bb, FAST,	E A	Completed	282008-282367	2 561 400		RAW OCDB		8v 79d	36d 21:37	181 GB	v5-09-20-1	v5.09.20.01.1
E C Senirer	LHC18k4 cent	ALIROOT-8083 p-p, 13 TeV - pp central barrel simulations	(LHC18c) with enhanced	60	Runninn	285471-285958	75 053 600		RAW OCDB		181v 345d	1v 137d	31 45 TB	v5-09-34-1	v5.09.34.01.1
Network Traffic	LHC18k4_fast	dielectron contributions, CENT, ALIROOT p-p, 13 TeV - pp central barrel simulations	-8080 (LHC18c) with enhanced	00	Rupping	285471-285958	75,816,000		RAW OCDB		181v 98d	1y 116d	30.15 TB	v5-09-34-1	v5-09-34-01-1
CAF Monitoring	LHC18k3	delectron contributions, FAST, ALIROOT- p-p, 13 TeV, General-purpose Monte Carl	8080 p production anchored to LHC18p,	80	Running	294009-294925	23,631,600		RAW OCDB		47y 205d	212d 3:51	7 733 TB	v5-09-31a-1	v5-09-31a-01-1
	LHC18k2	ALIROOT-8077 p-p, 13 TeV, General-purpose Monte Carl	p production anchored to LHC18o,	68	Completed	293368,293898	15 744 800		RAW OCDB		32v 248d	136d 21:59	5 254 TB	v5.09.31.1	v5.09.31.01.1
HepSpec	LHC18k1	ALIROOT-8076 p-p, 13 TeV, General-purpose Monte Carl	p production anchored to LHC18n,	80	Completed	293357-293359	1.065.200		RAW OCDB		2v 134d	8d 22:42	368 GB	v5-09-31-1	v5-09-31-01-1
Dynamic charts	LHC18i999	ALIROO I-8075 Pb-Pb, 5.02 TeV - Signal filtering for centra	al barrel simulation with injected		Running	244918-246994	0		RAW OCDB		89d 3:14	283d 0:33	2.937 TB	v5-09-38-1	v5-09-38-01-1
iose all	LHC18i5 1	J/psi signals anchored to 15o, embedding p-Pb, 5.023 TeV - DPMJET production an	(local merging), ALIROOT-7614 chored to LHC13bcdef pass4,	00	Running	195344-195479	0		RAW OCDB				0 B	v5-05-Rev-32-01	
This page: bookmark, URL	LHC18b6c3	Pb-Pb, 5.02 TeV - Hijing plus injected nucl 50-90% cent, LHC15o anchors, embeddir time fix, ALIROOT-7655	ei, hypernuclei and exotica, ng(local merging) with interaction	0	Completed	244918-246994	378,540		RAW OCDB		3y 338d	25d 23:43	1.248 TB	v5-09-40-1	v5-09-40-01-1 🌀

MonALISA - example

ALICE • Data Preparation Group

JIRA - <u>example</u>

€-	→ C' û	(i) A https://alice.its.cern.ch/jira/browse/ALIROOT-8056				
ALICE	ALICE Collaboration Dashb	oards 🗸 Projects 🗸 Issues 🗸 Boards 🗸 Create				Search Q 📢
	AliRoot / ALIRC	ction for muon Upsilon analysis in p-P	b at 8.16TeV			
8	Edit Q Commen	it Assign More 🗸 Go to Done Go to Software updat	e Workflow 🗸			<
-	 Details 				People	
ш	Туре:	Production request	Status:	FINAL QA (View Workflow)	Assignee:	Michael Weber
æ	Priority:	A Major	Resolution:	Unresolved		Assign to me
107	Component/s:	None			Reporter:	🔵 Wadut Shaikh
	Production type:	MonteCarlo			Responsibles for the production QA:	Biswarup Paul
=	AliEn-dir:	~/aliprod/LHC18k7[a,b]2/JDL			Group watchers:	alice-dpg-production-managers
23	Production Tags:	LHC18k7a (G3-16r), LHC18k7b (G3-16s), LHC18k7a2 (G4-16r), LH	IC18k7b2 (G4-16s)		Votes:	0 Vote for this issue
	RawPassName:	N/A			Watchers:	14 Stop watching this issue
	(LPM)AnchorPassNam e:	pass1				
0	PWG:	PWGDO			✓ Dates	
	Physics Board	Not needed			Created:	29/Oct/18 6:02 AM
	Approval:				Updated:	2 days ago
	Date of PB approval:	N/A				
	Link to presentation at	N/A			~ Agile	
	PB:				View on Board	
	MC production for muc MC is for a pure signals run basis.	on Upsilon analysis in pPb at 8.16TeV. Upsilon(15), Upsilon(25) and Upsilon(35), with y and pT input shaj	pes directly tuned on t	he data themselves. Production sho	ould be done on the run by	
	Statistics required: 20M	۹ for p-Pb and 20M for Pb-p and 2000events/subjob			Allows you to find inform	nation on a specific
	Simulation macros are /alice/cern.ch/user/p/p	same as in wgpp_mc/2017/48_Week/user_idas/Jpsi_Upsi_MCP1/macros/			production. follow its sta	atus, provide
	I modified ppGenerato	r.C and should be replaced by Upsilon_pPbGenrator.C for p-Pb and	Upsilon_PbpGenrator.	C for Pb-p which are attached.	foodbook	
»»	JDLs are same as in					
					Address:	

https://alice.its.cern.ch/jira/browse/ticket_ID (e.g: ALIROOT-8056)

+ pp 5 TeV data, 2017 sample (LHC17p, LHC17q)

Aliroot versions and properties used in the reconstruction of run2 samples

Period	Pass	Aliroot version	Characteristics								
			TPC cluster error assigment (1) and TPC SP maps	BB in tracking (2)	PID in TPCin step (3)	EMCAL online trigger data stream	TOF Calib	SPD1 Lorentz angle	TOF trigger maxipads		
Pb-Pb											
LHC150 lowIR	pass2	v5-08-09a	Old	Wrong, 5-sigma	All pions	ОК	Old	Bug	Bug		
	pass3_lowIR_pidfix	v5-08-13I	New	Correct, 15-sigma	All pions	ок	Old	Bug	Bug		
	pass4_lowIR_pidfix_cookdedx	v5-08-13q-cookdedx	New	Correct, 15-sigma	Fixed	ок	Old	Bug	Bug		
	pass5_lowIR	v5-08-24	New+fix (5)	Correct, 15-sigma	Fixed	ок	Improved	Fixed	Bug		
LHC150 highIR											
group1	pass1	v5-08-13d	New	Wrong, 5-sigma	All pions	Needs offline fix (4)	Old	Bug	Bug		
group2	pass1	v5-08-13e	New	Wrong, 5-sigma	All pions	ок	Old	Bug	Bug		
group3	pass1	v5-08-13h	New	Wrong, 5-sigma	All pions	ОК	Old	Bug	Bug		
group4	pass1_pidfix	v5-08-13I	New	Correct, 15-sigma	All pions	ОК	Old	Bug	Bug		
pp 5 TeV											
LHC15n	pass2	v5-08-13d	New	Wrong, 5-sigma	All pions		Old	Bug	n.a.		
	pass3	v5-08-13s-cookdedx	New	Correct, 15-sigma	Fixed		Old	Bug	n.a.		
	pass4	v5-08-24	New+fix (5)	Correct, 15-sigma	Fixed		Improved	Fixed	n.a.		
LHC17p	pass1_FAST	v5-09-20	New+fix (5)	Correct, 15-sigma	Fixed		Improved	Fixed	Fixed		
	pass1_CENT_wSDD	v5-09-20	New+fix (5)	Correct, 15-sigma	Fixed		Improved	Fixed	Fixed		
	pass1 CENT woSDD	v5-09-20	New+fix (5)	Correct. 15-sigma	Fixed		Improved	Fixed	Fixed		

1 Attps://twiki.cern.ch/twiki/bin/view/ALICE/AliDPGRunLists

×

1 ChiaraZampolli 🔒 Log Out ALICE

ALICE Web

ALICE Web Home Changes Index Search

Create personal sidebar

Public webs

TWiki > ALICE Web > AliceDPG > AliDPGRunLists (2018-11-23, ElenaBotta)

Run2 data sets Table Of Content

- + Run2 data sets + Lists of good runs for Run2 periods
- Useful links:
 - · Summary of characteristics of Run2 data taking periods
 - Guidelines on Run2 data sets

Lists of good runs for Run2 periods

Period	Collision System	Centre-of-mass energy	Twiki page link
		2015	
LHC15h	pp	13 TeV	Run Lists 15h
LHC15i	pp	13 TeV	Run Lists 15i
LHC15j	pp	13 TeV	Run Lists 15j
LHC15I	pp	13 TeV	Run Lists 15
LHC15n	pp	5.02 TeV	Run Lists 15n
LHC150	Pb-Pb	5.02 TeV	Run Lists 150
LHC150 low IR	Pb-Pb	5.02 TeV	Run Lists 15o
		2016	
LHC16d	pp	13 TeV	Run Lists 16d
LHC16e	pp	13 TeV	Run Lists 16e
LHC16f	pp	13 TeV	Run Lists 16f
LHC16g	pp	13 TeV	Run Lists 16g
LHC16h	pp	13 TeV	Run Lists 16h
LHC16i	pp	13 TeV	Run Lists 16i
LHC16j	pp	13 TeV	Run Lists 16j
LHC16k	pp	13 TeV	Run Lists 16k
LHC16I	pp	13 TeV	Run Lists 16
LHC160	pp	13 TeV	Run Lists 160
LHC16p	pp	13 TeV	Run Lists 16p
LHC16q	p-Pb	5.02 TeV	Run Lists 16q
HC16r	n.Ph	8 16 TeV	Run Lists 16r

DPG prepares run lists with standard selection criteria on data quality (see <u>TWiki</u> for definitions)

... 🖂 🔂

¥ III\ ⊡

88

←) → C' @

Preparation Group

i aliqatpc.web.cern.ch/aliqatpc/data/2018/LHC18q/cpass1_pass1/000295588/TPC-ITS.png

The automatic QA from data and MC production is saved in dedicated repositories on the web, e.g.: http://aliqatpc.web.cern.ch/aliqatpc/data/2018/LHC18q/cpass1_pass1/000295588/TPC-ITS.png

IF YOU NEED MORE INFORMATION

DPG twiki pages

 More detailed information can be found in: <u>https://twiki.cern.ch/twiki/bin/viewauth/ALICE/AliceDPG</u>

- Any feedback on these twiki pages is more than welcome
 - It will help us to improve them and keeping them up-to-date
- For any question, doubt, suggestion, constructive criticism, contact us: <u>alice-dpg-coordination@cern.ch</u>

Backup

DPG ALICE · Data Preparation Group -ALICE Barrel tracking detectors

Calibrations

- The reconstructed data quality (resolution, minimisation of biases, particle identification ...) critically depends on the quality of the calibrations used in the reconstruction, e.g.:
 - Maps of *dead and noisy elements, gain,* signal amplitudes
 - For drift detectors (SDD, TPC): *drift velocity*, drift field maps, *distortions*...
 - example in backup
 - Actual position of the detectors (alignment)
 - Geometry of the *luminous region*

• Sources of calibration:

- <u>Online</u>, via **Shuttle** (not discussed here)
 - From dedicated calibration runs, or calibration triggers or also from interaction events
- *Offline*, via **automatic** calibration passes (**CPass0, CPass1**)
- Offline, via "manual analysis"

Calibration chain: CPass0

- CPass0 reconstruction:
 - Performed run-wise, starts promptly after the data taking
 - Typically uses a mixture of CINT7 (MB) and HM triggers
- CPass0 reconstruction is followed by
 - CPass0 calibration train (= standard analysis train which runs over the ESDs + friends) and fills calibration objects which are stored in the OCDB for several detectors
 - TPC, TRD, TOF, T0, Luminous region
 - TPC space point distortion calibrations

TPC Space Point distortions

- Distortions in the TPC drift field due to space charge
 - More pronounced in Run2 with Ar gas (2015-2016-2018)
 - Up to O(5 cm) effect on the reconstructed space points
 - Need to be corrected, target precision O(0.2 mm)
 - Scale ~linearly with luminosity
 - Granularity of the correction is O(20-40mins)
 - Enough to guarantee ~constant distortions within one time-bin
- Procedure:

- 1. TPC reconstruction with large road-widths to not loose TPC clusters attachment
- 2. Match to ITS and TRD/TOF
- 3. Refit ITS-TRD-TOF part and interpolate to TPC as a **reference** of **true track** at every pad-row
- Collect Y, Z differences between distorted cluster and reference points in sub-volumes (voxels) of TP
- 5. Extract 3D vector of distortion in every voxel
- 6. Create smooth parameterization (DB object) to use for correction during following reconstruction

TPC Space Point distortions

- Distortions in the TPC drift field due to space charge
- After correction: bias on the Distance of Closest Approach of the TPC track to the vertex reduced below intrinsic resolution

Calibration chain: CPass1

ALICE • Data Preparation Group

Calibration chain: CPass1

- CPass1 reconstruction:
 - Performed run-wise, starts after the completion of CPass0
 - Uses a subsample (~10%) of CINT7 (MB) triggers
- CPass1 goals:
 - <u>Refined calibrations</u> after reconstruction with TPC calibrated from CPass0 and TPC SP distortion corrections (**plus AD** calibration)
 - <u>Quality assurance</u> of the detector calibrations extracted from CPass0
 - The calibrations from CPass1 and manual calibrations are checked in the QA of the subsequent PPass
- CPass1 reconstruction followed by:
 - **Calibration train**: fill calibration objects + store in **OCDB**
 - **QA train** -> produce root files with QA information

DPG ALICE · Data Preparation Group

show less

Raw data processing chain: jobs

Each box is a grid job \rightarrow several (27) masterjobs per run in the chain

- At the end of the run (physics or special calibration run) a Detector Algorithm (DA) is run, the online calibration parameters are produced, collected by the Shuttle together with the DCS data points and stored in the OCDB
- Examples:

System	Condition data	Special runs	Physics runs online
SPD	trigger chip map		half-stave status
	and thresholds		pixel noise
SDD		anode ped (peds)	
		anode gain, status (puls)	
		anode v _{drift} (inject)	
SSD		strip ped, noise,	
		status (peds)	
TPC	P, T(x, y, z)	pad gain (Kr)	<i>v</i> _{drift} (laser)
	pad status	pad noise (peds)	
	trigger t ₀	v _{drift} (laser)	
		pad status (puls)	

- Calibration at <u>fill level</u> of:
 - Drift velocity residual calibration + time0 + map for non-uniformities of the drift field
 - ADC -> keV calibration for dE/dx in bins of drift time

102

ALICE • Data Preparation Group

Track parameterisation

 Track selection can be done using the filter bits using these methods of AliAODTrack

```
Bool_t TestFilterBit(UInt_t filterBit) const {
   return (Bool_t) ((filterBit & fFilterMap) != 0);}
Bool_t TestFilterMask(UInt_t filterMask) const {
   return (Bool_t) ((filterMask & fFilterMap) == filterMask);}
```

• Examples:

for(Int_t iTrack=0;iTrack<nTracks;iTrack++){
 AliAODTrack *aodTrack = aod->GetTrack(iTrack);
 if(!aodTrack) continue;
 // filter bit 128 denotes TPC-only tracks, use only them
 if(!aodTrack->TestFilterBit(128)) continue;

Bool_t IsAcceptedTrack(const AliAODTrack *aodTrack) {
 if (!aodTrack) return kFALSE;

if(!aodTrack->TestFilterMask(BIT(5))) return kFALSE; // standard TPCITS with tight DCA

if(!(aodtrack->TestFilterBit(AliAODTrack::kTrkGlobalNoDCA) || aodtrack->TestFilterBit(AliAODTrack::kTrkITSsa))) return kFALSE;

ESD -> AOD filtering

Out of bunch pileup

Integration times in central barrel:

- SPD: 300 ns (12 bcs) out-of-bunch hits indistinguishable from trigger hits
- SDD: ~6 us (240 bcs) radial drift ~0.5mm/100ns. Tracking tolerance: σ~0.5 mm for pp (0.2 mm for Pb-Pb)
- SSD: ~1 us (40 bcs) out-of-bunch hits indistinguishable from trigger hits
- TPC: ~100 us (4000 bcs) z-drift ~2.5mm/100ns.
 ITS-TPC track matching tolerance: σ~5 mm
- TRD: ~1 us (40 bcs) radial drift ~2.5mm/100ns.
- **TOF**: ~0.5 us (20 bcs) time info allows to identify tracks from trigger bc however not all analyses require TOF hit matching

Conclusions:

- SPD hit requirement cleans up tracks from neighbouring bunches
 - Does not help in case of pileup within SPD integration time
- Need to remove residual out-of-bunch pileup in SPD integration time
- Out-of-bunch pileup removal is crucial in multiplicity-differential studies

A general class for event selections is available:

(see more instructions in: <u>https://twiki.cern.ch/twiki/bin/view/ALICE/AliDPGtoolsEventProp#Event_selection_class</u>)

→ Retrieves the information about primary vertex and multiplicity after calling AliEventCuts::AcceptEvent(AliVEvent* ev)

float centrality = fEventCuts.GetCentrality(); //centrality from the default estimator const AliVVertex* vtx = fEventCuts.GetPrimaryVertex(); //best primary vertex available

• Advanced usage: *set cuts manually*

```
fEventCuts.SetManualMode(); //Enable manual mode
fEventCuts.fRequireTrackVertex = true;
fEventCuts.fMinVtz = -10.f;
fEventCuts.fMaxVtz = 10.f;
fEventCuts.fMaxDeltaSpdTrackAbsolute = 0.5f;
fEventCuts.fMaxResolutionSPDvertex = 0.25f;
fEventCuts.fTriggerMask = AliVEvent::kINT7;
fEventCuts.fRejectDAQincomplete = true;
fEventCuts.fSPDpileupMinContributors = 3;
fEventCuts.fSPDpileupMinZdist = 0.8;
fEventCuts.fSPDpileupNsigmaZdist = 3.;
fEventCuts.fSPDpileupNsigmaDiamXY = 2.;
fEventCuts.fSPDpileupNsigmaDiamZ = 5.;
fEventCuts.fTrackLetBGcut = true;
```

example of manual settings used in pp Run 2 event selection

add in your AddTask or in the UserCreateOutputObjects method

AliESDtracks: TPC cuts

AliESDtrackCuts: TPC cuts

AliESDtrackCuts* esdTrackCuts = new AliESDtrackCuts; // TPC
<pre>if(clusterCut == 0) esdTrackCuts->SetMinNClustersTPC(50);</pre>
<pre>else if (clusterCut == 1) {</pre>
esdTrackCuts->SetMinNCrossedRowsTPC(70);
esdTrackCuts->SetMinRatioCrossedRowsOverFindableClustersTPC(0.8);
}
else {
esdTrackCuts->SetMinNClustersTPC(50);
)
esdTrackCuts->SetMaxChi2PerClusterTPC(4);
esdTrackCuts->SetAcceptKinkDaughters(kFALSE);
esdTrackCuts->SetRequireTPCRefit(kTRUE);
// ITS
esdTrackCuts->SetRequireITSRefit(kTRUE);
esdTrackCuts->SetClusterRequirementITS(AliESDtrackCuts::kSPD,
AliESDtrackCuts::kAny);
if(selPrimaries) {
// 7*(0.0015+0.0050/pt^1.1)
esdTrackCuts->SetMaxDCAToVertexXYPtDep("0.0105+0.0350/pt^1.1");
esdTrackCuts->SetMaxChi2TPCConstrainedGlobal(36);
esdTrackCuts->SetMaxDCAToVertexZ(2);
esdTrackCuts->SetDCAToVertex2D(kFALSE);
esdTrackCuts->SetReguireSigmaToVertex(kFALSE);
esdTrackCuts->SetMaxChi2PerClusterITS(36);

AliESDtrackCuts: TPC cuts

```
AliESDtrackCuts* esdTrackCuts = new AliESDtrackCuts;
// TPC
if(clusterCut == 0)
                     esdTrackCuts->SetMinNClustersTPC(50);
else if (clusterCut == 1) {
  esdTrackCuts->SetMinNCrossedRowsTPC(70);
  esdTrackCuts->SetMinRatioCrossedRowsOverFindableClustersTPC(0.8);
else (
  esdTrackCuts->SetMinNClustersTPC(50);
esdTrackCuts->SetMaxChi2PerClusterTPC(4);
esdTrackCuts->SetAcceptKinkDaughters(kFALSE);
                                                                         TOF
esdTrackCuts->SetReguireTPCRefit(kTRUE);
// ITS
esdTrackCuts->SetRequireITSRefit(kTRUE);
esdTrackCuts->SetClusterRequirementITS(AliESDtrackCuts::kSPD,
                                        AliESD trackCuts::kAny);
if(selPrimaries) {
  // 7*(0.0015+0.0050/pt^1.1)
  esdTrackCuts->SetMaxDCAToVertexXYPtDep("0.0105+0.0350/pt^1.1");
  esdTrackCuts->SetMaxChi2TPCConstrainedGlobal(36);
esdTrackCuts->SetMaxDCAToVertexZ(2);
esdTrackCuts->SetDCAToVertex2D(kFALSE);
esdTrackCuts->SetRequireSigmaToVertex(kFALSE);
esdTrackCuts->SetMaxChi2PerClusterITS(36);
```


$(y, z, \sin(\varphi), \tan(\lambda), 1/p_t)$

 χ^2 -difference between: TPConly track parameters extrapolated to the primary vertex and global track parameters. Removes fake high-pt tracks due to wrong association of ITS clusters.

AliESDtrackCuts: ITS cuts

```
SDtrackCuts* esdTrackCuts = new AliESDtrackCuts;
  TPC
if(clusterCut == 0) esdTrackCuts->SetMinNClustersTPC(50);
else if (clusterCut == 1) {
 esdTrackCuts->SetMinNCrossedRowsTPC(70);
 esdTrackCuts->SetMinRatioCrossedRowsOverFindableClustersTPC(0.8);
else {
 esdTrackCuts->SetMinNClustersTPC(50);
esdTrackCuts->SetMaxChi2PerClusterTPC(4);
esdTrackCuts->SetAcceptKinkDaughters(kFALSE);
esdTrackCuts->SetReguireTPCRefit(kTRUE);
// ITS
esdTrackCuts->SetRequireITSRefit(kTRUE);
esdTrackCuts->SetClusterReguirementITS(AliESDtrackCuts::kSPD,
                                       AliESDtrackCuts::kAny);
if(selPrimaries) {
  // 7*(0.0015+0.0050/pt^1.1)
 esdTrackCuts->SetMaxDCAToVertexXYPtDep("0.0105+0.0350/pt^1.1");
 esdTrackCuts->SetMaxChi2TPCConstrainedGlobal(36);
esdTrackCuts->SetMaxDCAToVertexZ(2);
esdTrackCuts->SetDCAToVertex2D(kFALSE);
esdTrackCuts->SetRequireSigmaToVertex(kFALSE);
esdTrackCuts->SetMaxChi2PerClusterITS(36);
```

Cut at $\approx 7\sigma$ of impact parameter resolution. N.B.: resolution is only given for the tracks which fulfill the other cuts.

- The ALICE TPC provides up to 159 space points (clusters) corresponding to the number of pad rows.
- The signal can be below threshold for low ionizing particles.

Def. 1 (TPC cluster)

A charged particle traversing the TPC induces a signal on a given pad-row. If the charge in a search window of 5 pads in wire direction and 5 bins in time direction exceeds a certain threshold and fulfills all necessary quality criteria, it is called a cluster. Therefore the maximum number of clusters per track n_{cl} is 159, which corresponds to the number of pad rows in a TPC sector. Curling track parts are reconstructed as separate tracks. The number of clusters assigned to a track is related to the track length in the sense that low p_t -tracks which do not reach the outer wall of the TPC have less clusters assigned. However, the relation is not straightforward, because the pad length in the TPC is increasing with radial distance to the center.

DPG
Preparation
GroupVariation of TPC track selections:
example for D⁰ cross section in pp 7 TeV

(results from pass 4 data)

Filter-bit example (AOD145)

Bit	Cuts	Methods
Bit 0 (001)	Standard cuts on primary tracks	GetStandardTPCOnlyTrackCuts() (*)
Bit 1 (002)	ITS stand-alone tracks(ESD Track Cuts)	SetRequireITSStandAlone(kTRUE)
Bit 2 (004)	Pixel OR (necessary for the electrons) AND Standard track cuts (<u>SetFilterMask(1)</u> of <u>AliESDtrackCuts</u>)	SetClusterRequirementITS(AliESDtrackCuts::kSPD, AliESDtrackCuts::kAny)
Bit 3 (008)	PID for the electrons AND Pixel Cuts (<u>SetFilterMask</u> (4) of <u>AliESDpidCuts</u>)	SetTPCnSigmaCut(AliPID::kElectron, 3.5)
Bit 4 (016)	Standard Cuts with very loose DCA	GetStandardITSTPCTrackCuts2011(kFALSE) SetMaxDCAToVertexXY(2.4) SetMaxDCAToVertexZ(3.2) SetDCaToVertex2D(kTRUE)
Bit 5 (032)	Standard Cuts with tight DCA cut	GetStandardITSTPCTrackCuts2011()
Bit 6 (064)	Standard Cuts with tight DCA but with requiring the first <u>SDD</u> cluster instead of an SPD cluster tracks selected by this cut are exclusive to those selected by the previous cut	GetStandardITSTPCTrackCuts2011() SetClusterRequirementITS(AliESDtrackCuts::kSPD,AliESDtrackCuts::kNone) SetClusterRequirementITS(AliESDtrackCuts::kSDD,AliESDtrackCuts::kFirst)
Bit 7 (128)	TPC only tracks, constrained to SPD vertex in the filter	GetStandardTPCOnlyTrackCuts esdfilter->SetTPCOnlyFilterMask(128)
Bit 8 (256)	Extra cuts for Hybrids: - first the global tracks we want to take	AliESDtrackCuts::GetStandardITSTPCTrackCuts2011(kFALSE) SetMaxDCAToVertexXY(2.4) SetMaxDCAToVertexZ(3.2) SetDCAToVertex2D(kTRUE) SetMaxChi2TPCConstrainedGlobal(36) SetMaxFractionSharedTPCClusters(0.4) esdfilter->SetHybridFilterMaskGlobalConstrainedGlobal((1<<8)): // these normal global tracks will be marked as hybrid
Bit 9 (512)	Than the complementary tracks which will be stored as global constraint, complement is done in the ESDFilter task	SetClusterRequirementITS(AliESDtrackCuts::kSPD,AliESDtrackCuts::kOff) SetRequireITSRefit(kTRUE) esdfilter->SetGlobalConstrainedFilterMask(1<<9); // these tracks are written out as global constrained tracks esdfilter->SetWriteHybridGlobalConstrainedOnly(kTRUE); // write only the complement
Bit 10(1024	Standard Cuts with tight DCA cut, using cluster cut instead of crossed rows	GetStandardITSTPCTrackCuts2011(kTRUE,0) (**) 11

Global and TPC only tracks

- Global tracks
 - Treated in AliAnalysisTaskESDfilter::ConvertTracks
 - An ESD track is converted into AOD track and stored in the AOD track array if:
 - it passes at least 1 of the selection (filter bit) cuts
 - OR if it belongs to vertex contributors (e.g. was used for primary vertex reconstruction)
- **TPC only tracks**: **filter bit 128** (1<<7) all other bits are reset
 - Treated in AliAnalysisTaskESDfilter::ConvertTPCOnlyTracks
 - All tracks passing <u>standard TPC-only cuts</u> stored with:
 - TPC-only track parameters from kTPCin step (*GetTPCInnerParam*) constrained to SPD vertex
 - Unconstrained momentum and position are also stored
 - AOD track ID, *AliAODTrack::GetID()*, set to *negative value*

- **Global hybrid tracks**: filter bit 256 (1<<8)
 - Treated in AliAnalysisTaskESDfilter::ConvertTracks
 - Tracks passing standard TPC+ITS cuts, SPD hit request and golden chi2 cut are marked as filter bit 256
- **Complementary hybrid tracks**: filter bit 512 (1<<9) all other bits are reset
 - AliAnalysisTaskESDfilter::ConvertGlobalConstrainedTracks
 - All tracks passing <u>standard TPC+ITS cuts</u> have <u>no hits in SPD</u> are stored in the AOD track array with
 - Global track parameters constrained to primary vertex (*GetConstrainedParam*)
 - Unconstrained momentum and position are also stored
 - AOD track ID, AliAODTrack::GetID(), set to negative value

Trigger Classes: product of several trigger requirements

• Typical trigger class name: **CEMC7EGA-B-NOPF-CENTNOTRD**

Descriptor: combination of trigger inputs (AND, OR, VETO logic is possible) BC mask: information about interactions (beam-beam, beam-gas, satellite, etc.) Past-Future protection: rejects events with multiple collisions from different bunch crossings

Cluster: group of detectors to be read out if the trigger conditions is satisfied

	So Detectors																			
	A	С	D	E	F	Н	м	м	Р	Р	S	S	S	Т	Т	Т	Т	Т	V	Z
	o	v	Q	C	D	P	0	0	0	D	D	D	D		F	C	D	I	U	c
CLUSTERS	R		_	A		I	N	N	S									G		
	E		E	L		D	т	т										G		
			S				R	R										R		
			T				G	К												
	V			~	V	V	~	V	V		V	V	~	~	~	~	~	V	V	V
ALLNOTRD	V			V	V	V	\bigcirc	V	\bigcirc		V	\bigotimes	V	\bigotimes	V	V		V	\bigcirc	V
CENTNOTRD	~			\bigotimes	V	V					V	\bigotimes	V	V	\bigotimes	\bigcirc		V	\bigotimes	V
ALL	V			V	V	V	V	V	\bigotimes		V	\bigotimes	V	V	V	V	\bigotimes	V	\bigotimes	V
CENT	V			\bigcirc	V	V					V	V	V	V	V	V	\bigotimes	V	\bigotimes	V
FAST				V		1						V	V	V	V	V	\bigotimes	V	\bigotimes	V
MUON							\bigcirc	V				V		V				V	\bigcirc	V

Preparation Group

- pp and p-Pb are also sliced in VOA+VOC amplitudes, with notable differences:
- pp: typically we select slices of the INEL>0 cross-section, with the INEL>0 condition being "at least one SPD tracklet inside |η|<1.0". Correcting to the physical INEL>0 event class has to be done at analysis level
- <u>p-Pb</u>: typically we select slices of the visible VOA cross-section. Correcting for the vertex determination efficiency has to be done at analysis level
- N.B.: corrections not needed in Pb-Pb: close to 100% efficiency!

Centrality: vertex-Z corrections

- Our detector acceptance changes depending on the PV position along the beam axis (z direction)
- Thus, the average raw value of any estimator may change with vertex-Z
- This can be corrected for: instead of calibrating based on N_{raw}, we calibrate N_{corr}:

$$N_{corr} = N_{raw} / \langle N_{raw} (vtx-Z) \rangle$$

- <N_{raw} (vtx-Z)> is usually a polynomial fit to the averages measured in data. Example in figure: pp @ 7TeV
- May be more or less important (VOM -> dependence partially cancels out as VOA↑ = VOC↓ and vice-versa, SPD-based estimators -> very sensitive)