ROOT primer

Get Started

* ([lpen the web page:
https://root.cern.ch/root/htmldoc/quides/primer/RO0TPrimer.html

e |nthe following, we will go step-by-step through the examples.

 Example macros and input files can be found in:
SALIBUILD_WORK DIR/SOURCES/ROOT/vB-16-00/v6-16-00/documentation/primer/macros/

https://root.cern.ch/root/htmldoc/guides/primer/ROOTPrimer.html

Errata in the primer tutorial
* macroa.l = 1Bbins instead of 100
e 1124

toriin0123435; doroot - -x-b-g
"write_ntuple_to file_advanced.C(\"conductivity experiment ${i}.root\", 100)"; done

Python

* Execute "pythond” in terminal

import ROOT

fl = ROOT.TF1("£2","[0]*sin([1]%*x)/x",0.,10.)
fl.SetParameter(0,1);

fl.SetParameter(1l,1);

fl.Draw();

 Exectute "pythond macrod.py”

Additional slides

2.1 ROOT as calculator

You can even use the ROOT interactive shell in lieu of a calculator! Launch the ROOT interactive shell with the command

> root

on your Linux box. The prompt should appear shortly:

root [0]

and let’s dive in with the steps shown here:

root [0] 1+1

(int) 2

root [1] 2+(4+2)/12.
(double) 1.000000
root [2] sgrt(3.)
(double) 1.732051
root [3] 1 > 2
(bool) false

root [4] TMath::Pi()
(double) 3.141593
root [5] TMath::Brf(.2)
(double) 0.222703

2.3 ROOT as function plotter

Using one of ROOT's powerful classes, here TF1 ,’ will allow us to display a function of one variable, x. Try the following:

root [11]) TF1 f£f1("f1","sin(=x)/x",0.,10.):
root [12] fl.Draw();

f1 is an instance of a TF1 class, the arguments are used in the constructor; the first one of type string is a name to be entered in the
internal ROOT memory management system, the second string type parameter defines the function, here sin(x)/x , and the two
parameters of type double define the range of the variable x. The Draw() method, here without any parameters, displays the function
in a window which should pop up after you typed the above two lines.

A slightly extended version of this example is the definition of a function with parameters, called [0] , [1] andsooninthe ROOT
formula syntax. We now need a way 1o assign values to these parameters; this is achieved with the method
SetParameter(<parameter number>,<parameter wvalue>) ofclass TF1 . Here is an example:

root [13] TF1 £2("£2","[0]*sin([1])*x)/x",0.,10.);
root [14] £2.SetParameter(0,1);

root [15] f2.S5etParameter(1l,1);

root [16] f£2.Draw():

To extend a little bit on the above example, consider a more complex function you would like to define. You can also do this using
standard C or C++ code.

Consider the example below, which calculates and displays the interference pattern produced by light falling on a multiple slit. Please do
not type in the example below at the ROOT command line, there is a much simpler way: Make sure you have the file slits.C on disk,
and type root slits.C inthe shell. This will start root and make it read the "macro” slits.C , l.e. all the lines in the file will be
executed one after the other.

S/ Example drawing the interferance pattearn of light
S falling on a grid with n slits and ratio r of slit

/S width over distance between slits.
auto pi = TMath::Pi();

JF function code in C
double single({double *x, double *par) {

return pow(sin(pi*par[0]*=x[0])/(pi*par(0]*x[0]),2);
}

double nslitl(double *x,double *par)/{
return pow(sin(pi*par[1]*x[0])/sin(pi*x[0]),2);

b}

double nslit({double *x, double *par)/{
return single(x,par) * nslitl(x,par);

1

S/ This isg the main program
void slits() {
float r,ns:

o
=

& |
Ln

BJ
&

BJ

|

o 2 18 1 =18 18 |2 |
LRI T PR % O | i [LT = = =

Lad
2

Lad

5 6]z |
=T LV = T = L |

e |r|"n
B3 |

/S request user input

cout << "slit width /f g ? ";
scanf|"%f",&r);

cout << "# of slits? ":
scanf("%f",&ns);

cout <<"interference pattern for "<< ns

<<" glits, width/distance: "<<r<<endl:

// define function and set options
TF1l *Fnslit = new TF1("Fnslit",n=1it,-5.001,5.,2);
Fnslit->SetMNpx(500);

// set parameters, as read in abova
Fnslit->SetParameter(0,r);

Fnslit->SetParameter(l,ns);

// draw the interference pattern for a grid with n slits

Fnslit->Draw();

2.4 Controlling ROOT

One more remark at this point: as every command you type into ROOT is usually interpreted by Cling, an “escape character” is needed to
pass commands to ROOT directly. This character is the dot at the beginning of a line:

root [1] .<command>

This is a selection of the most common commands.

quit root, simply type .g

™

obtain a list of commands, use .?

-

access the shell of the operating system, type .!<0S command> ;try,e.g. .!ls or .!pwd

execute a macro, enter .x <file name> ;in the above example, you might have used .x slits.C atthe ROOT prompt

L]

load a macro, type .L <file name> ;inthe above example, you might instead have used the command .L slits.C
followed by the function call slits(); . MNote that after loading a macro all functions and procedures defined therein are available
at the ROOT prompt.

« compile a macro, type .L <file name>+ ; ROOT is able to manage for you the C+4+ compiler behind the scenes and to
produce machine code starting from your macro. One could decide to compile a macro in order to obtain better performance or to get
nearer to the production environment.

Use .help atthe prompt to inspect the full list.

2.5 Plotting Measurements

To display measurements in ROOT, including errors, there exists a powerful class TGraphErrors with different types of constructors.
In the example here, we use data from the file ExampleData.txt in textformat:

root [0] TGraphErrors gr("ExampleData.txt");
root [1] gr.Draw("AP");

You should see the output shown in Figure 2.2,

Graph

1.6

1.4

1.2

0.8

0.6

0.4

0.2

1 [l L] T T]I I I[T T [T T |I I Il L] T

2.6 Histograms in ROOT

Frequency distributions in ROOT are handled by a set of classes derived from the histogram class TH1 , in our case THI1F . The letter
F stands for "float”, meaning that the data type float Iis used to store the entries in one histogram bin.

root [0] TFl efunc("efunc","exp([0]+[1]*x)".0.,5.);

root [1] efunc.SetParameter(0,1);

root [2] efunc.SetParameter|{l,-1);

root [3] THLIF h("h","example histogram"”,100,0.,5.);

root [4] for (int i=0;i<1000;i++) {h.Fill({efunc.GetRandom()):}
root [5] h.Draw():

The first three lines of this example define a function, an exponential in this case, and set its parameters. In line 3 a histogram is
instantiated, with a name, a title, a certain number of bins (100 of them, equidistant, equally sized) in the range from 0 to 5.

The class THIF does not contain a convenient input format from plain text files. The following lines of C++ code do the job. One
number per line stored in the text file "expo.dat” is read in via an input stream and filled in the histogram until end of file is reached.

root [1] TH1F h("h","example histogram",100,0.,5.);

root [2] ifstream inp; double x;

root [3] inp.open("expo.dat");

root [4] while (inp >> x) { h.Fill(x); }

root [5] h.Draw():;

root [6] inp.close(); 7

Fit panel

Data Set: | TH1F::hpx
—Fit Fungtion

Type: |Predef-1D |= \gaus

Onperation
= Mop " Add & Conv

|gaus
Selected:

gaus

Set Parameters...

General | Minimization |

[T Empty bins, weights=1

— Fit Settings

Method
| Chi-square i~ User-Defined... |
™ Linear fit ¥ Robust: [0.95 —

Fit Options
[T Integral [T Use range
[Best errors [T Improve fit results
[~ All weights = 1 [T Add to list

[T Use Gradient

Draw Options

[~ SAME
" No drawing
[T Do not store/draw Advanced... |
X[4002z o 400 3
Update | Fit | Reset | Close |
| TH1F:hpx |LIB Minuit |MIGRAD |Itr: 0 |Prn: DEF

Fit Panel.

2.8 ROOT Beginners’ FAQ

At this point of the guide, some basic questions could have already come to your mind. We will try to clarify some of them with further
explanations in the following.

2.8.1 ROOT type declarations for basic data types

In the official ROOT documentation, you find special data types replacing the normal ones, e.g. Double t , Float t or Int t
replacing the standard double , float or int types. Using the ROOT types makes it easier to port code between platforms
(64/32 bit) or operating systems (windows/Linux), as these types are mapped to suitable ones in the ROOT header files. If you want
adaptive code of this type, use the ROOT type declarations. However, usually you do not need such adaptive code, and you can safely
use the standard C type declarations for your private code, as we did and will do throughout this guide. If you intend to become a ROOT
developer, however, you better stick to the official coding rules!

2.8.2 Configure ROOT at start-up

The behaviour of a ROOT session can be tailored with the options inthe .rootre file. Examples of the tunable parameters are the
ones related to the operating and window system, to the fonts to be used, to the location of start-up files. At start-up, ROOT looks for a

.rootrc file in the following order:

+« ./.rootrc //local directory

» SHOME/.rootrc //user directory
+ SROOTSYS/etc/system.rootrc //global ROOT directory

If more than one .rootre files are found in the search paths above, the options are merged, with precedence local, user, global. The
parsing and interpretation of this file is handled by the ROOT class TEnv . Have a look to its documentation if you need such rather
advanced features. The file .rootrc defines the location of two rather important files inspected at start-up: rootalias.C and

rootlogon.C . They can contain code that needs to be loaded and executed at ROOT startup. rootalias.C is only loaded and
best used to define some often used functions. rootlogon.C contains code that will be executed at startup: this file is extremely
useful for example to pre-load a custom style for the plots created with ROOT. This is done most easily by creating a new TStyle
object with your preferred settings, as described in the class reference guide, and then use the command

gROOT->SetStyle("MyStyleName"); to make this new style definition the default one. As an example, have a look in the file

rootlogon.C coming with this tutorial. Another relevant file is rootlogoff.C thatit called when the session is finished.

2.8.3 ROOT command history

Every command typed at the ROOT prompt is stored inafile .root hist inyour home directory. ROOT uses this file to allow for
navigation in the command history with the up-arrow and down-arrow keys. It is also convenient to extract successful ROOT commands
with the help of a text editor for use in your own macros.

EXTREMELY USEFUL!

2.8.4 ROOT Global Pointers

All global pointers in ROOT begin with a small “g”. Some of them were already implicitly introduced (for example in the section Configure
ROOT at start-up). The most important among them are presented in the following:

+« gROOT:the gROOT variable is the entry point to the ROOT system. Technically it is an instance of the TROOT class. Using the
gROOT pointer one has access to basically every object created in a ROOT based program. The TROOT object is essentially a
container of several lists pointing to the main ROOT objects.

« gStyle: By default ROOT creates a default style that can be accessed viathe gStyle pointer. This class includes functions to set
some of the following object attributes.

o Canvas

- Pad

o Histogram axis

o Lines

o Fill areas

e Text

o Markers

» Functions

= Histogram Statistics and Titles
o etc ...

« gSystem: An instance of a base class defining a generic interface to the underlying Operating System, in our case
TUnixSystem .

« ginterpreter: The entry point for the ROOT interpreter. Technically an abstraction level over a singleton instance of TCling .

At this point you have already learnt quite a bit about some basic features of ROQT.

