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Overview
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• Introduction to Machine Learning.

• Practical example.

• Binary classification problem (logistic regression).

• Neural networks and deep learning.

• Deep Learning in neutrino experiments.

• Deep Underground Neutrino Experiment (DUNE).

• Tokai to Kamioka (T2K) – SuperFGD.



Machine Learning
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• Supervised learning: we are given a dataset and already know what the correct output 
should look like.

• Regression problems: we are trying to predict results within a continuous output.

• Example: predicting house prices based on house size.

• Classification problems: We are trying to predict results in a discrete output.

• Example: tagging photos as ‘cat’ or ‘dog.’ 

• Unsupervised learning: we try to approach problems with little or no idea what results 
should look like.

• Example*: identifying meaningful patterns in 2D data.

*https://developers.google.com/machine-learning/problem-framing/cases



Example: binary classification (I)
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• Dataset:

• Goal: tag each vehicle as ‘car’ or ‘motorcycle’ based on the vehicle 
weight.
• Given x, we want to predict ŷ = 𝑃(𝑦 = 1 | 𝑥), where 0 ≤ ŷ ≤ 1. 

Model x (weight) y (0=car, 1=motorcycle)

Renault Megane 1.175 tonnes 0

Yamaha YZF-R1 0.199 tonnes 1

MINI Cooper 1.360 tonnes 0

Ford C-MAX 1.550 tonnes 0

Kawasaki Ninja H2 0.240 tonnes 1

… … …



Example: binary classification (II)
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• Goal: tag each vehicle as ‘car’ or 
‘motorcycle’ based on the vehicle weight.
• Given x, we want to predict  ŷ = 𝑃(𝑦 =
1 | 𝑥), where 0 ≤ ŷ ≤ 1.

• Output: ŷ = 𝜎(𝑤𝑥 + 𝑐)

• Parameters: 𝑤, 𝑐 ∈ ℝ.

• Activation function: sigmoid (𝜎).

• 𝜎(𝑧) =
1

1+𝑒−𝑧

Model x y

Renault 
Megane

1.175 
tonnes

0

Yamaha 
YZF-R1

0.199 
tonnes

1

MINI 
Cooper

1.360 
tonnes

0

Ford C-
MAX

1.550 
tonnes

0

Kawasaki 
Ninja H2

0.240 
tonnes

1

… … …

o If 𝑧 is a large positive number, 

 𝜎 𝑧 =
1

1+𝑒−∞
≈

1

1+0
≈ 1

o If 𝑧 is a large negative number, 

 𝜎 𝑧 =
1

1+𝑒∞
≈

1

1+∞
≈ 0



Example: binary classification (III)
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• Methodology:
1. Randomly initialise the parameters 𝑤, 𝑐.

2. Forward propagation:

• Select a training example.

• Calculate output ŷ.

• Calculate error (loss).

3. Backward propagation:

• Compute partial derivatives of the loss.

 With respect to 𝑤 and 𝑐.

• Update 𝑤 anc 𝑐.

• Go back to 2.

ŷ = 𝜎(𝑤𝑥 + 𝑐)

Update the model 
parameters (𝑤, 𝑐) 
based on the error.



Example: binary classification (IV)
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• Steps:
• Randomly initialise the parameters 𝑤, 𝑐.

• i.e., 𝑤 = 0.5, 𝑐 = 0.5.

• Forward propagation:

• Calculate output  ŷ using the first training 
example (x= 1.175, Renault Megane):

• ŷ = 𝜎(𝑤𝑥 + 𝑐) =
1

1+𝑒−(𝑤𝑥+𝑐)
=

1

1+𝑒−(0.5×1.175+0.5)
= 0.747911

Model x y

Renault 
Megane

1.175 
tonnes

0

Yamaha 
YZF-R1

0.199 
tonnes

1

… … …

• Calculate error (how good the prediction is?):
• True output: 𝑦 = 0
• Predicted output: ŷ = 0.747911
• Error (loss function): 

ℒ ŷ, 𝑦 = −(𝑦 𝑙𝑜𝑔 ŷ + 1 − 𝑦 log 1 − ŷ )
= −(0 𝑙𝑜𝑔 0.747911 + 1 − 0 log 1 − 0.747911) = 1.37797

ŷ = 𝜎(𝑤𝑥 + 𝑐)



Example: binary classification (V)
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• Steps:
• Backward propagation:

• Compute partial derivatives of the loss (with respect to 𝑤 and 𝑐).

• Update 𝑤 anc 𝑐 (using a learning rate 𝛼 of 0.1)

• Calculate ŷ again (using updated parameters):

∂ℒ(w,c)

∂𝑤
=

∂

∂𝑤
− log 1 −

1

1 + 𝑒− 𝑤𝑥+𝑐
=

𝑥𝑒𝑐+𝑤𝑥

𝑒𝑐+𝑤𝑥 + 1
=

1.175 × 𝑒(0.5+0.5×1.175)

𝑒(0.5+0.5×1.175) + 1
= 0.878795

∂ℒ(w,c)

∂𝑐
=

∂

∂𝑐
−log 1 −

1

1 + 𝑒− 𝑤𝑥+𝑐
=

𝑒𝑐+𝑤𝑥

𝑒𝑐+𝑤𝑥 + 1
=

𝑒(0.5+0.5×1.175)

𝑒(0.5+0.5×1.175) + 1
= 0.747911

𝑤 → 𝑤 − 𝛼
∂ℒ(w,c)

∂𝑤
= 0.5 − 0.1 × 0.878795 = 0.4121205

𝑐 → 𝑐 − 𝛼
∂ℒ(w,c)

∂𝑐
= 0.5 − 0.1 × 0.747911 = 0.4252089

𝛼 is always positive

ŷ = 𝜎 𝑤𝑥 + 𝑐 =
1

1 + 𝑒− 𝑤𝑥+𝑐

=
1

1 + 𝑒− 0.4121205×1.175+0.4252089
= 0.7128877

Closer than before!
0.747911 > 0.7128877 > 0
Still not predicting that it is a 
car, but we should repeat the 
same procedure for the 
entire dataset.



Neural networks
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• Same idea, but multiple neurons (forming layers).
• Example: house price prediction based on size, number of bedrooms, zip 

code and wealth of the owner.

• Deep learning (DL): normally refers to methods based on neural 
networks with a large number of layers (deep neural networks).

#bedrooms

zip code

wealth

size 𝑥1

𝑥2

𝑥3

𝑥4

ŷ

Hidden layer

Output layer



Deep Learning in DUNE

• DUNE is a next-generation neutrino oscillation experiment.

• Far Detectors (FD) are 800 miles from the neutrino beam source.
• Four modules, each with 10,000 ton of liquid argon.

• High power muon neutrino beam produced at Fermilab.
• Can switch polarity to produce a muon antineutrino beam.

• Look for the appearance of electron (anti)neutrinos at the FD.
• Measure CP-violation.
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NB: I will only write neutrino from now on,
but the same is applicable for antineutrinos



Ingredients for the CP-violation analysis

• We need to consider two signal channels and their backgrounds.
• Charged current  νμ disappearance – main background is NC 1π±.

• Charged current  νe appearance – main background is NC 1π0.

• Primary goal:
• Classify the neutrino flavour as νe ,νμ , ντ or NC.

• We need a DL approach to perform the classification task.
• We use a convolutional neural network (CNN).

• See my talk at the Reconstruction and Machine learning in 
Neutrino Experiments workshop:
• https://indico.desy.de/indico/event/21853/session/2/contribution/35
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( − )

( − )

https://indico.desy.de/indico/event/21853/session/2/contribution/35


Far Detector Data

• The Far Detectors contain three wire readout planes.
• This provides three “images” of each neutrino interaction.

• Official simulated electron neutrino interaction (signal).
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Far Detector Data

• The Far Detectors contain three wire readout planes.
• This provides three “images” of each neutrino interaction.

• Official simulated electron neutrino interaction (signal).

• Electron produces the highlighted shower, beginning at the vertex.
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Far Detector Data

• The Far Detectors contain three wire readout planes.
• This provides three “images” of each neutrino interaction.

• Official simulated neutral current π0 interaction (background).
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Far Detector Data

• The Far Detectors contain three wire readout planes.
• This provides three “images” of each neutrino interaction.

• Official simulated neutral current π0 interaction (background).

• π0 decay photon showers are displaced from vertex.
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CVN Architecture Overview
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Secondary outputs:
Particle counting for 
exclusive final states

Neutrino / antineutrino

Primary output:
Flavour identification

Each input image is 500 x 500 
pixels in size, corresponding to 
the images we get from the 
three wire readout planes.

First few layers treat the 
three views separately



Training and using the CNN

• Use millions of images (~10M images) of simulated neutrino 
interactions with the true neutrino flavour known.
• Allows the CNN to learn the features of each type of neutrino interaction.

• The CNN filters are not predefined – it needs to learn which filters to use 
to extract the information required to classify events.

• Tested on a fully independent sample. 

• Once the CNN is trained it is applied to images with no truth 
information attached – eventually the experimental data.

• The CNN gives probabilities for each event to be the following: 
• Charged-current                          and neutral-current (all flavours).

• Outputs sum to one.

• Use these probabilities for the event selection.
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Selecting Electron Neutrinos

• Electron neutrino probability spectra from the DUNE CVN.
• Curves combine neutrinos and antineutrinos.
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Electron Neutrino Efficiency

• Select all events that are 
more than 85% likely to 
be electron neutrinos.

• Over 90% selection 
efficiency in the flux 
peak.

• Efficiency better for 
antineutrinos due to 
typically cleaner final 
state (neutron instead of 
proton).
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Selecting Muon Neutrinos

• Muon neutrino probability spectra from the DUNE CVN.
• Curves combine neutrinos and antineutrinos.

Saúl Alonso-Monsalve 20

0
0.2

0.4
0.6

0.8
1

 Probability
m n

CVN 

0

500

1000

1500

2000

Events

 signal
m

n
CC 

 background
t

n
CC 

 background
n

NC 

0
0.2

0.4
0.6

0.8
1

 Probability
m n

CVN 

10 2
10 3
10

Events

 signal
m

n
CC 

 background
t

n
CC 

 background
n

NC 



Muon Neutrino Efficiency

• Select all events that are 
more than 50% likely to 
be muon neutrinos.

• Over 90% selection 
efficiency in the flux 
peak.

• Efficiency better for 
antineutrinos due to 
typically cleaner final 
state (neutron instead of 
proton).
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Deep Learning in T2K
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• Full active FGD with three views: SuperFGD.
• Optically independent cubes: spatial localization of scintillation light.

• Lower momentum threshold: 1 single hit gives immediately XYZ.

• Plastic scintillator provides very good time resolution.



SFGD 2D Events
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• Three 2D charge deposition views (XY, XZ, YZ):

23

*Simulated 
event



SFGD 2D to 3D
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• Matching the common axis 2-to-2 in the three views XY, XZ, YZ we 
obtain the 3D information.

• Drawback: non-physical voxels appear due to lack of information 
during the 2D to 3D reconstruction algorithm, called ghost voxels.



Problem description
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• After 3D-matching, we classify each individual 3D voxel into one 
of the following:
• Track voxel: a cube where the track has passed by.

• Crosstalk voxel: a cube with a real deposition but where any track has 
passed through it (all light comes from cube-to-cube optical crosstalk).

• Ghost voxel: a cube that does not have any real deposition and is formed 
from the 2D ambiguity when reconstructing the 3D event.

• Approach: use a supervised deep learning algorithm 
(GraphSAGE*) to perform the classification task.
• The approach based around a graph neural network (GNN) handles each 

individual voxel as a list of variables (physics information) associated to it.

• See S. Pina-Otey’s talk at the ND 280 Upgrade Meeting: 
https://indico.cern.ch/event/842568/contributions/3578802/

*W. L. Hamilton, R. Ying, J. Leskovec, Inductive Representation Learning on Large Graphs, arXiv:1706.02216.

https://indico.cern.ch/event/842568/contributions/3578802/


Results (GraphSAGE)
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Event 1: simulated vs pred. (GIF image*): True 
track
voxel

True 
crosstalk
voxel

True 
ghost
voxel

Pred
track
voxel

0.898 0.070 0.029

Pred
crosstalk
voxel

0.099 0.890 0.041

Pred
ghost
voxel

0.003 0.040 0.930

1.000 1.000 1.000

*slide show to see the animated GIF



Results (GraphSAGE)
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Event 1: correct classified voxels.

The ghost track 
would probably be 
removed by 
standard 
techniques by 
matching the light 
detected in the 
three 2D views. 
This approach has 
been already tested 
by S. Martinenko
(see his talk at the 
T2K collaboration 
meeting).



Results (GraphSAGE)

Saúl Alonso-Monsalve 28

Event 2: simulated vs pred. (GIF image*): True 
track
voxel

True 
crosstalk
voxel

True 
ghost
voxel

Pred
track
voxel

0.970 0.022 0.000

Pred
crosstalk
voxel

0.024 0.955 0.050

Pred
ghost
voxel

0.006 0.023 0.950

1.000 1.000 1.000

*slide show to see the animated GIF



Results (GraphSAGE)
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Event 2: correct classified voxels.



Summary

• Machine Learning, and Deep Learning in particular, provide many 
powerful mechanisms for classifying input data from many 
different fields, including high-energy physics.

• In DUNE, we use a convolutional neural network for a powerful 
neutrino interaction flavour classification.
• Already working on demonstrating good performance of exclusive final-

states in the coming months.

• In T2K, we use a graph neural network (GNN) for voxel 
classification in SuperFGD.
• First results look promising both in purity and in efficiency.
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Backup Slides



Results (GraphSAGE)
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• Training on 6k events.

• Confusion matrix (from 60k events):

True track 
voxels

True 
crosstalk 

voxels

True ghost 
voxels

Pred track 
voxels

5,140,704 167,236 13,089 5,321,029

Pred
crosstalk 
voxels

286,890 5,001,600 124,886 5,413,376

Pred ghost 
voxels

16,561 140,140 1,401,551 1,558,252

5,444,155 5,308,976 1,539,526 12,292,657Observation: a 0.96% of voxels cannot 
be calssified by GraphSAGE due to not 
having any edge in the graph.



Results (GraphSAGE)
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• Purity (left) vs Efficiency (right)

True track 
voxels

True 
crosstalk 

voxels

True ghost 
voxels

Pred track 
hits

0.9443 0.0315 0.0085

Pred
crosstalk 
hits

0.0527 0.9421 0.0811

Pred ghost 
hits

0.0030 0.0264 0.9104

1.0000 1.0000 1.0000

True track 
voxels

True 
crosstalk 

voxels

True 
ghost 
voxels

Pred track 
voxels

0.9661 0.0314 0.0025 1.0000

Pred
crosstalk 
voxels

0.0530 0.9239 0.0231 1.0000

Pred
ghost 
voxels

0.0106 0.0899 0.8995 1.0000


