

A new software for physics-agnostic reconstruction in the T2K near-detector TPCs

L. Koch

III. Physikalisches Institut B RWTH Aachen University

Workshop on Software for Time Projection Chambers for Nuclear Physics Experiments, FRIB, 2016-08-09

T2K and ND280

- Tokai To Kamioka
 - Long baseline, neutrino-beam experiment in Japan
- Near Detector 280
 - Multi purpose, magnetised detector
 - 280 m downstream the graphite target
 - Scintillators and 3 large TPCs
 - Un-oscillated beam characterisation
 - Cross-section measurements

Downstream

Barrel ECAL

ECAL Solenoid Coil

UA1 Magnet Yoke

POD

ECAL

- $\bullet~3$ large TPCs $\sim 3\,m^3$ each
- Gas mixture, "T2K-gas", by volume
 - $\bullet~95\,\%$ Argon, Ar
 - 3% Tetra-fluoro-methane, CF $_4$
 - 2% Isobutane, iC₄H₁₀

The TPCs

- Central cathode
- Drift along x-axis, $v_d \sim 80 \, \mu {
 m m/ns}$
- Magnetic field ($\sim 0.2\,{\rm T})$ parallel to electric field ($\sim 300\,{\rm V/cm})$
- \bullet Pad-based ($\sim 10 \times 7\,\mathrm{mm^2})$ MicroMeGaS readout at anodes

Why TREx (TPC Reconstruction Extension)?

Main measurements

- Neutrino interacts in solid scintillator detector
- Products are identified in the TPCs (dE/dx vs. p)
- High density target material
 - \blacksquare High statistics
 - High energy detection threshold
- TPC reco software optimized for through-going particles

Why TREx (TPC Reconstruction Extension)?

Gas interaction measurements

- Neutrino interacts in TPC gas
- Products are identified in the TPC (dE/dx vs. p)
- Low density target material
 - Low statistics
 - \boxplus Low energy detection threshold
- Vertexing in TPCs needed new software

Design goals

- Isotropy
 - Full 3D reconstruction
 - No assumptions about particle directions
- Homogeneity
 - Interactions can happen anywhere in the TPC
 - No assumptions about vertex positions
- Physics-agnosticism
 - Reconstruct objects, but do not try to interpret them

Disclaimer

TREx is quite complex and explaining everything in detail would take multiple talks. I will concentrate on the general principles rather than implementation details.

Output objects

- Patterns
 - Collection of connected paths and junctions
- Paths
 - A series of connected hits that form a particle track
- Junctions
 - Hits where multiple paths meet or branch off
- No vertices!
 - TREx makes no distinction between vertices and secondary interactions
 - Analyser must decide whether junction is a vertex or a delta-ray, etc.

How does it work?

TREx works in two phases

- Pattern recognition
 - Grouping hits into paths and junctions
 - Based on A*-algorithm
 - Well-known path finding algorithm
- 2 Track fitting
 - Fit helices to paths
 - Likelihood based
 - Merge broken-up tracks of the same particle

Pattern recognition

- Group hits into patterns
- 2 Look for edges, i.e. track ends
- Build paths and look for junctions
- Assign hits to paths/junctions
- Olustering

Grouping

- Neighbouring hits are grouped into patterns
- Equivalent statements:
 - Two hits are in the same pattern
 - There exists a path between the two hits

Edge detection and path finding

- Patterns are scanned for edges, i.e. track ends
 - Look for maximum coordinates
- Use A* algorithm to find shortest connections between edges
- To find stopping track ends
 - Remove found paths
 - Repeat edge search

Junction detection and hit association

- Add junctions where paths diverge
- Add all unused hits to found paths and junctions

Pattern recognition

Clustering

- A cluster is a collection of hits in horizontal or vertical direction
 - Has nothing to do with ionization clusters
- Horizontal or vertical clustering depends on local angle
- Used to calculate precise y or z positions

Track fitting

- Seeding
- 2 Likelihood fit
- Track matching and merging

Track fitting

Seeding and likelihood fit

- Seed parameters for fit (i.e. the first guess) taken from start, end and mid-point of paths
- Likelihood calculated for each cluster separately
- Propagate helix to cluster plane (xy or xz)
- Get expected charge distributions from track position and angle
- Calculate likelihoods from expectation for all hits in the cluster
- Maximize total likelihood of all clusters for best fit track

D. Karlen, P. Poffenberger, and G. Rosenbaum. Nuclear Instruments and Methods in Physics Research, A555:80-92, 2005.

Likelihood match and merging

- Sometimes tracks "break": one particle is split into multiple paths
 - Due to missing hits or delta-ray junctions
- Each path has its own fitted helix with its maximum likelihood
 - L11 and L22
- We can propagate those to the other paths and calculate their likelihoods
 - Helix 1 propagated to path 2: L12
 - Helix 2 propagated to path 1: L21
- $(L11 \cdot L12) \ll (L11 \cdot L22) \gg (L21 \cdot L22)$
 - \Rightarrow Likely two separate particles
- Otherwise merge and refit or save information for analyser to decide

Real data 4-track gas-interaction-like event

• All visible tracks are reconstructed, except for (possible) stub on the left

7-track MC gas interaction event

• Difficult to reconstruct close to vertex, but actually just one junction!

Multiplicity migration matrix

- Reco: paths connected to vertex junction
- Truth: charged particles coming from a gas interaction vertex

CC_{inc} gas interaction selection performance

•

Conclusion

- TREx is a versatile tool for TPC reconstruction
- Already performing very well both for through-going particles and gas interactions
- Improvements for handling some fringe cases still possible (and planned)
 - Rare cases, but relevant for high-BG gas interaction analysis
- First neutrino gas interaction analysis paper is coming up soon
- Stay tuned!

Thank you!

Backup

A*-algorithm

- Find shortest connection between two nodes of a graph
- Cost for connection = actual cost (i.e. length) of connection + heuristic cost of chosen node
- Heuristic cost = distance of chosen node from destination
- Essentially: Evaluate connections that get you closer to the destination node first
- Depending on heuristic cost function, guaranteed to find shortest connection