Estimation on the Maximal Yield and Polarization in Positron Sources

Eugene Bulyak

NSC KIPT Kharkov

Workshop on Polarized Positron sources. CERN April 2006

Eugene Bulyak Maximum Yield and Polarization

ヘロン 人間 とくほ とくほ とう

3

Abstract goals

- To estimate the maximal yield and polarization in Compton based positron sources
- To compare performance of Compton and undulator sources
- To review ideas of enhancement the performance

ヘロト ヘアト ヘビト ヘビト

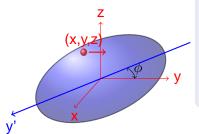
Outline

Yield and Polarization of Gammas

- Maximal Yield
- Bunch Kinetics
- Spectrum and Polarization

2 Positron Production

- Spectra and Polarization
- Methods to Enhance Feasibility



★ 글 ▶ ★ 글 ▶

Maximal Yield Bunch Kinetics Spectrum and Polarization

Interaction of Electron with Laser Pulse Pulse 3D Gaussian (σ_r, σ_y)

$$Y = \frac{N_{\text{las}}\sigma_{\text{C}}}{2\pi\sigma_{r}\sqrt{\sigma_{r}^{2} + \sigma_{y}^{2}\tan^{2}\phi/2}}$$
$$\times \exp\left[-\frac{(x+y\tan\phi/2)^{2}}{2(\sigma_{r}^{2} + \sigma_{y}^{2}\tan^{2}\phi/2)} - \frac{z^{2}}{2\sigma_{r}^{2}}\right]$$

 $\sigma_{\textit{r},\textit{y}}$ are rms dimensions of the laser pulse

x, y, z deviations of an electron from ideal matching

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

3

Maximal Yield Bunch Kinetics Spectrum and Polarization

Maximal Yield Exact matching x = y = z = 0

Second factor equals to unity - max yield/electron/turn

Simulations, max conversion factor					
CLIC/YAG	ILC/YAG	/CO2	undul		
0.11	3.2	2.1	pprox 300		
singular	plural	plural	multiple		
30	30	30	pprox 20		
S).11 singular	0.11 3.2 singular plural	singular plural plural		

ヘロト ヘアト ヘビト ヘビト

3

Maximal Yield Bunch Kinetics Spectrum and Polarization

Longitudinal Steady State

 Partial energy spread in a bunch is independent of the lattice and RF

$$s_c^2 \equiv \frac{\sigma_E^2}{\gamma^2 E_0^2} = \frac{7}{10} \frac{\gamma E_{\text{las}}}{E_0}$$

Total spread (synchrotron radiation + Compton)

$$s^2 = rac{s_{Sr}^2(\Delta E)_{Sr} + s_c^2(\Delta E)_c}{(\Delta E)_{Sr} + (\Delta E)_c}$$

Subscribed sr natural quantities (laser turned off) Subscribed c partial Compton quantities (naturals = 0) (ΔE) energy losses per turn

partial Compton spreads

CO2 ring 3.58 %, YAG ring 6.37 %, undulator 0.5 %

Maximal Yield Bunch Kinetics Spectrum and Polarization

Steady–State Emittances

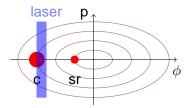
 Partial transverse emittance dependent on betatron function at IP

$$\epsilon_{c} = \frac{3\beta_{\rm ip}}{10} \frac{E_{\rm las}}{\gamma E_{\rm 0}} \approx 2.7 \times 10^{-10} \,\beta_{\rm ip}$$

for YAG rings ($E_{\text{las}} = 1.164 \,\text{eV}, E_{\text{beam}} = 1.3 \,\text{GeV}$)

Total emittance (synchrotron radiation + Compton)

$$\epsilon = \frac{\epsilon_{sr}(\Delta E)_{sr} + \epsilon_c(\Delta E)_c}{(\Delta E)_{sr} + (\Delta E)_c}$$


behaves similar to the squared energy spread

ヘロト ヘアト ヘビト ヘビト

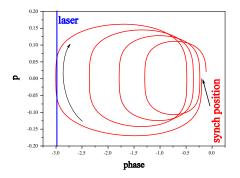
Maximal Yield Bunch Kinetics Spectrum and Polarization

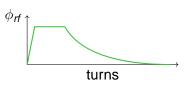
Pulsed Mode of Operation

non-head-on electron-laser collisions

stationary operation

Compton ring gamma sources with plural conversion (ILC/CO2 and ILC/YAG) unable to operate in steady state:


- Synchronous phase with laser on offsets by more than laser pulse length
- Plural scattering causes severe quantum losses

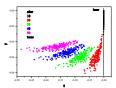

CLIC Compton ring in principle can afford steady state

Maximal Yield Bunch Kinetics Spectrum and Polarization

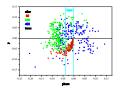
Pulsed Mode of Operation

phase manipulation scheme

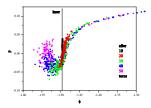
rf phase manipulation


- fast advance in RF phase
- 'shelf' to provide interaction with laser
- slow adiabatic return into initial position

ヘロア 人間 アメヨア 人口 ア


ъ

Maximal Yield Bunch Kinetics Spectrum and Polarization


Pulsed Mode of Operation

ILC CO2 ring, no RFPM

CLIC YAG ring, no RFPM

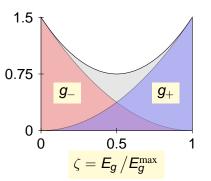
ILC CO2 ring, RFPM

yield per cycle				
ilc	co2	yag	clic/yag	
rfpm	on	on	off	
turns	50	100	2546	
N gms	30	60	45–100	

Maximal Yield Bunch Kinetics Spectrum and Polarization

Summary of Electron Bunch Kinetics feasibility of Compton sources

- Yield over the working cycle reached 0.2...0.4 of maximum
- Transverse emittances heated up or cooled down depending on Compton to natural emittance ratio
- Energy spread in the bunches increased up to a few %%
- Phase manipulation enhanced yield by 3...5 times
- Deviation of the energy in RFPM mode exceeded 10 %


Remark: The single pass of bunch through undulator increased spread by 0.12%. Transverse dimensions were not affected

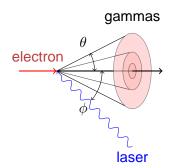
ヘロト 人間 ト ヘヨト ヘヨト

Maximal Yield Bunch Kinetics Spectrum and Polarization

Gammas Spectrum and Polarization

Definition of polarization

$$\mathcal{P} = rac{N^{(+)} - N^{(-)}}{N^{(+)} + N^{(-)}}$$


- High energy gammas, g₊, mostly polarized positively
- low energy ones, g_, negatively
- Energy spectra are the same for all sources
- Total polarization is zero

3

ヘロト 人間 ト ヘヨト ヘヨト

Maximal Yield Bunch Kinetics Spectrum and Polarization

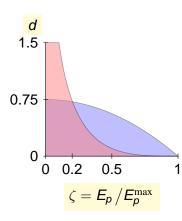
Spatial Shape of Gamma Beam Mono-Energetic Electrons, Parallel Trajectories

Relative energy of gammas ζ scattering angle θ correlation

Collimator opening angles (micro rad)				
	YAG	CO2	undul	
	1.3	4.1	150	GeV
ζ				
0.8	200	66	1.7	POSIPOL
0.5	400	124	3.4	min reas
0.2	800	250	6.8	clearing

くロト (過) (目) (日)

Assumptions

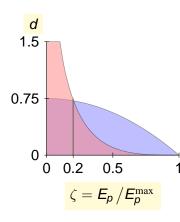

Semi-quantity approximations of actual dependencies allow to get analytical formulas appropriate for the bird's-eye view:

- Gammas traversing the target do not change the polarization
- Polarization of a positron equals to gamma's
- The cross section of pair production is independent of the energy of the gamma
- Energy of the positrons is distributed uniformly within the interval from mc^2 to $E_{gamma} mc^2$
- The only losses of the positron energy in the target are the ionization ones

ヘロン ヘアン ヘビン ヘビン

Spectra and Polarization Methods to Enhance Feasibility

Positron Spectra from Thin Target Full Gamma Spectrum

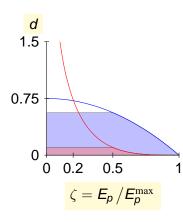


Two positron ensembles produced in the converter body Positively polarized (desirable) $n_p^{(+)}$ Negatively polarized (background) $n_p^{(-)}$ Normalization of positrons to unity (full gamma spectrum produces unity of positrons) Zero total polarization $N_p^{(+)} = N_p^{(-)}$

イロト イポト イヨト イヨト

Spectra and Polarization Methods to Enhance Feasibility

Positron Spectra from Thin Target Energy Selection of Positrons (post-selection) [A.Mikhailichenko]



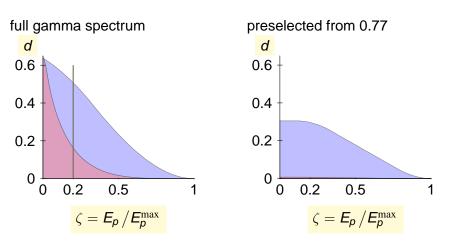
- Positively polarized positrons possess higher energy
- Discarding of low-energy positrons ⇒ polarization
- Limit of selection 0.2 of maximal energy
 - \Rightarrow 0.46 of positrons remained at polarization 0.53

ヘロト ヘ戸ト ヘヨト ヘヨト

Spectra and Polarization Methods to Enhance Feasibility

Positron Spectra from Thin Target energy selection of gammas (pre-selection) [J.Urakawa]

- Discarding of low-energy gammas
 ⇒ lesser positrons produced
- Minimal gammas energy of one-half of maximal


< 🗇 🕨

→ Ξ → < Ξ →</p>

 \Rightarrow 0.5 of positrons produced at polarization 0.75

Spectra and Polarization Methods to Enhance Feasibility

Positron Spectra from Thick Target full and preselected gamma spectra, b = 0.67

イロト イポト イヨト イヨト

Spectra and Polarization Methods to Enhance Feasibility

Positron Yield from Target analytical results

Energy of positrons attenuating due to ionization losses, *b* the energy loss from maximal over the target thickness

yield and polarization

b	pre min	post min	yield	polariz
0.001	0	0.2	0.46	0.53
0.001	0.77	0.035	0.26	0.95
0.67	0	0.2	0.17	0.75
0.67	0.77	0.035	0.16	0.96
0.67	0.77	0.2	0.11	0.96

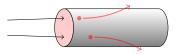
Preselected from 0.77 gamma beam produces 0.27 of all positrons

イロト イポト イヨト イヨト

Spectra and Polarization Methods to Enhance Feasibility

High Z Converter Target

Basic idea. Calculations


- Positron production prop to thickness in r.l.
- Energy losses prop to thickness in (grams/sq cm) about 2 MeV /(gram/sq cm)
- Rad length (Al) = 25 (gram/sq cm)
- Rad length (W) = 6.3 (gram/sq cm)
- $b(AI) \approx 4b(W)$

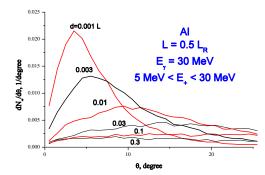
b	pre min	post min	yield	polariz
0.67	0	0.2	0.17	0.75
0.67/4	0	0.2	0.36	0.64
0.67	0.77	0.035	0.16	0.96
0.67/4	0.77	0.035	0.24	0.96

Spectra and Polarization Methods to Enhance Feasibility

Rod target [V.Lapko, N.Shul'ga 2006]

main idea

Shortening the positron path in target

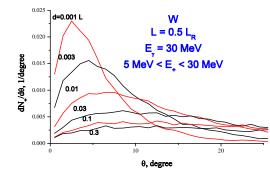

- improves emittance
- reduces positron losses

Efficiency of the method in proportion to 'length/radius' ratio The rod target produces 'natural collimation' of the gamma beam

イロト イポト イヨト イヨト

Spectra and Polarization Methods to Enhance Feasibility

Rod Target Simulations [V.Lapko, N.Shul'ga 2006]

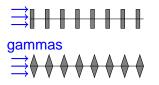

conditions simulated

- aluminum cylindrical rod
- uniform distribution of gammas at butt-end
- monoenergetic gamma beam

ヘロア 人間 アメヨア 人口 ア

Spectra and Polarization Methods to Enhance Feasibility

Rod Target Simulations [V.Lapko, N.Shul'ga 2006]


conditions simulated

- tungsten cylindrical rod
- uniform distribution of gammas at butt-end
- monoenergetic gamma beam

くロト (過) (目) (日)

Spectra and Polarization Methods to Enhance Feasibility

Combination: High Z Rod Converter

bare idea

Increase length-to-radius ratio without increasing the length in units of rad.length

ヘロン ヘアン ヘビン ヘビン

Summary. Yield and Polarization

Factors in reversed order

• Positron yield (preselection 0.8) \approx 0.16

Eugene Bulyak Maximum Yield and Polarization

ヘロン 人間 とくほ とくほ とう

= 990

Summary. Yield and Polarization

Factors in reversed order

- Positron yield (preselection 0.8) \approx 0.16
- Pair production (7/9 per r.l.) ≈ 0.3

Eugene Bulyak Maximum Yield and Polarization

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Summary. Yield and Polarization

Factors in reversed order

- Positron yield (preselection 0.8) \approx 0.16
- Pair production (7/9 per r.l.) ≈ 0.3
- $\bullet\,$ Gamma production per electron-turn $\approx 0.6\,$

ヘロン 人間 とくほ とくほ とう

3

Summary. Yield and Polarization

Factors in reversed order

- Positron yield (preselection 0.8) \approx 0.16
- Pair production (7/9 per r.l.) ≈ 0.3
- Gamma production per electron-turn ≈ 0.6
- Total $0.16 \times 0.3 \times 0.6 \approx 0.03$ or 33 electron–turns for a positron with polarization 90 %

ヘロト ヘアト ヘビト ヘビト

1

Conclusions Compton ring–based positron source

- Compton scheme feasible to produce required positron bunches
- Ring's acceptance should be high
- Efficiency of the ring increases with decreasing the linear momentum compaction factor
- RF phase manipulation in nonlinear lattice will enhance yield but requires rather large energy acceptance

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ .

Conclusions collimation of the gamma beam

- Collimation of gamma beam realizable for moderate energy of electrons (some GeVs)
- Positron production scheme with collimated gamma beam provides higher polarization compared with the scheme of positron energy selection
- Positrons produced in such a way have wider energy spectra
- Heat load of targets lower in preselected scheme

ヘロン ヘアン ヘビン ヘビン