

ATF-Compton Experiment@KEK YAG laser 2nd harmonic $(\lambda = 532 \text{ nm}, \text{E} = 2.33 \text{ eV})$ Thin conversion e⁻beam target 1.28 GeV γ-ray Emax = 56 MeV (e+) e e pair creation i) proof-of-principle demonstration ii) accumulate technical informations: polarimetry, beam diagnosis, ... **No Optical Cavity at Collision Point**

ATF-Compton Collaboration KEK

Y. Kurihara, T. Okugi, J. Urakawa, T. Omori

Tokyo Metropolitan Univ

A. Ohashi

Waseda Univ.

I. Yamazaki, K. Sakaue, T. Saito, R. Kuroda(Waseda&AIST), M. Washio, T. Hirose

National Institute of Radiological Sciences

M. Nomura, M. Fukuda

Cross section (calculation)

γ & e⁺ : short bunch length 31 psec

We can easily flip polarization of γ-ray and e⁺, by flipping laser polarization.

Accelerator Test Facility@KEK

1.28 GeV S-band Linac

γ-ray: production, detection, and polarimetry at ATF Extraction line

Compton Chamber

Measure Asymmetry $\Delta T=31$ psec — can NOT measure each γ -ray

Cross section of Compton scattering $\sigma(\uparrow \uparrow) < \sigma(\uparrow \downarrow)$ $\downarrow \downarrow$

Transmission depends on the direction of the magnetization

Expected asymmetry

$$A = \frac{N_{+} - N_{-}}{N_{+} + N_{-}}$$

 $A = 1.3 \%$ (Pol.=88%)
(E_{th} = 21.4MeV)

γ-ray Measured Asymmetry (4 years ago)

M. Fukuda et al., PRL 91(2003)164801

Pol. γ-ray Production Done: Mar. 2002

> Nγ \approx 1 x 10⁶ /bunch ΔT(rms) = 31 psec

Pol. : γ = 88 % (if laser pol. = 100%) (measure Eγ > 21 MeV)

M. Fukuda et al., PRL 91(2003)164801

Positron: production, selection, and polarimetry

Ne+(design) = 3×10^4 /bunch

Pol(expected) = 80%

Asym (expected) = 0.95%

Measure e⁺ polarization : use Bremsstrahlung γ-ray

Measurement and Cross-Check Measurement

e⁺ beam pol.
(laser pol)e⁻ spin in iron
(magnet pol.)expected value
(MC)R \rightarrow \rightarrow)Calculate AA(R) : A(R) ~ + 0.95 %L \leftarrow \rightarrow)Calculate AA(L) : A(L) ~ - 0.95 %() non (Liner) \rightarrow)Calculate AA(0) : A(0) = 0

Cross-Check

e⁺ beam pol. magnet pol.

P Calculate A A(P): $A(P) \sim +0.95 \%$

Calculate A A(N): $A(N) \sim -0.95 \%$

Zero magnet current Not Equal No-polarization, due to residual magnetism

e⁺ polarization (e⁺ run): results

Measurement

e⁺ beam pol. (laser pol)

e⁻ spin in iron (magnet pol.)

 $A(R) = +0.60 \pm 0.25\%$

 $A(L) = -1.18 \pm 0.27\%$

 $A(0) = -0.02 \pm 0.25\%$

Cross-Check e⁺ beam pol. ma

magnet pol.

• $A(P) = +0.81 \pm 0.26\%$

 $A(N) = -0.97 \pm 0.26\%$

We did e⁻ run, also.

e⁺ run

e⁻ run

e⁻ polarization (e⁻ run): results

Measurement

e⁻ beam pol. (laser pol)

e⁻ spin in iron (magnet pol.)

 $A(R) = +0.78 \pm 0.27\%$

 $A(L) = -0.97 \pm 0.27\%$

 $A(0) = -0.23 \pm 0.27\%$

Cross-Check e⁻ beam pol.

magnet pol.

(

 $A(P) = +0.72 \pm 0.27\%$

 $A(N) = -1.03 \pm 0.27\%$

Asymmetry Measurements

e⁺ run

e⁻run

T. Omori et al., PRL 96 (2006) 114801

Summary of Experiment 1) The experiment was successful. High intensity short pulse polarized e⁺ beam was firstly produced. Pol. =73 ± 15(sta) ± 19(sys) %

T. Omori et al., PRL 96 (2006) 114801

- 2) We confirmed propagation of the polarization from laser photons -> γ-rays -> and pair created e⁺s & e⁻s.
- 3) We established polarimetry of short pulse & high intensity γ-rays, positrons, and electrons.

What's Next ?

What's Next ?

Optical Cavity at Collision Point Placed in Storage Ring

What's Next? ↓ Optical Cavity at Collision Point

Cavity-Compton Collaboration

Placed in Storage Ring

Cavity-Compton at ATF

Hiroshima-Waseda-LAL-Kyoto-CERN-KEK Collaboration

