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Introduction
Longitudinally polarized positrons are obtained by photo-production:

At least one of two photons should be circularly polarized. When both 
photons are real, the threshold condition                       implies ω of 
one photon above 2 TeV (for          laser)

In a target, the conditions                                     are easily 
fulfilled  
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According to existing theory of radiation, the circularly polarized 
photons are emitted during helical motion of unpolarized electrons, 
which can be realized in the field of a circularly polarized laser wave 
or in a helical undulator



Similarity of radiation in laser 
wave fields and in undulators
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In the electron rest system
Helical undulator Laser wave field
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Basic parameters, their meaning and 
magnitude for undulators and lasers

Emission of radiation in the wave is characterized by two parameters:
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It is the effective interaction constant, as 2
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Photon emission rate at 

At 

1s �

1s� the total probability per unit length (rate) reads:
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Spectral-angular distribution of radiation 
and its polarization

Spectral-angular distribution:
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Spectral distribution, collimation and angular      
divergence in electron beam

Spectral distribution of radiation from the whole electron beam into 
given collimator reads 2 2 2d d ( ) ( ), d ( ) 1
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Spectrum and polarization for     =0.1 and 1 at 
s=0.01, 
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Total yield:

The time (l) dependence of     or     if any, can be easily taken into
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Conclusion

Generation of circularly polarized photons 
using lasers or undulators is due to essentially 
the same physical mechanism
The magnitude of basic parameters is very 
different:                                  leading to 
different radiation characteristics
The laser scheme seems to be more flexible 
especially for obtaining harder photons and for 
switching over their helicity
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