Lattice design for Compton ring

S.Guiducci, E. Bressi

POSIPOL 2006, CERN 26 April

Preliminary Work

- We have calculated a lattice to start to perform beam dynamics calculations
- Compton Interaction (CI) has a pulsed time structuretherefore we need to evaluate beam dynamics with and witout Compton interaction
- Moreover the transition phase when CI is turned on and off has to be studied

Compton Ring Parameters for CO2 Laser

Snowmass proposal

Energy (GeV) 1.3			
Circumference (m)	277		
Electrons/bunch	6.2•10 ¹⁰		
N of bunches	280		
σ_{x} at IP (μ m)	25		
σ_z at IP (μ m)	5		
$\sigma_{\rm I}$ at IP (mm)	5		
ϵ_{x} (m rad)	5•10 ⁻¹⁰		
κ	0.02		
β_{x} (m)	1.25		
β _y (m)	2.5		
N of IPs	30		

Lattice Design

- To achieve low emittance we adopt a TME lattice which allows the minimum emittance for a given energy and bending angle
- The value of momentum compaction required depends on the CI beam dynamics
- This lattice allows to change a_c easily by changing the phase advance/per cell

Emittance as a function of phase advance per cell

Emittance and a_c as a function of number of cells

Dispersion suppressor and half straight section

One quarter of ring - no wigglers

Wiggler cell

One quarter of ring - with wigglers

Ring Parameters

	Α
K	0.008
sigma_x (μm)	44
sigma_y (μm)	5
$σ_x σ_y$ (μ \mathbf{m}^2)	220
alpha_c	8.07E-04
C (m)	345
V_RF (MV)	0.35
f_RF (MHz)	500
sigma_s (mm)	5.08
N part/bunch	6.20E+10
Touschek (min)	0.79
sigma_buck	1.7E-02
E_0 (GeV)	1.3
emittance (m)	1.3E-09
τ _ε (ms)	28.2
Wigglers	no

A - 60 cells

C = 345 m

 $\varepsilon = 1.3 \cdot 10^{-9} \text{ m}$

 σ_x > 25 mm - reduce β_x

Touschek lifetime is less than one minute

To increase Touschek lifetime we increase the vertical emittance

	Α	В
K	0.008	0.237
sigma_x (μm)	44	40
sigma_y (μm)	5	25
$σ_x σ_y$ (μm ²)	220	1000
alpha_c	8.07E-04	8.07E-04
C (m)	345	345
V_RF (MV)	0.35	0.35
f_RF (MHz)	500	500
sigma_s (mm)	5.08	5.08
N part/bunch	6.20E+10	6.20E+10
Touschek (min)	0.79	3.7
sigma_buck	1.7E-02	1.7E-02
E_0 (GeV)	1.3	1.3
emittance (m)	1.3E-09	1.3E-09
τ _ε (ms)	28.2	28.2
Wigglers	no	no

В

$$\sigma_x$$
= 40 μ m

$$\sigma_{y} = 25 \mu m$$

$$\tau_{Tou}$$
 = 3.7 min

By =
$$2.5 \, \text{m}$$
, can be reduced

Insert wigglers to reduce horizontal emittance emittance

	Α	В	С
K	0.008	0.237	0.980
sigma_x (μm)	44	40	19
sigma_y (μm)	5	25	25
$\sigma_x \sigma_y \ (\mu m^2)$	220	1000	475
alpha_c	8.07E-04	8.07E-04	7.93E-04
C (m)	345	345	408
V_RF (MV)	0.35	0.35	0.7
f_RF (MHz)	500	500	500
sigma_s (mm)	5.08	5.08	4.97
N part/bunch	6.20E+10	6.20E+10	6.20E+10
Touschek (min)	0.79	3.7	4.6
sigma_buck	1.7E-02	1.7E-02	1.95E-02
E_0 (GeV)	1.3	1.3	1.3
emittance (m)	1.3E-09	1.3E-09	5.0E-10
τ _ε (ms)	28.2	28.2	9.0
Wigglers	no	no	yes

$$C = 408$$

$$C = 408$$

 $\epsilon = 0.5 \cdot 10^{-9} \text{ m}$

$$\sigma_{x} = 19 \, \mu m$$

$$\sigma_{\rm v}$$
 = 25 μ m

$$\varepsilon = 0.5 \cdot 10^{5} \text{ m}$$

$$\sigma_{x} = 19 \text{ } \mu\text{m}$$

$$\sigma_{y} = 25 \text{ } \mu\text{m}$$

$$\tau_{Tou} = 4.6 \text{ min}$$

Increase energy to increase Touschek lifetime

	Α	В	С	D	D
K	0.008	0.237	0.980	0.144	U
sigma_x (μm)	44	40	19	51	
sigma_y (μm)	5	25	25	25	E = 1.6 GeV
$\sigma_x \sigma_y \ (\mu m^2)$	220	1000	475	1275	
alpha_c	8.07E-04	8.07E-04	7.93E-04	8.07E-04	$\varepsilon = 2.0 \cdot 10^{-9} \text{ m}$
C (m)	345	345	408	345	E - 2.0.10 · III
V_RF (MV)	0.35	0.35	0.7	0.68	
f_RF (MHz)	500	500	500	500	σ_x = 51 μ m
sigma_s (mm)	5.08	5.08	4.97	4.98	χ σ μ
N part/bunch	6.20E+10	6.20E+10	6.20E+10	6.20E+10	05
Touschek (min)	0.79	3.7	4.6	12.1	$\sigma_{\rm v}$ = 25 μ m
sigma_buck	1.7E-02	1.7E-02	1.95E-02	2.00E-02	,
E_0 (GeV)	1.3	1.3	1.3	1.6	12
emittance (m)	1.3E-09	1.3E-09	5.0E-10	2.0E-09	τ_{Tou} = 12 min
τ。 (ms)	28.2	28.2	9.0	15.1	
Wigglers	no	no	yes	no	

Touschek lifetime

- At 1.3 GeV with proposed bunch densities
 Toschek lifetime is very critical
- We expect that also the intrabeam scattering effect is very strong
- Next step is the calculation of IBS emittances growth
- Insertion of wigglers and increase of the energy can reduce both effects

The Touschek half-lifetime according to the formula given by H. Bruck

$$\frac{1}{\tau} = \frac{\sqrt{\pi} r_0^2 cN}{\gamma^3 \sigma'_x \varepsilon^2 (4\pi)^{\frac{3}{2}} \sigma_l \sigma_x \sigma_y} C(u_{\min})$$

where:

 r_0 = classical electron radius c = velocity of light γ = electron energy in units of rest mass N = number of electrons per bunch σ_x '= angular divergence of the beam $(4\pi)^{3/2} \, \sigma_I \sigma_x \, \sigma_v$ = beam volume

$$C(u_{min}) = \int \frac{1}{u^2} \left[u - u_{min} - \frac{1}{2} ln \left(\frac{u}{u_{min}} \right) \right] e^{-u} du \qquad u_{min} = \left(\frac{\varepsilon}{\gamma \sigma'_{x}} \right)^2$$

ATF (J.Urakawa)

- Four wigglers (2m long) tumed on
- Damping times and emittances were measured and found consistent with calculations
- Horizontal beam size, bunch length and energy spread growth, due to IBS effects after damping, was observed.
- Reduction of the damping time and suppression of IBS effect with wiggler operation observed
- Reduction of emittance with wigglers ON also observed

ATF with wigglers

Collective instabilities

CR DR N part/bunch 6.2 10^{10} 1 10^{10}

Bunch distance 3 ns 3 ns

Average current 3.3 A 0.4 A

E 1.3 GeV 5 GeV

Very challenging parameters!

We are worried of:

- · Bunch lengthening
- Fast ion instability

Bunch length

Next step:

To achieve very small bunch length at the IP study lattices with

- Negative momentum compaction
- Bunch length modulation

See "Proposal of a Bunch Length Modulation Experiment in DAFNE", LNF-05/4(IR), 22/02/2005 at http://www.lnf.infn.it/sis/preprint/pdf/LNF-05-4%28IR%29.pdf

A few comments on RF Voltage

- The RF voltage required for synchrotron radiation is rather low (<1MV)
- The voltage needed to compensate the "Compton" energy loss (11MeV) is quite high (20 MV)
- Beam power is very high: 11x3.3 = 33MW
 many cavities are needed
- For comparison DR has a voltage 19÷48 MeV and a beam power of 4MW (16÷32 SC cavities)

Simulation of the longitudinal dynamics of the bunch

- The electrons are represented by 10⁵ macro-particles.
- Longitudinal phase space coordinates:

Energy spread
$$P = (E - E_0)/E_0$$

Phase
$$\phi = 2\pi hz/L_0$$

Scheme of the code:

- Initial electron distribution is Gaussian.
- Every macro-particle experiences 4 sections:
- phase advances because of the momentum compaction;
- scattering with the laser simulated using the Thomson cross section under linear interaction;
- synchrotron radiation energy loss (radiation damping and quantum excitation);
- RF cavity.

M

Laser interaction

- ullet ϕ distribution is binned;
- it is calculated the number of interactions of each bin with the laser;
- for each interaction it is generated a MonteCarlo number for the energy of the scattered photon;
- it is calculated the lost energy by each bin due to Compton effect;
- with a linear interpolation it is calculated the lost energy by the macro-particles;

Phase advances as
$$\phi_f = \phi_i - k_1 P - k_2 P^2 - k_3 P^3$$

Synchrotron radiation
$$P_f = P_i - DP_i - U_0 / E_0 + \frac{\sigma_E \sqrt{2D}}{E_0}$$

Gaussian number

with rms 1

$$= RF cavity P_f = P_i + \frac{V}{E_0} cos \left(arccos(U_0/V) - \phi_f\right)$$

Tests are in progress

Conclusions

- A preliminary lattice has been designed
- Insertion of wigglers and/or increase of the energy are needed to get low emittance and reasonable Touschek lifetime
- Still the high bunch density and high current make this ring extremely challanging