Experimental Plan of X-ray Generation using Optical Resonator

~LUCX Project at KEK~

Collaborators

<WASEDA University>

K. Sakaue [○], M. Washio

<High Energy Accelerator Research Organization (KEK)>

S. Araki, M. Fukuda, Y. Higashi, Y. Honda, M. Takano,

T. Taniguchi, N. Terunuma, J. Urakawa

<KYOTO University>

N. Sasao, H. Yokoyama

<TOKYO University>

H. Sakai

Contents

- > Introduction
- > LUCX Accelerator
- > Optical Resonator R/D
- > Future Plan
- > Conclusions

Pulsed-Laser **Optical Resonator**

Compton

X-rays

Introduction ~Compact X-ray Sources~

Compact X-ray source is required from various fields.

><u>Medical Diagnosis</u> Angiography, Mammography ...

> Biological Sciences Soft X-ray microscopy ...

>**Drug Manufacturing** X-ray crystal structure analysis ...

One example ~Medical Application~_ 100

33keV x-rays can use for K-edge digital subtraction angiography.

Angiography is a procedure that enables blood vessels to be visualized using the absorption by lodine at 33keV

Introduction ~Compact X-ray Sources~

We are developing an X-ray source based on Laser Undulator with the pulsed laser optical resonator. $E_{max}=33keV$

Using optical resonator

>Store pulses with the high peak power.

>Same time structure with multi-bunch e-beam

λ = 1064 nm (1.17eV)
357MHz Mode-Locked Laser

Pulse Laser

Multi-Bunch Beam

Generated from Photo-cathode RF-Gun

Pulsed-Laser Optical Resonator

43MeV

POSIPOL2006 Workshop at CERN 4/23

Compton

X-rays

Introduction ~Comparison with SR source~

Merit of the X-ray source utilizing laser undulator.

- X-ray source utilizing an undulator at a GeV order storage ring.
 High intensity, High stability
 but, in general, large amount of money and huge facilities.
- X-ray source based on Laser Undulator
 X-rays can be produced by lower energy e⁻ beam.
 The ring can be downsized. Compact and Inexpensive
 But, we need to demonstrate the method.

Merit of utilizing the pulsed laser resonator

No amplifier system. — Laser system is compact.

A laser pulse can be used again and again for collisions.

The laser power is efficiently used.

LUCX Accelerator ~Place of Accelerator~

For compact x-ray source, we constructed the accelerator in ATF building. Purpose of this accelerator is

1.28 GeV S-band Linac / LUCX

LUCX Accelerator ~Laser Undulator Compact X-ray source~

Photocathode RF-Gun and 3m-Linac 100Bunches/Train 43MeV Multi-bunch e⁻ beam

Pulsed Laser
Optical Resonator
420mm (357MHz)
1064nm (Nd:VAN)

LUCX Accelerator ~ Multi-Bunch Beam Demonstration~

We have demonstrated a 100bunches multi-bunch operation with Cs-Te photo-cathode RF-Gun.

Energy 5 MeV
Intensity 300nC/train
Number of Bunch 100 bunches
Rep. Rate 12.5 Hz

LUCX Accelerator ~ Multi-Bunch Beam Accelerator ~

After demonstration, we upgraded the accelerator.

Upgraded accelerator layout

Construction has been finished.

Now we are processing
the wave guide and a linac tube.

LUCX ~Required Spec of Optical Resonator~

We will install an optical resonator next summer.

Injection Laser: >6W@357MHz

Cavity Length: 420mm

Beam Waist: <170um

Mirror Curvature: <250mm

Enhancement Factor: >1000

(Finesse: >3000)

Mirror Reflectivity: >99.9%

At first, we develop the resonator finesse to maximize the number of x-rays.

Optical Resonator R/D ~Pulse Laser Optical Resonator~

Pulse Laser Optical Resonator

Resonance condition

>Phase relation

Resonator length = Integer of half wavelength

>Envelop superposition

Laser repetition = Round trip time of the optical resonator

Optical Resonator R/D ~Problems of Optical Resonator~

Width of resonance peak

We should control the resonator length <0.1nm

Enhancement factor=1000 Peak width (FWHM)<0.2nm

No jitter is permitted!!

Where are the jitters come from?

>Mode-locked laser FB

Timing stabilizer FB causes a jitter

>Acoustic noises

1~2kHz acoustic jitter appears

Optical Resonator R/D ~ Mode-locked laser FB jitter~

Our setup consists of two-cavities, controlled by FB circuit.

Mode-locked laser PLL (Phase Locked Loop)

Resonator length is controlled by laser power in resonator to fix "on resonance"

We should adjust the both resonator length less than 0.1nm.

$$L_{laser} = L_{resonator}$$

Optical Resonator R/D ~ Mode-locked laser FB jitter~

Mode-locked laser FB jitter source is "signal generator" that generates the reference signal of PLL.

Reference signal has small phase noise.

This noise must be **less than 0.1nm.**

No SG is satisfied this condition.

We made a feedback circuit to avoid the phase noises.

We decreased the fast part of the phase noise.

Optical Resonator R/D ~Acoustic Noises~

Our experimental setup of pulse resonator test bench
This setup is suitable to determine the component
that is affected by acoustic noises.

<Feature of setup>

CW laser and pulse laser are stacking in resonator at the same time

Using CW laser ->oscillator is only a <u>solid crystal</u>

->Almost acoustic noise is not affective to the oscillator

Optical Resonator R/D ~Acoustic Noises~

After determination of sources,

we make an effort to reduce acoustic noise jitters.

Ex) install dampers for high frequency jitter soundproof materials

Optical Resonator R/D ~Current Status~

This is the current status of our resonator.

Finesse : 3000~

Intensity Jitter with FB: 15%~ peak-peak

Optical Resonator R/D ~Preparation of install resonator~

After several studies to characterize and reduce the jitters, we decide to install the resonator to LUCX accelerator.

The parameter of resonator is as follows.

Frequency Length	Finesse Reflectivity of mirror	Waist Size Curvature of mirror	Inject laser power	Laser power in resonator with FB
357MHz	~3000	170um	6W @357MHz	Now measuring
420mm	~99.9%	250mm		and <u>developing</u>

Schedule of LUCX ~Towards X-ray Generation~

<u>May</u>

ACCELERATOR RESONATOR

>Processing >Resonator characteristic in TB

>Produce the e⁻ beam >Vacuum test of install chamber

June

ACCELERATOR RESONATOR

>100bunches/train operation >Resonator test in vacuum

>Beam diagnostics >Set up the optical

and electrical system

July

>Install the chamber with resonator in LUCX beam line

>Make collision e⁻ and laser

...and detect the X-rays

Expected X-ray at LUCX

Parameter	Energy	Number	Beam Size	Repetition
Electron	43MeV	200nC	64um(H)	12.5Hz
		/100Bunch	32um(V)	
Photon	1064nm	6*10 ³ Watt	85um(H)	Continuous
	1.17eV	17uJ/pulse	85um(V)	

Collision angle: 20deg

Take in account the acceptance (< 10mrad),

Expected number of X-rays 2.5 x 10⁵ photons/sec

Future Plan ~Final Layout of High Intensity X-ray Source~

Final layout of our x-ray source

>Small storage ring (13.4m) and pulsed laser optical resonator
Using optical resonator, all bunches in storage ring can interact with laser

High	intensity	x-ray	can	generate	Ļ

Parameter	Value
Beam Energy	40-82MeV
Number of circulating electron bunches	2; 4; 8; 16; 32
Electron bunch charge	2nC
Electron bunch current	45mA

storage ring 13.4m.

"Electron beam cooling by laser",

Nucl. Instr. And Meth. **A532**, 388, (2003)

Compton

Conclusions

- >We have developed the multi-bunch beam accelerator and pulse laser optical resonator for LUCX x-ray generation.
- >100bunches/train high quality multi-bunch beam has been generated using Cs-Te photo-cathode rf-gun.
- >3m-long linac has been installed and now processing.
- >We are studying about many jitter, to construct a stable pulse optical resonator system.
- ><u>Finesse ~3000 optical resonator</u> will install in LUCX accelerator.
- >In this summer, we will make collision and generate X-rays.

