

High power ultrafast fiber amplifiers

Yoann Zaouter, E. Cormier
CELIA, UMR 5107 CNRS - Université de Bordeaux 1, France

Stephane Gueguen, C. Hönninger, E. Mottay Amplitude Systèmes

Pessac, France

yzaouter@amplitude-systemes.com

Outline of the talk

- Interests of Yb-doped fibers as amplifier medium
 - Interests of fibers
 - Interests of Ytterbium
 - High power double-clad fiber concept
 - Limitations
- New design of Yb-doped fibers
 - Microstructured fibers
 - Recent results
- Suggestion of design
 - Including Bulk and Fiber lasers
- The bright future of high power high energy fiber amplifiers

Interests of fibers

- Numerous advantages
 - Reduced free-space propagation
 - No thermo-optical problems
 - Excellent beam quality: M²< 1.2
 - High gain
 - Large variety of dopants
 - Efficient diode pumping operation

Interests of Ytterbium

- Very simple electronic structure of Yb ions
 - No undesired effects
- Weak quantum defect
 - Reduced thermal load
- Diode pumping with 976nm diodes
- Broad emission bandwidth

Interests of Ytterbium-doped fibers

- Very simple electronic structure of Yb ions
 - No undesired effects
- Weak quantum defect
 - Reduced thermal load
- Diode pumping with 976nm
- Broad emission bandwidth

Interests of Ytterbium-doped fibers

- Very simple electronic structure of Yb ions
 - No undesire effects
- Weak quantum defect
 - Reduced thermal load
- Diode pumping with 976nm
- Broad emission bandwidth

Ideals candidates for the amplification of ultrashort pulses

Double-clad concept

- A highly efficient brightness conversion concept
 - Monomode signal core
 - Multimode inner-cladding for multimode diode pumping

Double-clad concept

- A highly efficient brightness conversion concept
 - Monomode signal core
 - Multimode inner-cladding for multimode diode pumping

Double-clad concept

- A highly efficient brightness conversion concept
 - Monomode signal core
 - Multimode inner-clad for multimode diode pumping

Nonlinearity limitations

- Interaction length in fiber >> than in bulk
 - Nonlinearities are the limiting factors
 - Isotopic media → lowest order nonlinearity:

Nonlinearity limitations

1. Nonlinear refraction index : $\tilde{n}(\omega, |E|^2) = n(\omega) + n_2 |E|^2$

- Self Phase Modulation : SPM
 - Non linear phase shift : $\phi_{NL}(\omega,T) = \gamma L |E(\omega,T)|^2$
 - Instantaneous frequency : $\delta\omega(T) = -\frac{\partial\phi_{NL}(z,T)}{\partial T} \propto \frac{L}{A_{eff}}$

Nonlinearity limitations

1. Nonlinear refraction index : $\widetilde{n}(\omega, |E|^2) = n(\omega) + n_2 |E|^2$

- Self Phase Modulation : SPM
 - Non linear phase shift : $\phi_{NL}(\omega,T) = \gamma L |E(\omega,T)|^2$
 - Instantaneous frequency : $\delta\omega(T) = -\frac{\partial\phi_{NL}(z,T)}{\partial T} \propto \frac{L}{A_{eff}}$

2. Inelastic scatterings:

- Stimulated Raman Scattering: SRS
 - Frequency downshift through vibration of the medium: 13THz

$$\infty rac{L}{A_{\!e\!f\!f}}$$

- Stimulated Brillouin Scattering : SBS
 - Stokes shift of ~10GHz

$$\widetilde{g}_B = \frac{\Delta v_B}{\Delta v_B + \Delta v_P} g_B(v_B) << 1$$

Fighting Nonlinearities

- Reduced nonlinearities mean:
 - Smaller interaction length L
 - Larger mode field diameter A_{eff}

Fighting Nonlinearities

- Reduced nonlinearities mean:
 - Smaller interaction length L Dopants concentration
 - Larger mode field diameter A_{eff}

Multimode operation

Fighting Nonlinearities

- Reduced nonlinearities mean:
 - Smaller interaction length L Dopants concentration
 - Larger mode field diameter A_{eff}

Multimode operation

Diffraction-limited operation with larger core diameter

Microstructured Fibers

Microstrutured fibers

Up to 50 µm core diameter with diffraction limited operation (NA = 0.03)

Air-clad for pump propagation (NA = 0.6)

Polarization maintaining design for **environmentally stable** operation

CPA-based amplification stage

What if we want sub-100fs pulses?

Parabolic pulse amplification

- Initialization of input energy and duration of the pulses
- Spectrum and Duration grow and converge to a parabolic shape during the propagation accumulating a purely linear chirp
- Asymptotic solution of NLSE with gain

$$i\frac{\partial \psi}{\partial z} = \frac{\beta_2}{2} \frac{\partial^2 \psi}{\partial T^2} - \gamma |\psi|^2 \psi + i\frac{g}{2} \psi$$

 Easy to recompress with conventional grating-based compressor thanks to the linear chirp

Parabolic pulse amplification

- EXEMPLE:
- Oscillator: 400 fs, 75 MHz, 30 mW i.e. 400 pJ
- Fiber amplifier: 9m, 23µm MFD, 0.7 m⁻¹

Parabolic pulse amplification

- EXEMPLE:
- Oscillator: 400 fs, 75 MHz, 30 mW i.e. 400 pJ
- Fiber amplifier: 9m, 23µm MFD, 0.7 m⁻¹

- Parabolic pulse amplification
 - EXEMPLE:
 - $-\Delta\lambda \approx 33nm$ i.e $\Delta t \approx 90 \, fs$ assuming $\Delta t.\Delta \nu \approx 0.86$

- Parabolic pulse amplification
 - EXEMPLE:
 - $-\Delta\lambda \approx 33nm$ i.e $\Delta t \approx 90\,fs$ assuming $\Delta t.\Delta\nu \approx 0.86$
 - Experiment by Limpert et al.

Oscillator

Limpert et *al.*, Optics Express, 10, p628, 2002

- Parabolic pulse amplification
 - Expériment of Limpert et al.

Limpert et *al.*, Optics Express, 10, p628, 2002

- Parabolic pulse amplification
 - Expériment of Limpert et al.

Limpert et *al.*, Optics Express, 10, p628, 2002

Energy scalable?

- Nanosecond pulses amplification :
 - Aculight, Femlight
 - 1 to 2 mJ, 1ns with 60 µm core-diameter fibers
 - >500 W/m power extraction reported by Femlight

F. Salin et al. Optics Express, 14, p2275, 2006

C. D. Brooks et al. Optics Express, 13, p8999, 2005

Suggestion of design

- Low power, long cavity oscillator
 - > 2 W average power
 - Rep rate of 10 MHz
 - < 400 fs pulse duration</p>
 - Synchro-locked: adjusting the length of the cavity

- PM LMA fiber
 - Length and gain design for parabolic amplification
 - Polarization maintaining fiber

- microstructured fiber
 - Few tens of µJ @ 10 MHz
 - Pump-power-limited !!

- Average power is pump-power-limited
- Polarized and Synchro-Locked

What's coming up?

- Fiber design
 - Diffraction limited operation already demonstrated in a passive 100 µm core diameter microstructured fiber
 - New designs of PM microstructured fibers are on the run
- Energy and power improvement
 - 10 mJ, 1ns may (will ?) be achieved in the coming years
 - "Kilowatt Femto" is feasible

Thank you

Visit our websites @:

www.amplitude-systemes.com www.celia.u-bordeaux1.fr

info@amplitude-systemes.com yzaouter@amplitude-systemes.com

