UK Overview and MICE Update

- UK has strong history of muon accelerator R&D
 - Neutrino factory design studies
 - EMMA prototype FFA for muon acceleration constructed at Daresbury lab
 - Muon Ionisation Cooling Experiment (MICE) hosted at RAL
- Continuing work
 - Analysis of MICE data
 - NuStorm design
 - Vertical FFA design/prototyping
UK has invested significant effort in
- Proton driver R&D
- Front end and initial cooling
- Acceleration (esp FFA-based)

Addressing the challenges of muon accelerator
- Short lifetime
- Large initial emittance
EMMA FFA Prototype

- Electron model of a non-scaling FFA
- Non-scaling FFA → resonance crossing
- Fast fixed-frequency “gutter” acceleration
Muon Front End

- Looked at high power targetry e.g. fluidized powder jet
- Developed solenoid chicane and proton absorber concept
 - Clean the beam following target
- Detailed studies on transverse ionization cooling line for initial cooling; and hardware prototyping
 - Muon ionization cooling experiment
4D Ionisation Cooling

- Competition between
 - Ionisation energy loss (dE/dx) **cools** the beam
 - Multiple Coulomb Scattering off atomic nuclei **heats** the beam

- For best cooling
 - Low Z → more dE/dx and less scattering
 - Liquid hydrogen is best
 - Tight focus and large acceptance → scattering less significant
 - Require a compact magnetic lattice
Questions

- Can we safely operate liquid hydrogen absorbers?
- Can we operate such a tightly packed lattice?
- Do we see the expected emittance change?
- Do we see the expected transmission?
Muon Ionization Cooling Experiment

C. T. Rogers
Rutherford Appleton Laboratory
The answer - MICE

Measure muon position and momentum upstream

Cool the muon beam using LiH, LH$_2$, or polyethylene wedge absorbers

Measure muon position and momentum downstream
Collaboration

- Over 100 collaborators, 10 countries, 30 institutions
- Operated at Rutherford Appleton Laboratory 2008-2017
- Transport line bringing pions/muons from ISIS synchrotron
Data-Taking 2008-2017

- Data was taken between 2008 and 2017
- Varied
 - Material
 - Input emittance
 - Energy
 - Degree of focusing
- Measured
 - Scattering
 - Energy loss
 - Emittance change

\[\frac{d\varepsilon_T}{ds} \approx -\frac{\varepsilon_T}{\beta_R^2 E} \langle \frac{dE}{ds} \rangle + \frac{\beta_T (13.6\text{MeV})^2}{2\beta_R^3 E\mu X_0} \]

- Emittance Change
- Cooling via \(\frac{dE}{dx} \)
- Heating via scattering
Measurement of Scattering

- Precision measurement of Multiple Coulomb Scattering
- Validation of energy loss model
Phase space reconstruction

- MICE individually measures every particle
- Accumulate particles into a beam ensemble over several hours
- Can measure beam properties with unprecedented precision
- E.g. coupling of x-y from solenoid fields

\[\sigma_{xx}^2 \]

\[\sigma_{pxp_x}^2 \]

\[\sigma_{yy}^2 \]
Amplitude reconstruction

- Phase space \((x, p_x, y, p_y)\)
- Amplitude is distance of muon from beam core
 - Conserved quantity in normal accelerators
- Ionization cooling reduces transverse momentum spread
 - Reduces amplitude
- Mean amplitude \(\sim \text{“RMS emittance”}\)
Change in amplitude distribution

- No absorber → decrease in number of core muons
- With absorber → increase in number of core muons
 - Cooling signal
Ongoing UK Work

C. T. Rogers
Rutherford Appleton Laboratory
Ongoing UK work - NuStorm

- Developing FFA option for NuStorm
 - Relatively high current, high energy muon beam facility
 - Excellent potential to support next generation of superbeams
 - Opportunity to develop capability for handling muon beams
- Alan Bross's talk later
Ongoing UK work - vFFA

- VFFA → dipole field stronger higher in the magnet
 - Beam moves upwards with increasing momentum
 - Tune and optics is constant with increasing momentum
 - Isochronous in relativistic limit
- Applicable both to proton and muon acceleration
- Design underway
 - See Shinji Machida's talk later
What remains to be done (cooling hardware)?

C. T. Rogers
Rutherford Appleton Laboratory
Risks in ionization cooling

- MICE has demonstrated that transverse ionization cooling works
- What are outstanding risks → mitigations
 - Unforeseen collective effects → cooling test stand
 - Use protons to get sufficient intensity?
 - Uncertainty in energy straggling → cooling test stand
 - ~10% uncertainty in FWHM in literature
 - Engineering risks → engineering test stand i.e. no beam
 - Would need to be ready to commit to a lattice
- Job 1: Make a detailed assessment of potential issues
 - Done for MAP?
Cooling (6D)

- Why is energy straggling important?
- MICE demonstrated transverse cooling
 - Reduction in transverse emittance
 - Good for Neutrino Factory
- For a Muon Collider need longitudinal cooling as well
 - Use a dipole and wedge absorber to transfer emittance from longitudinal to transverse
- Energy straggling “heats” the beam longitudinally
 - Seek to characterise
 - Validate longitudinal effects

Higgs factory cooling (simulated)

Long Emiss per bunch (mm)

Trans Emiss (mm)
Cooling test stand

- Collective effects \rightarrow high beam intensity
 - Either nustorm-level muon beam
 - Or (low energy) proton beam \rightarrow Internal Target

- Energy straggling
 - Either very good energy resolution
 - Or multiple passes (i.e. ring)

- Fully correlated 6D phase space has only ever been measured twice
 - MICE (unpublished)
 - SNS Beam Test Facility

- Interesting – but challenging - to go to the next step!
 - Would need to carefully assess available resources and best application
 - Synergy with low energy muon beam community?
 - Exploit internal target applications?
Conclusions

- UK has a strong history in muon accelerator R&D
 - Design work
 - EMMA
 - MICE
- Ongoing programme
 - NuStorm
 - VFFA
- Further cooling R&D has interesting possibilities
 - Need to consider available resource