

- Modeling of channeling radiation
- Muon pair production model
- Electron beam requirement
- Potential source performance
 - Towards collider-compatible performance

More details in arXiv:1910.01541

• We consider the motion of high energy electrons trapped transversely in the potential of a crystalline lattice

- We consider the motion of high energy electrons trapped transversely in the potential of a crystalline lattice
- Following [1], we derive the emitted photon spectrum by adding the contribution of individual particles based on their trajectory in a Pöschl-Teller potential

$$A_e = b_{PT} \tanh^{-1} \sqrt{\frac{E_e x'^2 + U_{PT}(x)}{a_{PT}}},$$

[1] A. Korol, A. S. yov, and W. Greiner, Channeling and radiation in periodically bent crystals; 2nd ed., Springer Series on Atomic Optical and Plasma Physics (Springer, Berlin, 2014)
[2] P. Schmuser, M. Dohlus, J. Rossbach, and C. Behrens, Freeelectron lasers in the ultraviolet and X-ray regime: physical principles, experimental results, technical realization; 2nd ed., Springer Tracts in Modern Physics (Springer, Cham, 2014).

- We consider the motion of high energy electrons trapped transversely in the potential of a crystalline lattice
- Following [1], we derive the emitted photon spectrum by adding the contribution of individual particles based on their trajectory in a Pöschl-Teller potential
- Undulator theory [2] can be applied to each particles, but particles oscillating at different amplitudes generate photons at different energies

$$K^{2} = 4\gamma_{e} \frac{a_{PT}}{m_{e}c^{2}} \frac{\cosh\left(\frac{A_{e}}{b_{PT}}\right) - 1}{\cosh^{2}\left(\frac{A_{e}}{b_{PT}}\right)} \quad k_{u} = \sqrt{\frac{2a_{PT}}{E_{e}}} \frac{1}{b_{PT}\cosh\left(\frac{A_{e}}{b_{PT}}\right)}$$

 $U_{PT}(x) = a_{PT} \tanh^2$

$$A_e = b_{PT} \tanh^{-1} \sqrt{\frac{E_e x'^2 + U_{PT}(x)}{a_{PT}}},$$

• We consider particles entering the crystal at the center of the channel with a given initial divergence

• We consider particles entering the crystal at the center of the channel with a given initial divergence

$$E_{\gamma} = \frac{2\hbar c \gamma_e^2 k_u}{1 + \frac{K^2}{2}} \qquad n_{\gamma} = \frac{e^2 k_u}{24\pi\epsilon_0 \hbar} \frac{K^2}{(1 + K^2/2)^2} \frac{L_c}{c}$$

- Particles oscillating at different amplitudes emit at different energies
 - Electron beams size are usually much larger than the interplanar distance the full spectrum should be obtained by integration over the beam phase space at the crystal
 - We need to determine the optimal electron beam divergence

• We consider particles entering the crystal at the center of the channel with a given initial divergence

$$E_{\gamma} = \frac{2\hbar c \gamma_e^2 k_u}{1 + \frac{K^2}{2}} \qquad n_{\gamma} = \frac{e^2 k_u}{24\pi\epsilon_0 \hbar} \frac{K^2}{(1 + K^2/2)^2} \frac{L_c}{c}$$

- Particles oscillating at different amplitudes emit at different energies
 - Electron beams size are usually much larger than the interplanar distance the full spectrum should be obtained by integration over the beam phase space at the crystal
 - We need to determine the optimal electron beam divergence
- The crystal length is limited by the energy loss of individual particles with the optimal amplitude
 - In the following we chose L_c such that :

$$\frac{n_{\gamma}E_{\gamma}}{E_e} < 0.1 \ \forall \ x, x' \in \mathbb{R}.$$

Muon pair production model

- We compute the energy spectrum of the muons generated by the interaction of a photon with a 5 cm tungsten target using [3]
 - At high energy, the energy spectrum is rather flat around the photon energy

$$\frac{d\sigma}{dE_{\mu}} = 4 \frac{\alpha Z^2 r_{\mu}^2}{E_{\gamma}} \left(1 - \frac{4}{3} \frac{E_{\mu}}{E_{\gamma}} \left(1 - \frac{E_{\mu}}{E_{\gamma}} \right) \right) \log W$$

• We assume that the angular is uniform in on cone of opening $1/\gamma_{\mu}$ (pessimistic)

Muon spectrum

• The emission spectrum of each electron is modeled with a delta at the undulator frequency :

$$N_{\mu}(E) = \int_{0}^{\infty} N_{\gamma}(E') \frac{d\sigma_{\mu}}{dE}(E,E') dE' \qquad N_{\gamma}(E') = \frac{1}{d} \int_{-d/2}^{d/2} dx \int_{-\infty}^{\infty} dx' \frac{n_{\gamma}}{\sqrt{2\pi\sigma_{e}'^{2}}} e^{-\frac{x'^{2}}{2\sigma_{e}'^{2}}} \delta(E'-E_{\gamma})$$

 The muon spectrum is peaked at low energy, due to the widening of the differential energy cross section at high energy

Muon spectrum

• The emission spectrum of each electron is modeled with a delta at the undulator frequency :

$$N_{\mu}(E) = \int_{0}^{\infty} N_{\gamma}(E') \frac{d\sigma_{\mu}}{dE}(E,E') dE' \qquad N_{\gamma}(E') = \frac{1}{d} \int_{-d/2}^{d/2} dx \int_{-\infty}^{\infty} dx' \frac{n_{\gamma}}{\sqrt{2\pi\sigma_{e}'^{2}}} e^{-\frac{x'^{2}}{2\sigma_{e}'^{2}}} \delta(E'-E_{\gamma})$$

- The muon spectrum is peaked at low energy, due to the widening of the differential energy cross section at high energy
 - We consider the amount of muons in an energy acceptance of ±10%

Optimal electron beam parameters

The optimal electron beam divergence is within reach

Optimal electron beam parameters

- The optimal electron beam divergence is within reach
- The usage of light crystals (Si, C) is favourable in terms of conversion efficiency (e⁻ → µ[±])
 - Requires high energy electrons (~60 GeV)

Optimal electron beam parameters

- The optimal electron beam divergence is within reach
- The usage of light crystals (Si, C) is favourable in terms of conversion efficiency (e⁻ → µ[±])
 - Requires high energy electrons (~60 GeV)
- The usage of dense crystal (W) is favourable in terms average muon energy and electron beam energy requirement

15

- To achieve high conversion efficiency, we chose a dense target with length comparable to its radiation length (→ 5 cm tungsten)
 - The transverse emittance is dominated by the finite length of the target and the emission angle
- The assumption of fixed emission angle is rather pessimistic
 - \rightarrow Monte-Carlo would be needed

Electron beam intensity limit

- With a crystal length much lower than the radiation length, radiative losses are not deposited in the crystal
- The electron beam current is limited by the maximum energy deposition through collisional process in the crysal
 - In the following we assume that 50W can be dissipated → the electron beam current is limited to a few mA
 - \rightarrow Need further understanding of the limit as it affects directly the muon rate

- A circular electron machine is excluded
 - The damping rate required for the electron beam to compensate multiple scattering is not achievable (less than one turn)

$$\tau_{e,opt} = 2 \frac{\sigma_{e,opt}^{\prime 2}}{\theta_c^2} \qquad \theta_c = \frac{13.6 \cdot 10^6}{eE_e} \sqrt{\frac{L_c}{L_r}}$$

- A circular electron machine is excluded
 - The damping rate required for the electron beam to compensate multiple scattering is not achievable (less than one turn)

$$\tau_{e,opt} = 2 \frac{\sigma_{e,opt}^{\prime 2}}{\theta_c^2} \qquad \qquad \theta_c = \frac{13.6 \cdot 10^6}{eE_e} \sqrt{\frac{L_c}{L_r}}$$

• The electron beam parameters from the ERL design from the LHeC linac-ring option [4] match the requirements for a crystal based muon source

- A circular electron machine is excluded
 - The damping rate required for the electron beam to compensate multiple scattering is not achievable (less than one turn)

$$\tau_{e,opt} = 2 \frac{\sigma_{e,opt}^{\prime 2}}{\theta_c^2} \qquad \qquad \theta_c = \frac{13.6 \cdot 10^6}{eE_e} \sqrt{\frac{L_c}{L_r}}$$

- The electron beam parameters from the ERL design from the LHeC linac-ring option [4] match the requirements for a crystal based muon source
 - To generate beams compatible with a collider, the longitudinal structure of the electron beam needs to be adjusted to an accumulation scheme

- A circular electron machine is excluded
 - The damping rate required for the electron beam to compensate multiple scattering is not achievable (less than one turn)

$$\tau_{e,opt} = 2 \frac{\sigma_{e,opt}^{\prime 2}}{\theta_c^2} \qquad \qquad \theta_c = \frac{13.6 \cdot 10^6}{eE_e} \sqrt{\frac{L_c}{L_r}}$$

- The electron beam parameters from the ERL design from the LHeC linac-ring option [4] match the requirements for a crystal based muon source
 - To generate beams compatible with a collider, the longitudinal structure of the electron beam needs to be adjusted to an accumulation scheme

 \rightarrow LINAC / ERL offer a high flexibility and in particular short bunch lengths

Electron beam

11100011011 10000111		
Energy [GeV]	20	60
Current [mA]	0.6	5
Optimal divergence $[\mu rad]$	16.5	4.5
Norm. transverse emit. $[\mu m]$	5	50
β_{\parallel} at the crystal [m]	0.5	21.0
β_{\perp} at the crystal [m]	10.0	
Maximum relative energy loss	0.1	

Crystal

Crystal Type	W(110)	Si (110)
Radiation Length [m]	0.09	1.56
Dechannelling length [mm]	2.2	13
Crystal length [mm]	0.2	2.1

Target

Material	W
Length [cm]	5
Distance to the crystal [m]	10

Muon beams

Energy acceptance	$\pm 10\%$	
Energy [GeV]	2.0	1.1
Efficiency $[10^{-5}\mu/\text{electron}]$	0.6	4.5
Rate $[10^{12} \mu/s]$	0.02	1.4
Phys. transverse emit. [mm]	0.08	0.3
Norm. transverse emit. [mm]	1.5	2.8

Electron beam

20	60
0.6	5
16.5	4.5
5	50
0.5	21.0
10.0	
0.1	
	$20 \\ 0.6 \\ 16.5 \\ 5 \\ 0.5 \\ 1 \\ ($

Crystal

Crystal Type	W(110)	Si (110)	
Radiation Length [m]	0.09	1.56	
Dechannelling length [mm]	2.2	13	
Crystal length [mm]	0.2	2.1	
Target			
Material	I	N	
Length [cm]	5		
Distance to the crystal [m]	1	.0	

Muon beams

			-
Energy acceptance	± 1	0%	
Energy [GeV]	2.0	1.1	
Efficiency $[10^{-5}\mu/\text{electron}]$	0.6	4.5	
Rate $[10^{12} \mu/s]$	0.02	1.4	
Phys. transverse emit. [mm]	0.08	0.3	
Norm. transverse emit. [mm]	1.5	2.8	

 Interesting muon rates and transverse emittances can be obtained with a crystal based muon source

→ Requires further understanding of the crystal damage / power / power density limits

 \rightarrow Transverse cooling is still required

Electron beam

Energy [GeV]	20	60
Current [mA]	0.6	5
Optimal divergence $[\mu rad]$	16.5	4.5
Norm. transverse emit. $[\mu m]$	5	50
β_{\parallel} at the crystal [m]	0.5	21.0
β_{\perp} at the crystal [m]	10.0	
Maximum relative energy loss	0.1	

CrystalCrystal TypeW(110) Si (110)Radiation Length [m]0.09Dechannelling length [mm]2.2Crystal length [mm]0.2Z.1

Material	W
Length [cm]	5
Distance to the crystal [m]	10

Muon beams

			-
Energy acceptance	± 10	0%	
Energy [GeV]	2.0	1.1	
Efficiency $[10^{-5}\mu/\text{electron}]$	0.6	4.5	
Rate $[10^{12} \mu/s]$	0.02	1.4	
Phys. transverse emit. [mm]	0.08	0.3	
Norm. transverse emit. [mm]	1.5	2.8	

 Interesting muon rates and transverse emittances can be obtained with a crystal based muon source

→ Requires further understanding of the crystal damage / power / power density limits

 \rightarrow Transverse cooling is still required

 \rightarrow Thinner targets would reduced the transverse emittance, at the cost of e- μ conversion efficient

Electron beam

Energy [GeV]	20	60
Current [mA]	0.6	5
Optimal divergence $[\mu rad]$	16.5	4.5
Norm. transverse emit. $[\mu m]$	5	50
β_{\parallel} at the crystal [m]	0.5	21.0
β_{\perp} at the crystal [m]	10.0	
Maximum relative energy loss	0.1	

Crystal

Crystal Type	W(110) S	Si (110)
Radiation Length [m]	0.09	1.56
Dechannelling length [mm]	2.2	13
Crystal length [mm]	0.2	2.1

Target		
Material	W	
Length [cm]	5	
Distance to the crystal [m]	10	
Muon beams		
Energy acceptance	$\pm 10\%$	
Energy [GeV]	2.0	1.1
Efficiency $[10^{-5}\mu/\text{electron}]$	0.6	4.5
Rate $[10^{12} \mu/s]$	0.02	1.4
Phys. transverse emit. [mm]	0.08	0.3
Norm. transverse emit. [mm]	1.5	2.8

- Interesting muon rates and transverse emittances can be obtained with a crystal based muon source
 - → Requires further understanding of the crystal damage / power / power density limits
 - \rightarrow Transverse cooling is still required
 - \rightarrow Thinner targets would reduced the transverse emittance, at the cost of e- μ conversion efficient
- There is quite some margin between the crystal length chosen (limited to 10% energy loss per electron per passage to allow for analytical derivation) and the dechanneling length

→ Requires further study of the photon spectrum as a function of the crystal type and length

A potential way towards collider-compatible performance

- The muon beam properties may be sufficient to be injected in a high acceptance accumulator ring (i.e. LEMMA-type but at a lower energy and with a higher transverse emittances)
- The usage of a secondary beam (photons) on target prevents the issue with multiple scattering of the primary beam (e.g. positrons)
 - ERL technology offers the hope to remain energy efficient

Transverse cooling during accumulation may offer collider-compatible bunches
 → To be investigated

BACKUP Channeling radiation from other crystals type

 Materials with a deep channeling potential (W) can channel electron with a higher divergence and higher energy photons can be generated with a lower electron energy