Positron Sources for future colliders

- □ Positron sources for Linear Colliders (CLIC and ILC) and for the circular collider FCC-ee
- □ Comparison of requirements and performances
- □ Lemma scheme
- ☐ Comments and conclusions

Undulator driven with 125 GeV electrons produces gamma's for positron production

ILC positron source, alternative

E-driven ILC Positron Source

- · 20 of 0.48us pulses are handled with NC linacs operated in 300Hz.
- · 100 of 300 pulses are actually fired.

ILC positron source, target area

Meter's of shielding and a sophisticated target exchange concept

→ Positron sources need space

CLIC complex, 3 TeV

The CLIC Injector Complex

> 1 km

- Pre-damping ring can be avoided if the beam emittance is ~ < 25 mm (norm)
- Positron emittance before pre-damping ring: 7 mm
- Main damping ring; in: $e_{xn}/e_{yn} = 65/10 \mu m$
 - out: $e_{xn}/e_{yn} = 472/5 \text{ nm}$
- Bunch compressors needed after the rings for further acceleration

CLIC Positron Source

Previous studies: The Pre-Injector Linac

Injector Linac

• All positrons are within 1% acceptance window of the pre-damping ring.

The effective yield: (-20,20) degrees in phase and (150,250) MeV in energy

Energy (GeV)	Target exit (e+/e-)	AMD exit (e+/e-)	Total yield (e+/e-)	Effective yield (e+/e-)
5 (new)	7.14	3.06	1.36	1.21
5 (previous)	8.00	2.80	1.09	0.98
5 (CDR)	8.00	2.10	0.95	0.38

FCC-ee positron source injection scheme for Z

Collider rings 16640 bunches 1.7×10^{11} / bunch

- Bunches are paired in the linac, with 52.5 ns separation, assuming a usual SLED.
- In the common section of e+e- (1.54 to 6 GeV), 1 e- pair for positron production and 1 e+ pair are accelerated by an RF pulse of the Linac in the e+ mode.

K. Oide

e-RF Gun

FCC-ee Positron Injector options

Current scheme

Schemes with the bypass under consideration (very preliminary)

The Lemma0 scheme

The Lemma1 scheme

Positron requirements / beam parameters

Parameter	Unit []	ILC	CLIC	SLC	FCC-ee	Lemma-scheme
Bunch charge	N [10 ⁹]	20-30	6	3-5	21 / 170	315
Emittance norm	$\varepsilon_{x}/\varepsilon_{y}$ [nm]	10 ⁴ /35	660/20		104/90	5 10 ⁴
Bunches per train	n	1312	352	1	2	100
Repetition rate	[Hz]	5	50	120	200	5 MHz/100 kHz
Particles /s	N [10 ¹⁴]/[s]	1.3	0.58	0.06	0.0852	10 ¹⁸ / 10 ¹⁶
Positron yield	e+/e-	8 /1.28	8/ 1.3	~20 /1.25	11/0.7	80 e+/e+
Collection efficiency	e+/e+ (%)	16	16	~ few %	6	17 % ?
PEDD	J/g	33.6	18	35	17	
Beam power on target / photons	[kW]	48 / 60	64	20	12	MW?
Deposited power	[kW]	12	11	4.4	2.1	MW?

Positron Challenges within the Lemma scheme some comments

□ Full positron source with linear collider intensities needed to fill the ring with numerous injections
 □ Without recovery two orders of magnitude higher positron flux then linear colliders, four orders of magnitude compared to tested systems → recovery needed, still 10¹⁶ e+/s
 □ Intensity of photon beam very high, MW on target, existing sources in kW range,

☐ Power scaling: Order of 100 MW positron beam power compared to 28 MW in 3 TeV CLIC

neutron source type beam power (ESS: 5 MW), if possible likely not small

Positron Challenges within the Lemma scheme

Innovative but challenging system for recovery to compensate positron loss per turn, collection
efficiency to be determined, not clear how the studied cuts compare to full capture system simulations
Likely on the optimistic side
Recovered positrons arrive at the bunch distance of the ring (5 MHz cw for example), sc cw linac?
Top up injection at 45 GeV ?, Emittance ?
Is a damping ring for the positrons needed, timing scheme implications
Huge integration problem in case of recovery, size of the target systems, very close to the ring and the
Muon target

Conclusions

- □ Positron sources are by no means trivial
- ☐ Already very challenging for conventional linear colliders, may be considered as state of the art
- □ Lemma scheme parameters are clearly beyond the state of the art.

 Major R&D effort needed to get confidence in feasibility

□ Without extremely stable and reliable source → no luminosity !!!

Positron source performances

	SLC	LEP (LIL)	KEKB/SKEKB	FCC-ee*
Incident e- beam energy	33 GeV	200 MeV	4.3/3.5 GeV	4.46 GeV
e-/bunch [10 ¹⁰]	3-5	0.5 - 30 (20 ns)	6.25/6.25	4.2
Bunch/pulse	1	1	2/2	2
Rep. rate	120 Hz	100 Hz	50 Hz/50 Hz	200 Hz
Incident Beam power	~20 kW	1 kW (max)	4.3 kW/3.3 kW	12 kW
Beam size @ target	0.6 - 0.8 mm	< 2 mm	/>0.7 mm	
Target thickness	6X ₀	2X ₀	/4X ₀	
Target size	70 mm	5 mm	14 mm	
Target	Moving	Fixed	Fixed/Fixed	
Deposited power	4.4 kW		/0.6 kW	
Capture system	AMD	λ/4 transformer	/AMD	AMD
Magnetic field	6.8T->0.5T	1 T->0.3T	/4.5T->0.4T	
Aperture of 1st cavity	18 mm	25mm/18 mm	/30 mm	
Gradient of 1st cavity	30-40 MV/m	~10 MV/m	/10 MV/m	
Linac frequency	2855.98 MHz	2998.55 MHz	2855.98 MHz	
e+ yield @ CS exit	~4 e+/e-	~3 ×10 ⁻³ e+/e- (linac	~0.1/~0.5 e+/e-	
Positron yield @ DR	~1.2 e+/e-		NO/0.4 e+/e-	
DR energy acceptance	+/- 2.5 %	+/- 1 % (EPA)	+/- 1.5 % (1 σ)	+/- 8 %
Energy of the DR	1.15 G eV	500 MeV	NO/1.1 GeV	1.54 GeV

Typical requirements for a Positron Source for a collider for high energy physics

 \Box Delivers required intensity ~ 10^9 - 10^{10} per bunch □ Requires typically a yield of ~ > 1 if produced with primary electron beam □ Extremely reliable and stable because the "complicated part" comes afterwards \square Small energy spread before injection into damping ring $\triangle E/E \sim 1\%$ □ Extremely small emittance, needed for luminosity goals; implies flat beams Requires in general one or two damping rings! ☐ Synchronised with electron beam □ Polarized beams preferred by physics □ Low cost compared to collider total (in reality a significant fraction)

☐ Polarised electron beam (~80%) is "standard" for linear colliders