:
i
1
8

Pertormance Portability for

Heterogeneous Computing

Felice Pantaleo (EP-CMG-DS)
For the Patatrack Team
Selice@cern.ch

Cius, /|

Why are we caring?

* The Patatrack team has demonstrated a complete CMS Pixel
reconstruction running on GPU:

* onaNVIDIA T4 can achieve 50% higher performance than a full
Skylake Gold node

* NVIDIA T4 costs approx. 1/5 of a node
* Itis fully integrated in CMSSW and supports standard validation
* Itis written in CUDA for the GPU part, C++ for the CPU part
* Maintaining and testing two codebases might not be the most
sustainable solution in the medium/long term

* Not a showstopper at the moment, but will become one when we will
transfer ownership of the code to the collaboration

* In the long term other accelerators might appear

CMS

Compact Muon Solendid

Why should our community carer

d Accelerators are becoming ublqultous CHF/HS06 Price/performance evolution of installed CPU servers (CERN)
1000.00 T T T T T T T i J T T T l T T
* Driven by more complex and deeper _ B. Panzer g LY
neural networks L | |
100.00 N« T T ——
. Details hidden to the user by the FW | N e o T s s o e s
* Better Time-to-Solution, | N D=
. . \\‘:\.,_! 3.%_' 1% g i ., improvement/year
Energy-to-Solution, Cost-to-Solution o e D e
E : d . X .‘ i 120% RAM’pri:in‘:r;e. e .I- - '-‘1?5;- - . .Q;f”:;] "J3
PY ! } . | e : .;-;u |
thelr SOftware On Supercomputers e 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017:0;3 2019 2020 2021 2022 2023 2024 2025 2026

* W are not using their GPUs

* Summit: 190PFLOPS out of 200PFLOPS come from GPUs
* Training neural networks for production workflows 1s a negligible part

* Redesigning our algorithms and data structures to be well digested by a GPU can speed
it up also when running on CPUs

Architectures

N A
|

T .3
i)
Enid
= <
O<€OQ

CUDA Programming model

A parallel kernel is launched on a grid
of threads, grouped in blocks. B et

e All threads in the same block: ando

Block (0, 0) Block (1,0) | Block (2, 0)

* run on the same SM, in warps

Block (0,1) Block (1,1) | Block (2,1)

(SIMD)
e can communicate i
Global memory
* can synchronize |)
Block (0, 1) Block (1, 1)

Block (0, 2) Block (1, 2)

CMS

CUDA Kernels

=
b -1

Compact Muon Solendid

Assign each thread a unique identifier and unroll the for loop.
For example:

threadIdx.x threadIdx.x

0/1/2/3/4|5/6/7/0/1/2/3|4/5|6|7

Y Y
blockIdx.x = 2 blockIdx.x = 3

~_global wvoid add(const int *a, const int *b,
int *¢c, int n) {
int index = threadIdx.x + blockIdx.x * blockDim.x;
if (index < n)
c[index] = a[index] + b[index];

s
s !
2
g
3

P!=PP

Portability could be achieved by blindly translating CUDA threads to,
e.g., CPU threads or viceversa (plus some synchronization
mechanism)

* You would not need to learn how a GPU works

Unfortunately, this 1s a terrible idea and will almost certainly lead you
to poor performance

Portability does not imply Performance Portability

Memory access patterns: cached

For optimal CPU cache utilization, the

_ thread « should process element 7 and /+7
| * stride=1

CPt

CPU Thread O CPU Thread CPU Thread 2 CPU Thread 3

0/0{0|10(0]0|0|0|0(0[1]1]1(1}1|1]1|2(21{1|2|2|2(2|2|2|2|2|2|2|3|3
0[112131415|6171819]0]1121314/5/6171819/01112/3/14/5/6/7/8/9/0!1

N

w

8

LO Instruction Cache LO Instruction Cache
Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)

Inside a GPU SM: coalesced

* L1 data cache shared among ALUs

* ALUs work in SIMD mode in groups of 32 (warps) v 5 I v S0

INT INT FP32 FP32 INT INT FP32 FP32

TENSOR TENSOR TENSOR TENSOR

CORE CORE CORE CORE

* If a Joad1s issued by each thread, they have to wait for et v R

all the loads 1n the same warp to complete before the o I S22 o e I 2
next instruction can execute — | —

Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk) Dispatch Unit (32 threadiclk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

* Coalesced memory access pattern optimal for GPUs: : |
thread & should process element ; thread a+7 the ol L1 [

4 INT INT FP32 FP32 FP64 INT INT FP32 FP32

INT INT FP32 FP32 TENSOR TENSOR INT INT FP32 FP32 TENSOR TENSOR

element and Z‘+7 ::: CORE CORE — CORE CORE

INT INT FP32 FP32 FP64 INT INT FP32 FP32
4 INT INT FP32 FP32 FP64 INT INT FP32 FP32

INT INT FP32 FP32 INT INT FP32 FP32

* Lose an order of magnitude n performance if o | jwr FRSS R o | R

cached access pattern used on GPU P W e
1
7

PTITITTITING
0/0/0/0/0|0|0|0|0|1|1|1|1
0/11213/4/5/61718(9/011

128KB L1 Data Cache / Shared Memory

CCCCC
PIPID
1/11{1(1|1
4/5/6/718

p
N
P,
1
9

- Nk_,/h\'
= Nk/r-\'

213

s,
Portability frameworks

OpenMP and OpenACC

* Portability programming models based on compiler directives
. Sensitive to compiler support and maturity

e Difficult coexistence with a tbb-based framework-scheduler

OpenCL -> SYCL -> OneAPI

* Initially The promise for portability, then became framework for portability between GPUs from
different vendors, now supporting FPGAs

. While OpenCL did not support the combination of C++ host code and accelerator code in a single
source file, SYCL does

. This is a precondition for templated kernels which are required for policy based generic programming
. SYCL enables the usage of a single C++ template function for host and device code

. At the moment, OneAPI is SYCL

For all the above, if you need portable performance you have to manage memory and its layout yourself

10

o CMS y .
Performance Portability frameworks [Z=a WX «

In the context of Patatrack R&D we have been recently looking into:

* Alpaka/Cupla: https://github.com/ComputationalRadiationPhysics/alpaka

* Developed by Helmholtz-Zentrum Dresden — Rossendorf
o Applications in Material science, XFEL, HPC

e Kokkos:
https://github.com/kokkos/kokkos

* Developed by Sandia National Lab, U.S. National Nuclear Security
Administration

They provide an interface that hides the back-end implementation.

In the following, the assumption 1s that you already have a data-parallel code.

11

https://github.com/ComputationalRadiationPhysics/alpaka
https://github.com/kokkos/kokkos

Alpaka abstraction hierarchy

multiple elements are processed per thread

multiple threads are executed in lock-step

within a warp

multiple warps form independent blocks

Cupla was created because mapping the Alpaka’s abstraction to
CUDA is straightforward as the hierarchy levels are identical up
to the element level.

12

Alpaka abstraction hierarchy to CPU M

* On GPU, warps can handle branches with divergent control
flows of multiple threads

Grid
Block

* There is no component on the CPU capable of this
* 1tol mapping of threads to warps
* Blocks cannot be mapped to the node nor socket

* too much cache, memory, bus traffic
* They are mapped to the cores
* Elements can be used to map CPU vector units

13

Alpaka/Cupla
128 struct kernel_compute_histogram {

129 template <typename T_Acc>
Code Main Concepts . ALPAKA_FN_ACC
131 void operator()(T_Acc const &acc, LayerTilesCupla<T_Acc> *d_hist,

Execution

Domain

DEVME 132 PointsPtr d_points, int numberOfPoints) const {
M“"““‘" 133 int i = blockIdx.x * blockDim.x + threadIdx.x;
134 if (i < numberOfPoints) {
135 // push index of points into tiles
Device 136 d_hist[d_points.layer[i]].fill(d_points.x[i], d_points.y[i], i);
137 }
138 1
139 };

CPU: x86, Xeon Phi, ARM, ... AT

CUDART HIP
ends | ential Blocks | Threads Fiber '

14

c
H
- Accelerator

g
1]
3
o
-
2

s
s !
3
g
3

Kokkos

* Prowvides an abstract interface for portable, performant shared-memory
programming

Supported backends:
* std:threads, OpenMP, Intel tbb

e CUDA, ROCm

* Offersparallel for, parallel reduce,
parallel scan, task to describe the pattern of the parallel tasks

* Multidimensional arrays with a neutral indexing and an architecture
dependent layout are available

* 'Thread-safety issues: the most portable approach 1s for only one (non-
Kokkos) thread of execution to control Kokkos

15

Kokkos Machine Model

* Kokkos assumes an abstract machine model , in which multiple
processing devices can coexist and might share memory space

...

3 On-Package | | P =il
Memory

n s

m
x
—
=2
23
oD
=1

Qo 2
32
P
o
=
=t

108UU02I8JU| [BULIXT

R
Accelerator

On-Package

Node :

16

CMS
Kokkos Execution Policy

ypact Muon Solencid

An execution policy determines how the threads are executed:

. sizes of blocks of threads

* static, dynamic scheduling

Range Policy: execute an operation once for each element in a range

Team Policy: #eams of threads form a leagne

. sync and shared memory in same team
. Ditferent teams can run different execution patterns (parallel_for, scan etc)
. Policies can be nested

You decide where to run the parallel kernel by specifying an Execution Space

parallel_for (
RangePolicy< ExecutionSpace >(0,numberOfIntervals),
[=] (const size_t i) {
/* ... body ... */
1) 17

CMS

Compact Muon Solendid

Kokkos Views

Multi-dimensional array of 0 or more dimensions, with sizes set at compile or
run time

=
=i

View<double ***, MemorySpace> data("label™ , NO , N1 , N2); 3 run, 0O compile
View<double **[N2], MemorySpace> data("label™ , NO , N1); 2 run, 1 compile
View<double *[N1][N2], MemorySpace> data("label" , NO); 1 run, 2 compile

View<double [NO][N1][N2], MemorySpace> data("label"); 0 run, 3 compile

Specify MemorySpace to choose where to allocate the payload of the View
* HostSpace, CudaSpace, CudaUVMSpace...

* Mirroring/deep copy from one space to another possible

* Layout (row-/column-major) depends on the architecture for coalesced/cached memory
access CPU GPU

[] | |

RAM metadata

How Kokkos code looks like

Kokkos: :View<Input, Kokkos::CudaSpace> input_d{"input_d"};
Kokkos: :View<Input, Kokkos::CudaSpace>::HostMirror input_h = Kokkos::create_mirror_view(input_d),
std: :memcpy(input_h.data(), &input, sizeof(Input));

Kokkos: :View<Output, Kokkos::CudaSpace> output_d{"output_d"},;
Kokkos: :View<Qutput, Kokkos::CudaSpace>::HostMirror output_h = Kokkos::create_mirror_view(output_d);

auto start = std::chrono::high_resolution_clock: ::now();
Kokkos: :deep_copy(input_d, input_h);

Kokkos: :parallel for(Kokkos::RangePolicy<Kokkos::Cuda>(@, input.wordCounter),
KOKKOS_LAMBDA (const size_t i) {
kokkos: :rawtodigi(input_d, output_d, wordCounter,
true, true, false, 1);
});

Kokkos: :fence();

Kokkos: :deep_copy(output_h, output_d);

Kokkos: :fence();

auto stop = std::chrono::high_resolution_clock: :now();

19

CMS

Conclusion

* Portable code 1s key for long-term maintainability, testability and
support for new accelerator devices

* Many possible solutions, not so many viable ones, even less
production ready

* Alpaka and Kokkos are very active teams and discussions/pull
requests are ongoing

* Ongoing study and comparisons of solutions in Patatrack for
CMS reconstruction

* Starting from a CUDA code makes life much easier

20

Backup

21

struct DaxpyKernel

{

}s

template< typename T Acc > 0
ALPAKA FN ACC void operator()(

T Acc const & acc,
double const & alpha,
double const * const X,
double * const YV,

int const & numElements

) const

{

using alpaka;
auto const globalldx
auto const elemCount

idx::getIdx< Grid, Threads >(acc)[0u];
workdiv::getWorkDiv< Thread, Elems >(acc)[0u];

auto const begin = globalldx * elemCount;
auto const end = min(begin + elemCount, numElements);

for(TSize i = begin; i < end; i++)
Y[i] = X[1i] + Y[i]; // Note difference between worker and data index

Michael Bussmann
22

// Memory allocation
auto X h = alpaka::mem: :buf::alloc<float, Size>(devHost, extent);
auto X d = alpaka::mem: :buf::alloc<float, Size>(devAcc, extent);

// Copy from host to device
alpaka: :mem::view::copy(stream, X d, X h, extent);

// Kernel creation and execution

VectorAdd kernel;

auto const exec(alpaka::exec::create< Acc >(
workDiv,
kernel,
numElements,
alpaka: :mem::view::getPtrNative(X d),
alpaka: :mem::view: :getPtrNative(Y d)

))s

alpaka: :stream: :enqueue(stream, exec); Michael Bussmann

LD

