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Why are we caring?

• The Patatrack team has demonstrated a complete CMS Pixel 
reconstruction running on GPU:

• on a NVIDIA T4 can achieve 50% higher performance than a full 
Skylake Gold node

• NVIDIA T4 costs approx. 1/5 of  a node

• It is fully integrated in CMSSW and supports standard validation

• It is written in CUDA for the GPU part, C++ for the CPU part

• Maintaining and testing two codebases might not be the most 
sustainable solution in the medium/long term

• Not a showstopper at the moment, but will become one when we will  
transfer ownership of  the code to the collaboration

• In the long term other accelerators might appear
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Why should our community care?

• Accelerators are becoming ubiquitous

• Driven by more complex and deeper 
neural networks

• Details hidden to the user by the FW

• Better Time-to-Solution,
Energy-to-Solution, Cost-to-Solution

• Experiments are encouraged to run 
their software on Supercomputers

• We are not using their GPUs

• Summit: 190PFLOPS out of  200PFLOPS come from GPUs

• Training neural networks for production workflows is a negligible part

• Redesigning our algorithms and data structures to be well digested by a GPU can speed 
it up also when running on CPUs
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Architectures

CPU

GPU
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CUDA Programming model

A parallel kernel is launched on a grid 

of  threads, grouped in blocks.

• All threads in the same block: 

• run on the same SM, in warps 
(SIMD)

• can communicate

• can synchronize



CUDA Kernels
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Assign each thread a unique identifier and unroll the for loop.

For example:

0 1 72 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

threadIdx.x threadIdx.x threadIdx.x threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

__global__ void add(const int *a, const int *b, 

int *c, int n) {

int index = threadIdx.x + blockIdx.x * blockDim.x;

if (index < n)

c[index] = a[index] + b[index];

}



P != PP

Portability could be achieved by blindly translating CUDA threads to, 

e.g., CPU threads or viceversa (plus some synchronization 

mechanism)

• You would not need to learn how a GPU works

Unfortunately, this is a terrible idea and will almost certainly lead you 

to poor performance

Portability does not imply Performance Portability
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Memory access patterns: cached

For optimal CPU cache utilization, the 

thread a should process element i and i+1

• stride=1
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Inside a GPU SM: coalesced

• L1 data cache shared among ALUs

• ALUs work in SIMD mode in groups of  32 (warps)

• If  a load is issued by each thread, they have to wait for 

all the loads in the same warp to complete before the 

next instruction can execute

• Coalesced memory access pattern optimal for GPUs: 

thread a should process element i, thread a+1 the 

element and i+1

• Lose an order of  magnitude in performance if  
cached  access pattern used on GPU
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Portability frameworks
OpenMP and OpenACC

• Portability programming models based on compiler directives

• Sensitive to compiler support and maturity

• Difficult coexistence with a tbb-based framework-scheduler

OpenCL -> SYCL -> OneAPI

• Initially The promise for portability, then became framework for portability between GPUs from 
different vendors, now supporting FPGAs

• While OpenCL did not support the combination of  C++ host code and accelerator code in a single 
source file, SYCL does

• This is a precondition for templated kernels which are required for policy based generic programming
• SYCL  enables the usage of  a single C++ template function for host and device code

• At the moment, OneAPI is SYCL 

For all the above, if  you need portable performance you have to manage memory and its layout yourself
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Performance Portability frameworks

In the context of  Patatrack R&D we have been recently looking into:

• Alpaka/Cupla: https://github.com/ComputationalRadiationPhysics/alpaka

• Developed by Helmholtz-Zentrum Dresden – Rossendorf
o Applications in Material science, XFEL, HPC

• Kokkos:
https://github.com/kokkos/kokkos

• Developed by Sandia National Lab, U.S. National Nuclear Security 
Administration

They provide an interface that hides the back-end implementation.

In the following, the assumption is that you already have a data-parallel code. 
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Alpaka abstraction hierarchy

• multiple elements are processed per thread

• multiple threads are executed in lock-step 

within a warp 

• multiple warps form independent blocks

• Cupla was created because mapping the Alpaka’s abstraction to 

CUDA is straightforward as the hierarchy levels are identical up 

to the element level. 
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Alpaka abstraction hierarchy to CPU

• On GPU, warps can handle branches with divergent control 

flows of  multiple threads

• There is no component on the CPU capable of  this

• 1to1 mapping of  threads to warps

• Blocks cannot be mapped to the node nor socket

• too much cache, memory, bus traffic

• They are mapped to the cores

• Elements can be used to map CPU vector units
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Alpaka/Cupla
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Kokkos

• Provides an abstract interface for portable, performant shared-memory 
programming

Supported backends:

• std::threads, OpenMP, Intel tbb

• CUDA, ROCm

• Offers parallel_for, parallel_reduce, 
parallel_scan, task to describe the pattern of  the parallel tasks

• Multidimensional arrays with a neutral indexing and an architecture 
dependent layout are available

• Thread-safety issues: the most portable approach is for only one (non-
Kokkos) thread of  execution to control Kokkos
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Kokkos Machine Model

• Kokkos assumes an abstract machine model , in which multiple 

processing devices can coexist and might share memory space
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Kokkos Execution Policy
An execution policy determines how the threads are executed:

• sizes of  blocks of  threads

• static, dynamic scheduling

Range Policy: execute an operation once for each element in a range

Team Policy: teams of  threads form a league

• sync and shared memory in same team

• Different teams can run different execution patterns (parallel_for, scan etc)

• Policies can be nested

You decide where to run the parallel kernel by specifying an Execution Space 
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Kokkos Views

Multi-dimensional array of  0 or more dimensions, with sizes set at compile or 
run time
View<double ***, MemorySpace> data("label" , N0 , N1 , N2 ); 3 run, 0 compile

View<double **[N2], MemorySpace> data("label" , N0 , N1 ); 2 run, 1 compile

View<double *[N1][N2], MemorySpace> data("label" , N0 ); 1 run, 2 compile

View<double [N0][N1][N2], MemorySpace> data("label" ); 0 run, 3 compile

Specify MemorySpace to choose where to allocate the payload of  the View

• HostSpace, CudaSpace, CudaUVMSpace…

• Mirroring/deep copy from one space to another possible

• Layout (row-/column-major) depends on the architecture for coalesced/cached memory 
access
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How Kokkos code looks like
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Conclusion

• Portable code is key for long-term maintainability, testability and 

support for new accelerator devices

• Many possible solutions, not so many viable ones, even less 

production ready

• Alpaka and Kokkos are very active teams and discussions/pull 

requests are ongoing

• Ongoing study and comparisons of  solutions in Patatrack for 

CMS reconstruction

• Starting from a CUDA code makes life much easier
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Backup
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