
Performance Portability for

Heterogeneous Computing

Felice Pantaleo (EP-CMG-DS)

For the Patatrack Team

felice@cern.ch

1

Why are we caring?

• The Patatrack team has demonstrated a complete CMS Pixel
reconstruction running on GPU:

• on a NVIDIA T4 can achieve 50% higher performance than a full
Skylake Gold node

• NVIDIA T4 costs approx. 1/5 of a node

• It is fully integrated in CMSSW and supports standard validation

• It is written in CUDA for the GPU part, C++ for the CPU part

• Maintaining and testing two codebases might not be the most
sustainable solution in the medium/long term

• Not a showstopper at the moment, but will become one when we will
transfer ownership of the code to the collaboration

• In the long term other accelerators might appear

2

Why should our community care?

• Accelerators are becoming ubiquitous

• Driven by more complex and deeper
neural networks

• Details hidden to the user by the FW

• Better Time-to-Solution,
Energy-to-Solution, Cost-to-Solution

• Experiments are encouraged to run
their software on Supercomputers

• We are not using their GPUs

• Summit: 190PFLOPS out of 200PFLOPS come from GPUs

• Training neural networks for production workflows is a negligible part

• Redesigning our algorithms and data structures to be well digested by a GPU can speed
it up also when running on CPUs

3

B. Panzer

Architectures

CPU

GPU

4

Control
ALU
Cache
DRAM

CUDA Programming model

A parallel kernel is launched on a grid

of threads, grouped in blocks.

• All threads in the same block:

• run on the same SM, in warps
(SIMD)

• can communicate

• can synchronize

CUDA Kernels

6

Assign each thread a unique identifier and unroll the for loop.

For example:

0 1 72 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

threadIdx.x threadIdx.x threadIdx.x threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

__global__ void add(const int *a, const int *b,

int *c, int n) {

int index = threadIdx.x + blockIdx.x * blockDim.x;

if (index < n)

c[index] = a[index] + b[index];

}

P != PP

Portability could be achieved by blindly translating CUDA threads to,

e.g., CPU threads or viceversa (plus some synchronization

mechanism)

• You would not need to learn how a GPU works

Unfortunately, this is a terrible idea and will almost certainly lead you

to poor performance

Portability does not imply Performance Portability
7

Memory access patterns: cached

For optimal CPU cache utilization, the

thread a should process element i and i+1

• stride=1

8

CPU

0

0

0

1

3

1

0

2

0

3

0

4

0

5

0

6

0

7

0

8

0

9

1

0

1

1

1

2

1

3

1

4

1

5

1

6

1

7

1

8

1

9

2

0

2

1

2

2

2

3

2

4

2

5

2

6

2

7

2

8

2

9

3

0

CPU Thread 0 CPU Thread 1 CPU Thread 2 CPU Thread 3

Inside a GPU SM: coalesced

• L1 data cache shared among ALUs

• ALUs work in SIMD mode in groups of 32 (warps)

• If a load is issued by each thread, they have to wait for

all the loads in the same warp to complete before the

next instruction can execute

• Coalesced memory access pattern optimal for GPUs:

thread a should process element i, thread a+1 the

element and i+1

• Lose an order of magnitude in performance if
cached access pattern used on GPU

90

0

0

1

3

1

0

2

0

3

0

4

0

5

0

6

0

7

0

8

0

9

1

0

1

1

1

2

1

3

1

4

1

5

1

6

1

7

1

8

1

9

2

0

2

1

2

2

2

3

2

4

2

5

2

6

2

7

2

8

2

9

3

0

Portability frameworks
OpenMP and OpenACC

• Portability programming models based on compiler directives

• Sensitive to compiler support and maturity

• Difficult coexistence with a tbb-based framework-scheduler

OpenCL -> SYCL -> OneAPI

• Initially The promise for portability, then became framework for portability between GPUs from
different vendors, now supporting FPGAs

• While OpenCL did not support the combination of C++ host code and accelerator code in a single
source file, SYCL does

• This is a precondition for templated kernels which are required for policy based generic programming
• SYCL enables the usage of a single C++ template function for host and device code

• At the moment, OneAPI is SYCL

For all the above, if you need portable performance you have to manage memory and its layout yourself

10

Performance Portability frameworks

In the context of Patatrack R&D we have been recently looking into:

• Alpaka/Cupla: https://github.com/ComputationalRadiationPhysics/alpaka

• Developed by Helmholtz-Zentrum Dresden – Rossendorf
o Applications in Material science, XFEL, HPC

• Kokkos:
https://github.com/kokkos/kokkos

• Developed by Sandia National Lab, U.S. National Nuclear Security
Administration

They provide an interface that hides the back-end implementation.

In the following, the assumption is that you already have a data-parallel code.

11

https://github.com/ComputationalRadiationPhysics/alpaka
https://github.com/kokkos/kokkos

Alpaka abstraction hierarchy

• multiple elements are processed per thread

• multiple threads are executed in lock-step

within a warp

• multiple warps form independent blocks

• Cupla was created because mapping the Alpaka’s abstraction to

CUDA is straightforward as the hierarchy levels are identical up

to the element level.

12

Alpaka abstraction hierarchy to CPU

• On GPU, warps can handle branches with divergent control

flows of multiple threads

• There is no component on the CPU capable of this

• 1to1 mapping of threads to warps

• Blocks cannot be mapped to the node nor socket

• too much cache, memory, bus traffic

• They are mapped to the cores

• Elements can be used to map CPU vector units

13

Alpaka/Cupla

14

Kokkos

• Provides an abstract interface for portable, performant shared-memory
programming

Supported backends:

• std::threads, OpenMP, Intel tbb

• CUDA, ROCm

• Offers parallel_for, parallel_reduce,
parallel_scan, task to describe the pattern of the parallel tasks

• Multidimensional arrays with a neutral indexing and an architecture
dependent layout are available

• Thread-safety issues: the most portable approach is for only one (non-
Kokkos) thread of execution to control Kokkos

15

Kokkos Machine Model

• Kokkos assumes an abstract machine model , in which multiple

processing devices can coexist and might share memory space

16

Kokkos Execution Policy
An execution policy determines how the threads are executed:

• sizes of blocks of threads

• static, dynamic scheduling

Range Policy: execute an operation once for each element in a range

Team Policy: teams of threads form a league

• sync and shared memory in same team

• Different teams can run different execution patterns (parallel_for, scan etc)

• Policies can be nested

You decide where to run the parallel kernel by specifying an Execution Space

17

Kokkos Views

Multi-dimensional array of 0 or more dimensions, with sizes set at compile or
run time
View<double ***, MemorySpace> data("label" , N0 , N1 , N2); 3 run, 0 compile

View<double **[N2], MemorySpace> data("label" , N0 , N1); 2 run, 1 compile

View<double *[N1][N2], MemorySpace> data("label" , N0); 1 run, 2 compile

View<double [N0][N1][N2], MemorySpace> data("label"); 0 run, 3 compile

Specify MemorySpace to choose where to allocate the payload of the View

• HostSpace, CudaSpace, CudaUVMSpace…

• Mirroring/deep copy from one space to another possible

• Layout (row-/column-major) depends on the architecture for coalesced/cached memory
access

18

How Kokkos code looks like

19

Conclusion

• Portable code is key for long-term maintainability, testability and

support for new accelerator devices

• Many possible solutions, not so many viable ones, even less

production ready

• Alpaka and Kokkos are very active teams and discussions/pull

requests are ongoing

• Ongoing study and comparisons of solutions in Patatrack for

CMS reconstruction

• Starting from a CUDA code makes life much easier

20

Backup

21

22
Michael Bussmann

23
Michael Bussmann

