
Generative models:
generative adversarial
networks and friends
26 ноября 2019 г.

Denis Derkach, Artem Ryzhikov, Maksim Artemev 1

Contents

Generative modeling

Intuition for generation
Total Variation Distance
Kullback-Leibler Divergence

Generative Adversarial Networks

Wassertein distance
Kantorovich-Rubinstein Duality
WGAN

Denis Derkach, Artem Ryzhikov, Maksim Artemev 2

Generative modeling

Generative vs Discriminative Modelling

Discriminative model

› learn P(y|x)
› Directly characterizes the
decision boundary between
classes only

› Examples: Logistic
Regression, SVM, etc

Generative model

› learn P(x|y) (and eventually
P(x))

› Characterize how data is
generated (distribution of
individual class)

› Examples: Naive Bayes, HMM,
etc.

Denis Derkach, Artem Ryzhikov, Maksim Artemev 4

Taxonomy of Generative Model
Techniques

› Nonparametric
› histograms
› kernel density estimation

› likelihood-based parametric
› autoregressive models
› variational autoencoders
› normalizing flow models

› likelihood-free parametric
› Generative Adversarial Networks

Denis Derkach, Artem Ryzhikov, Maksim Artemev 5

Intuition for generation

Choosing the best metric

We need a metric that tells us that our modelled distribution is
somewhere close to the real one. Ideally, it should be differentiable and
have nice properties for convergence. From now on, lets denote p(x)
as true pdf and qθ as its esimate.

Denis Derkach, Artem Ryzhikov, Maksim Artemev 7

Total Variation Distance

The first idea is to use something very straightforward, like for pdf’s
p(x) and qθ(x), x ∈ Rn:

D(p(x), qθ(x)) =
1

2

∫
Rn

|p(x)− qθ(x)|dx,

which in fact corresponds to the Total Variation distance (using
Scheffé’s lemma).

Denis Derkach, Artem Ryzhikov, Maksim Artemev 8

Observations
› Symmetric:D(P,Q) = D(Q,P).

› Connected to the hypotheses testing: 1−D(P,Q) is equal to
sum of false positives и false negatives.

› With growing number of trials, n, distanceD(fXn , gY n) → 1.
Moreover, ifD(fX , gY) = δ, than for any k ∈ N:

1− 2e−k δ2

2 ≤ D(fXn , gY n).

› Too strong. The distance might ignore the growing number of
trials:D(fX2 , gY 2) = D(fX , gY) (for example,
X1, . . . , Xn ∼ ±1, Sn =

∑
nXi. Than

Sn/
√
n → N (0, 1),

butD(Sn, Z) = 1 for any n).

Denis Derkach, Artem Ryzhikov, Maksim Artemev 9

Kullback-Leibler Divergence: Definition

Let p(x) and q(x) are two probability distributions

KL(P ||Q) =

∫
Rn

p(x) log

(
p(x)

q(x)

)
dx.

Although the KL divergence measures the “distance” between two
distributions, it is not a distance measure.

Denis Derkach, Artem Ryzhikov, Maksim Artemev 10

KL and maximum likelihood estimate

Let θ∗ be the true value of θ. Denote

Mn(θ) =
1

n

∑
i

log
f(Xi; θ)

f(Xi; θ∗)

andM(θ) = −KL(θ∗, θ).

Let supθ∈Θ |Mn(θ)−M(θ)| P−→ 0 and for any ϵ > 0

supθ:|θ−θ∗|≥ϵM(θ) < M(θ∗).

If θ̂n is the maximum likelihood estimate, than θ̂n
P−→ θ∗.

Denis Derkach, Artem Ryzhikov, Maksim Artemev 11

Cross Entropy and KL Divergence

Given two distributions p and q over a given variableX , the cross
entropy is defined as

H(p, q) = Ep(log q)

KL divergence is connected to it:

KL(p, q) = H(p) +H(p, q).

Since we normally optimise L(θ) = H(pdata, q(x)), than optimisation
ofKL ↔ optimisation ofH .

Denis Derkach, Artem Ryzhikov, Maksim Artemev 12

Trying to converge
Let’s check the convergence properties.Unfortunately, we do not have
access to the true p(x) during the study, so we must sample from it:

In the first part of our study we will using the 2D correlation Gaussian.
Here and later some examples are motivated by this blog.

Denis Derkach, Artem Ryzhikov, Maksim Artemev 13

https://colinraffel.com/blog/gans-and-divergence-minimization.html

Optimal parameters
We need to get the optimal parameter, θ∗ for our study. Let’s do it by
minimizing KL divergence.

θ∗ = argmin
θ

KL(p(x)||qθ(x)) =

= argmin
θ

(Ex∼p[log p(x)]− Ex∼p[log qθ(x)])

since p(x) does not depend on θ =

= argmin
θ

−Ex∼p[log qθ(x)] =

= argmax
θ

Ex∼p[log qθ(x)].

Which means that we want to find θ∗ which assigns samples from p(x)

the highest possible log probability under qθ∗(x).
Denis Derkach, Artem Ryzhikov, Maksim Artemev 14

Converging with KL

› The procedure works!

› Does it mean that the problem
of building a model is solved?

Denis Derkach, Artem Ryzhikov, Maksim Artemev 15

Converging with KL: multimodal case

› The procedure works!

› Does it mean that the problem
of building a model is solved?

› Not really, for the multimodal
case, we will have problems.

Denis Derkach, Artem Ryzhikov, Maksim Artemev 16

Converging with KL: multimodal case
intuition

› It’s natural if we look at the
quantity we optimize:

argmax
θ

Ex∼p[log qθ(x)]

› If there is no qθ(x) support in
the place, where we have
x ∼ p(x) than the optimised
function goes to∞.

› Automatically, we also have
qθ(x) support in places with
no x ∼ p(x), which is also
bad.Denis Derkach, Artem Ryzhikov, Maksim Artemev 17

Reverse KL divergence

In order to overcome the problems, we can define a reverse
divergence:

rKL(qθ||p) =
∫
Rn

p(x) log

(
p(x)

qθ(x)

)
dx.

Denis Derkach, Artem Ryzhikov, Maksim Artemev 18

Intuition
KL =

∫
p(X) log

p(x)
qθ(x)

dx rKL =
∫
q(x) log

qθ(x)
p(x)

dx

Forward KL is known as zero avoiding, as it is avoiding q(x) = 0

whenever P (x) > 0.
Reverse KL Divergence is known as zero forcing, as it forcesQ(X) to
be 0 on some areas, even if P (X) > 0.

Picture credit:https://wiseodd.github.io/techblog/2016/12/21/forward-reverse-kl/
Denis Derkach, Artem Ryzhikov, Maksim Artemev 19

rKL: optimisation

In fact, we are optimizing a very similar thing:

θ∗ = argmin
θ

KL(qθ(x)||p(x)) =

= argmin
θ

(Ex̃∼qθ [log qθ(x)]− Ex̃∼qθ [log p(x)]) =

= argmax
θ

(−Ex̃∼qθ [log qθ(x)] + Ex̃∼qθ [log p(x)])

But we do not have the previous problem of likelihood going to infinity
in unreasonable places.
The first term is related to entropy of the generating model, the second
penalises generated samples that are not similar to real distribution.
Let’s check whether it works.

Denis Derkach, Artem Ryzhikov, Maksim Artemev 20

Converging with rKL

› We no longer have qθ(x)
support in the regions with no
x ∼ p(x) population.

› The converged distribution
looks reasonable but only for
one solution.

The main problem: optimised expression depends on the p(x)

argmax
θ

(−Ex̃∼qθ [log qθ(x)] + Ex̃∼qθ [log p(x)]),

which we normally do not have.
Denis Derkach, Artem Ryzhikov, Maksim Artemev 21

Jensen-Shannon Divergence

We can try to optimize different divergences however, the problems
normally stay. A distinguishable attempt is to construct the mixture of
KL and rKL:

JS(p(x)||qθ(x)) = 1
2 KL(p(x)||p(x) + qθ(x)

2
) +

+ 1
2 KL(qθ(x)||

p(x) + qθ(x)

2
),

It is symmetric and does not ignore zeroes like KL and does not ignore
x like rKL.

Denis Derkach, Artem Ryzhikov, Maksim Artemev 22

Generative Adversarial
Networks

Rationale

What if we could construct a way to approximate the previous
algorithm but without the direct access to the p(x)? One of the
possible estimates in this case would look like:

θ∗ = argmin
θ

max
ϕ

Ex∼p,x̃∼qθV (fϕ(x), fϕ(x̃))

So, instead of minimizing over some analytically defined divergence,
we could minimize over ”learned divergence”. Let’s expand on the way
how to obtain it.

Denis Derkach, Artem Ryzhikov, Maksim Artemev 24

Generator

Let’s look closely at the generator function. In fact, it should sample
from a random noise source. We thus can write:

zj ∼ N (0; 1),

x̂j = Gθ(zj)

whereGθ(zj) : zj 7→ xj can be defined in many ways (see talk by M.
Borisyak on Friday) but we limit ourselves to neural network. We thus
have a sample

{x̃j} ∼ qθ(x).

Denis Derkach, Artem Ryzhikov, Maksim Artemev 25

Discriminator

Following our idea, we add also another network, We add a classifying
networkDϕ (discriminator) to distinguish between the real and
generated samples and train both as follows:

max
ϕ

(
Ex∼p(x)(log(Dϕ(x)) + Ex̃∼qθ(x)(1− log(Dϕ(x̃))

)
.

The first term serves to recognise the real images better. The second
term for the generated images.

Denis Derkach, Artem Ryzhikov, Maksim Artemev 26

G+D Recap

We can now put together generator and discriminator.

› objective of discriminator:

max
ϕ

(
Ex∼p(x)(log(Dϕ(x)) + Ez∼N (0;1)(1− log(Dϕ(Gθ(z))

)
.

› objective of generator:

min
θ

Ez∼N (0;1)(1− log(Dϕ(Gθ(z))

We thus defined a minimax game:

min
θ

max
ϕ

Ex∼p,x̃∼qθV (fϕ(x), fϕ(x̃)).

In exactly the way we wanted.

Denis Derkach, Artem Ryzhikov, Maksim Artemev 27

Graphical Representation

We can define both generator and discriminator as neural networks:

and use the full power of backpropagation.

Denis Derkach, Artem Ryzhikov, Maksim Artemev 28

Optimal Solution

› For a given generator, the optimal discriminator is:

D∗
ϕ(G) =

p(x)

p(x) + qθ(x)
.

› Incorporating that into the minimax game to yield virtual training
criterion:

C(G) = max
D

V (G,D) =

= Ex∼p(x)(log(D
∗
ϕ(x))) + Ex∼qθ(1− log(D∗

ϕ(Gθ(z)))) =

= Ex∼p(x)
p(x)

p(x) + qθ(x)
+ Ex∼qθ

qθ(x)

p(x) + qθ(x)

Denis Derkach, Artem Ryzhikov, Maksim Artemev 29

Optimal Solution
› In an optimal case p = qθ, we have C(G) = − log(4).
› We thus can write out:

C(G) = − log(4) +
1

2
KL(p(x)||p(x) + qθ(x)

2
) +

+
1

2
KL(qθ(x)||

p(x) + qθ(x)

2
).

› In other words, we effectively optimize Jensen-Shannon
divergence:

C(G) = − log(4) + JS(p(x)||qθ(x)).

› Reminder: we did it without access to p(x).
› In general, we can effectively optimize any divergence by
constructing correct minimax criteria.

Denis Derkach, Artem Ryzhikov, Maksim Artemev 30

GANs: Pros and Cons
› Pros:

› Can utilise power of back-prop.
› No explicit intractable integral.
› No MCMC needed.

› Cons:
› Unclear stopping criteria
› No explicit representation of gθ(x)
› Hard to train
› No evaluation metric so hard to compare with other models
› Easy to get trapped in local optima that memorize training
data

› Hard to invert generative model to get back latent z from
generated x

Denis Derkach, Artem Ryzhikov, Maksim Artemev 31

Even more problems
We effectively optimize JS divergence, this creates nuisances:

› Mode collapse: we explicitly choose one solution over others.
› Diminished gradients: if we start too far away, we risk never get to
the solution.

These are connected to the divergences, can we find another one?
Denis Derkach, Artem Ryzhikov, Maksim Artemev 32

Wassertein distance

Motivation

Imagine that we want to move the events from Pr to Pθ. We also want
to save effort, that is, not to move large pieces over long distances.

This is related to a problem that is solved by many construction workers
every day. In fact, this is the optimal transport problem from Pr to Pθ.

Picture credit:https://vincentherrmann.github.io/blog/wasserstein/

Denis Derkach, Artem Ryzhikov, Maksim Artemev 34

Earth Mover’s Distance

EMD(Pr, Pθ) = inf
γ∈Π

∑
x,y

||x− y||γ(x, y) = inf
γ∈Π

E(x,y)∼γ ||x− y||,

where γ(x, y) are the efforts to move from x to y, Π – all possible
transfers from Pr to Pθ, γ ∈ Π.
Easily can be wrote down for continuous observables (and become
Wassestein Distance).

Picture credit:https://vincentherrmann.github.io/blog/wasserstein/Denis Derkach, Artem Ryzhikov, Maksim Artemev 35

W vs KL

EMD also takes into
account the distance at
which the differences in the
distributions are located.
This is exactly what we need
to take into account
multiple solutions!

Picture credit:https://goo.gl/ncx3gt

Denis Derkach, Artem Ryzhikov, Maksim Artemev 36

Kantorovich-Rubinstein Duality

The EMD metric (or Wasserstein distance) above is rather difficult to
calculate in practice, luckily we have the duality of this metrics:

W (pr, pθ) = sup
f∈Lip1(X)

(Ex∼pr [f(x)]− Ex∼pθ [f(x)]) ,

where Lip1(X): |f(x)− f(y)| ≤ d(x, y).
Interestingly enough, we can use a neural network with limited
(clipped) weights to fulfil the Lip1(X) condition.
We can construct a GAN that effectively fitsW -distance.

Denis Derkach, Artem Ryzhikov, Maksim Artemev 37

WGAN vs JSGAN

› WGAN has a simpler way to train.

› The optimisation runs over W-metrics, which has got better
properties.

Denis Derkach, Artem Ryzhikov, Maksim Artemev 38

WGAN: problems solved
› mode collapse problem
is addressed;

› the vanishing gradient
problem is solved.

› a better solution
instead of clipping
weights is to introduce
penalty to gradients in
the loss (WGAN-GP):

GP = λE
[
(||∇f || − 1)2

]
From: arXiv:1701.07875

Denis Derkach, Artem Ryzhikov, Maksim Artemev 39

https://arxiv.org/abs/1701.07875

WGAN: more problems
› The expected EMD gradients can differ from the true gradients.
› This leads to problems even for Bernoulli distribution.
› Solution: update W-distance such that it reminds energy distance.

W
as

se
rs

te
in

 d
ist

an
ce

Parameter ✓

Red for sample gradient expectation, blue is for real gradients solution.
Left to right θ∗ = 0.6; 0.6; 0.9.

From: arXiv:1705.10743

Denis Derkach, Artem Ryzhikov, Maksim Artemev 40

https://arxiv.org/abs/1705.10743

GAN-story so far

From: arXiv:1910.13076
Denis Derkach, Artem Ryzhikov, Maksim Artemev 41

https://arxiv.org/abs/1910.13076

Summary

› GANs use Generator-Discriminator game to estimate the distance
from generated distribution to the true one.

› Wasserstein GAN is a useful technique that allows really deep
networks to be used for data generation.

› The story is still developing.

Denis Derkach, Artem Ryzhikov, Maksim Artemev 42

	Generative modeling
	Intuition for generation
	Total Variation Distance
	Kullback-Leibler Divergence

	Generative Adversarial Networks
	Wassertein distance
	Kantorovich-Rubinstein Duality
	WGAN

	anm3:
	3.39:
	3.38:
	3.37:
	3.36:
	3.35:
	3.34:
	3.33:
	3.32:
	3.31:
	3.30:
	3.29:
	3.28:
	3.27:
	3.26:
	3.25:
	3.24:
	3.23:
	3.22:
	3.21:
	3.20:
	3.19:
	3.18:
	3.17:
	3.16:
	3.15:
	3.14:
	3.13:
	3.12:
	3.11:
	3.10:
	3.9:
	3.8:
	3.7:
	3.6:
	3.5:
	3.4:
	3.3:
	3.2:
	3.1:
	3.0:
	anm2:
	2.39:
	2.38:
	2.37:
	2.36:
	2.35:
	2.34:
	2.33:
	2.32:
	2.31:
	2.30:
	2.29:
	2.28:
	2.27:
	2.26:
	2.25:
	2.24:
	2.23:
	2.22:
	2.21:
	2.20:
	2.19:
	2.18:
	2.17:
	2.16:
	2.15:
	2.14:
	2.13:
	2.12:
	2.11:
	2.10:
	2.9:
	2.8:
	2.7:
	2.6:
	2.5:
	2.4:
	2.3:
	2.2:
	2.1:
	2.0:
	anm1:
	1.39:
	1.38:
	1.37:
	1.36:
	1.35:
	1.34:
	1.33:
	1.32:
	1.31:
	1.30:
	1.29:
	1.28:
	1.27:
	1.26:
	1.25:
	1.24:
	1.23:
	1.22:
	1.21:
	1.20:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	anm0:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

