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How to work with distributions?

Conditional =
Joint

Marginal
, p(x|y) = p(x, y)

p(y)

Product rule 
any joint distribution can be 
expressed as a product of 
one-dimensional conditional 
distributions

Sum rule 
any marginal distribution can 
be obtained from the joint 
distribution by integrating out 

p(x, y, z) = p(x|y, z)p(y|z)p(z) p(y) =

Z
p(x, y)dx



Example
• We have a joint distribution over three groups of variables 
• We observe    and are interested in predicting  
• Values of    are unknown and irrelevant to us 
• How to estimate             from                  ?p(y|x) p(x, y, z)

x y
z

p(x, y, z)



Example
• We have a joint distribution over three groups of variables 
• We observe    and are interested in predicting  
• Values of    are unknown and irrelevant to us 
• How to estimate             from                  ?p(y|x) p(x, y, z)

x y
z

p(x, y, z)

p(y|x) = p(x, y)

p(x)
=

R
p(x, y, z)dzR

p(x, y, z)dzdy

Sum rule and product rule allow to obtain arbitrary 
conditional distributions from the joint one



Bayes theorem

p(y|x) = p(x, y)

p(x)
=

p(x|y)p(y)
p(x)

=
p(x|y)p(y)R
p(x|y)p(y)dy

Posterior =
Likelihood ⇥ Prior

Evidence

Bayes theorem defines the rule for uncertainty conversion when new 
information arrives:

Bayes theorem (follows from product and sum rules):



Statistical inference
Problem: given i.i.d. data                              from distribution             one 
needs to estimate

X = (x1, ..., xn) p(x|✓)
✓

Frequentist framework:  use maximum likelihood estimation (MLE)

✓ML = argmax p(X|✓) = argmax
nY

i=1

p (xi|✓) = argmax
nX

i=1

log p (xi|✓)

p(✓|X) =

Qn
i=1 p (xi|✓) p(✓)R Qn
i=1 p (xi|✓) p(✓)d✓

Bayesian framework: encode uncertainty about    in a prior         and apply 
Bayesian inference

✓ p(✓)



Example: coin tossing
• We have a coin which may be fair or not 
• The task is to estimate a probability    of landing 

heads up 
• Data: 2 tosses with a result (H,H)

Head (H) Tail (T)

✓



• We have a coin which may be fair or not 
• The task is to estimate a probability    of landing 

heads up 
• Data: 2 tosses with a result (H,H)

Head (H) Tail (T)

✓

Frequentist framework: 

✓ML = 1

In all experiments the coin 
landed heads up The coin is not fair and 

always lands heads up 

Example: coin tossing



• We have a coin which may be fair or not 
• The task is to estimate a probability    of landing 

heads up 
• Data: 2 tosses with a result (H,H)

Head (H) Tail (T)

✓

Bayesian framework: 

✓0 1

Prior

✓0 1

Posterior

Example: coin tossing
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• We have a coin which may be fair or not 
• The task is to estimate a probability    of landing 

heads up 
• Data: 1000 tosses with a result (H,H,T,…)  —     

489 tails and 511 heads Head (H) Tail (T)

✓

Example: coin tossing



• We have a coin which may be fair or not 
• The task is to estimate a probability    of landing 

heads up 
• Data: 1000 tosses with a result (H,H,T,…)  —     

489 tails and 511 heads Head (H) Tail (T)

✓

Both frameworks: 

Sufficient amount of data 
matches our expectations The coin is fair 

Example: coin tossing



Frequentist vs. Bayesian frameworks

lim
n/d!1

p (✓|x1, . . . , xn) = � (✓ � ✓ML)

• Frequentist framework is a limit case of Bayesian one:

• The number of tunable parameters in modern ML models is comparable 
with the sizes of training data

Variables
Applicability

BayesianFrequentist

random and deterministic everything is random
8nn >> d



/ 75

Advantages of Bayesian framework
• We can encode our prior knowledge or desired properties of the final 

solution into a prior distribution 
• Prior is a form of regularization 
• Additionally to the point estimate of     posterior contains information about 

the uncertainty of the estimate
✓

Bayesian framework just provides an alternative point of 
view, it DOES NOT contradict or deny frequentist framework



Probabilistic ML model
For each object in the data:

Model:

•     — set of observed variables (features) 
•     — set of hidden / latent variables (class label / hidden 

representation, etc.)

•    — model parameters (e.g. weights of the linear model)✓

x

y



Discriminative probabilistic ML model

Examples:
• Classification or regression task (hidden space is much easier than 

the observed one) 
• Machine translation (hidden and observed spaces have the same 

complexity)

p(y, ✓ | x) = p(y | x, ✓)p(✓)

p(y, ✓ | x)Models Cannot generate new objects —  
needs     as an inputx

Usually assumes that prior over    does not depend on    :✓ x



Examples:
• Generation of text, speech, images, etc.

May be quite difficult to train since the observed space is usually 
much more complicated than the hidden one

Generative probabilistic ML model

Models joint distribution
p(x, y, ✓) = p(x, y | ✓)p(✓)

Can generate new objects,  
          i.e. pairs       (x, y)



We are given training data                  and a discriminative model

Training Bayesian ML models
(Xtr, Ytr) p(y, ✓ | x)

p (✓ | Xtr, Ytr) =
p (Ytr | Xtr, ✓) p(✓)R
p (Ytr | Xtr, ✓) p(✓)d✓

Training stage — Bayesian inference over    :✓

Result: ensemble of algorithms rather than a single one ✓ML

• Ensemble usually outperforms single best model 
• Posterior capture all dependencies from the training data that the 

model could extract and may be used as a new prior later



• From training we have a posterior distribution  
• New data point     arrives  
• We need to compute the predictive distribution on its hidden value 

Predictions of Bayesian ML models
Testing stage:

p (y | x,Xtr, Ytr) =

Z
p(y | x, ✓)p (✓ | Xtr, Ytr) d✓

x

p (✓ | Xtr, Ytr)

y

Ensembling w.r.t. posterior over the parameters    : ✓



Bayesian ML models

Testing stage:

p (y | x,Xtr, Ytr) =

Z
p(y | x, ✓)p (✓ | Xtr, Ytr) d✓

p (✓ | Xtr, Ytr) =
p (Ytr | Xtr, ✓) p(✓)R
p (Ytr | Xtr, ✓) p(✓)d✓

Training stage:



Bayesian ML models

When are the integrals tractable? 
What can we do if they are intractable?

Testing stage:

p (y | x,Xtr, Ytr) =

Z
p(y | x, ✓)p (✓ | Xtr, Ytr) d✓

p (✓ | Xtr, Ytr) =
p (Ytr | Xtr, ✓) p(✓)R
p (Ytr | Xtr, ✓) p(✓)d✓

Training stage:

May be intractable



p(✓ | x) 2 A (↵0)

Distribution         and               are conjugate iff               belongs to the same 
parametric family as        :

Conjugate distributions
p(✓) p(x | ✓) p(✓ | x)

p(✓)

p(✓) 2 A(↵), p(x | ✓) 2 B(✓)



p(✓) 2 A(↵), p(x | ✓) 2 B(✓)

p(✓ | x) = p(x | ✓)p(✓)R
p(x | ✓)p(✓)d✓

/ p(x | ✓)p(✓)

Conjugate distributions

Intuition:

p(✓ | x) 2 A (↵0)

Distribution         and               are conjugate iff               belongs to the same 
parametric family as        :

p(✓) p(x | ✓) p(✓ | x)
p(✓)



p(✓ | x) = p(x | ✓)p(✓)R
p(x | ✓)p(✓)d✓

/ p(x | ✓)p(✓)

Conjugate distributions

Intuition:
conjugate

• Denominator is tractable since any distribution in      is normalized A

p(✓ | x) 2 A (↵0)

Distribution         and               are conjugate iff               belongs to the same 
parametric family as        :

p(✓) p(x | ✓) p(✓ | x)
p(✓)

p(✓) 2 A(↵), p(x | ✓) 2 B(✓)



p(✓ | x) = p(x | ✓)p(✓)R
p(x | ✓)p(✓)d✓

/ p(x | ✓)p(✓)

Conjugate distributions

Intuition:

• Denominator is tractable since any distribution in      is normalized 
• All we need is to compute 

A
↵0

p(✓ | x) 2 A (↵0)

Distribution         and               are conjugate iff               belongs to the same 
parametric family as        :

p(✓) p(x | ✓) p(✓ | x)
p(✓)

p(✓) 2 A(↵), p(x | ✓) 2 B(✓)



Full Bayesian inference

Integrals are tractable if prior and likelihood are conjugate

Testing stage:

p (y | x,Xtr, Ytr) =

Z
p(y | x, ✓)p (✓ | Xtr, Ytr) d✓

p (✓ | Xtr, Ytr) =
p (Ytr | Xtr, ✓) p(✓)R
p (Ytr | Xtr, ✓) p(✓)d✓

Training stage:



Full Bayesian inference
• Easy to use - analytical formulas for training and testing stages 
• Strong assumptions on the model - conjugacy of prior and likelihood 

      Choose conjugate prior 
      Only simple models (not flexible enough for most of the cases)



• We have a coin which may be fair or not 
• The task is to estimate a probability    of landing 

heads up 
• Data:

Head (H) Tail (T)

✓

Example: coin tossing

X = (x1, . . . , xn) , x 2 {0, 1}

Probabilistic model: 
p(x, ✓) = p(x | ✓)p(✓)



• We have a coin which may be fair or not 
• The task is to estimate a probability    of landing 

heads up 
• Data:

Head (H) Tail (T)

✓

Example: coin tossing

X = (x1, . . . , xn) , x 2 {0, 1}

Probabilistic model: 
p(x, ✓) = p(x | ✓)p(✓)

Bern(x | ✓) = ✓x(1� ✓)1�xLikelihood: 



• We have a coin which may be fair or not 
• The task is to estimate a probability    of landing 

heads up 
• Data:

Head (H) Tail (T)

✓

Example: coin tossing

X = (x1, . . . , xn) , x 2 {0, 1}

Probabilistic model: 
p(x, ✓) = p(x | ✓)p(✓)

Bern(x | ✓) = ✓x(1� ✓)1�xLikelihood: Prior: ???



How to choose a prior?

Example: coin tossing

• Correct domain:  
• Include prior knowledge: a coin is most 

likely fair  
• Inference complexity: use conjugate prior

✓ 2 [0, 1]



How to choose a prior?

Example: coin tossing

• Correct domain:  
• Include prior knowledge: a coin is most 

likely fair  
• Inference complexity: use conjugate prior

✓ 2 [0, 1]

Beta distribution matches all requirements:

Beta(✓ | a, b) = 1

B(a, b)
✓a�1(1� ✓)b�1

Beta distribution

✓

P
D
F



Simplest way — approximate posterior with delta function in         :

What to do if there is no conjugacy?
✓MP

✓MP = argmax p (✓ | Xtr, Ytr) = argmax p (Ytr | Xtr, ✓) p(✓)



Simplest way — approximate posterior with delta function in         :

What to do if there is no conjugacy?
✓MP

✓MP = argmax p (✓ | Xtr, Ytr) = argmax p (Ytr | Xtr, ✓) p(✓)

p (y | x,Xtr, Ytr) =

Z
p(y | x, ✓)p (✓ | Xtr, Ytr) d✓ ⇡ p (y|x, ✓MP )

On the testing stage:



Simplest way — approximate posterior with delta function in         :

What to do if there is no conjugacy?
✓MP

✓MP = argmax p (✓ | Xtr, Ytr) = argmax p (Ytr | Xtr, ✓) p(✓)

p (y | x,Xtr, Ytr) =

Z
p(y | x, ✓)p (✓ | Xtr, Ytr) d✓ ⇡ p (y|x, ✓MP )

On the testing stage:
We do not need to calculate 
the normalisation constant



Simplest way — approximate posterior with delta function in         :

What to do if there is no conjugacy?
✓MP

✓MP = argmax p (✓ | Xtr, Ytr) = argmax p (Ytr | Xtr, ✓) p(✓)

p (y | x,Xtr, Ytr) =

Z
p(y | x, ✓)p (✓ | Xtr, Ytr) d✓ ⇡ p (y|x, ✓MP )

On the testing stage:

p (✓ | Xtr, Ytr)

� (✓ � ✓MP )

✓

P
D
F



Simplest way — approximate posterior with delta function in         :

What to do if there is no conjugacy?
✓MP

✓MP = argmax p (✓ | Xtr, Ytr) = argmax p (Ytr | Xtr, ✓) p(✓)

p (y | x,Xtr, Ytr) =

Z
p(y | x, ✓)p (✓ | Xtr, Ytr) d✓ ⇡ p (y|x, ✓MP )

On the testing stage:

✴ Not the same as          — here we use prior✓ML



Simplest way — approximate posterior with delta function in         :

What to do if there is no conjugacy?
✓MP

✓MP = argmax p (✓ | Xtr, Ytr) = argmax p (Ytr | Xtr, ✓) p(✓)

p (y | x,Xtr, Ytr) =

Z
p(y | x, ✓)p (✓ | Xtr, Ytr) d✓ ⇡ p (y|x, ✓MP )

On the testing stage:

More advanced techniques are needed!



Approximate inference

Variational Inference MCMC

• Biased 
• Faster and more scalable 

p(✓ | x) ⇡ q(✓) 2 QApproximate 
• Unbiased 
• Need a lot of samples 

Samples from unnormalized  p(✓ | x)
P
D
F

p (✓ | x)

q(✓)

MCMC samples ✓

p(x, ✓) = p(x | ✓)p(✓)Probabilistic model:



Variational inference

Main idea: find posterior approximation                                  , using 
the following criterion function:

p(✓ | x) ⇡ q(✓) 2 Q

p(x, ✓) = p(x | ✓)p(✓)Probabilistic model:

F (q) := KL(q(✓)k p(✓ | x)) ! min
q(✓)2Q

Kullback-Leibler divergence
a good mismatch measure between 

two distributions over the same domain



A good mismatch measure between two distributions over the same domain

Kullback-Leibler divergence

KL(q(✓)k p(✓ | x)) =
Z

q(✓) log
q(✓)

p(✓ | x)d✓

Properties:

KL(qk p) � 0

KL(qk p) = 0 , q = p

KL(qk p) 6= KL(pk q)

•   
•   
•  

P
D
F

p (✓ | x)

✓

q : KL(pk q)
q : KL(qk p)



Variational inference

Main idea: find posterior approximation                                  , using 
the following criterion function:

p(✓ | x) ⇡ q(✓) 2 Q

p(x, ✓) = p(x | ✓)p(✓)Probabilistic model:

F (q) := KL(q(✓)k p(✓ | x)) ! min
q(✓)2Q



Variational inference

Main idea: find posterior approximation                                  , using 
the following criterion function:

p(✓ | x) ⇡ q(✓) 2 Q

p(x, ✓) = p(x | ✓)p(✓)Probabilistic model:

F (q) := KL(q(✓)k p(✓ | x)) ! min
q(✓)2Q

We could not compute the 
posterior in the first place

How to perform an optimization 
w.r.t. a distribution? 



=

Z
q(✓) log

p(x, ✓)

q(✓)
d✓ +

Z
q(✓) log

q(✓)

p(✓ | x)d✓ =

Mathematical magic

log p(x) =

Z
q(✓) log p(x)d✓ =

Z
q(✓) log

p(x, ✓)

p(✓ | x)d✓ =

=

Z
q(✓) log

p(x, ✓)q(✓)

p(✓ | x)q(✓)d✓ =



= L(q(✓)) +KL(q(✓)k p(✓ | x))

=

Z
q(✓) log

p(x, ✓)

q(✓)
d✓ +

Z
q(✓) log

q(✓)

p(✓ | x)d✓ =

Mathematical magic

log p(x) =

Z
q(✓) log p(x)d✓ =

Z
q(✓) log

p(x, ✓)

p(✓ | x)d✓ =

=

Z
q(✓) log

p(x, ✓)q(✓)

p(✓ | x)q(✓)d✓ =

Evidence lower bound (ELBO) KL-divergence we need for VI



ELBO = Evidence Lower Bound
log p(x) = L(q(✓)) +KL(q(✓)k p(✓ | x))

Evidence of the probabilistic model shows the total probability of 
observing the data.

Evidence:

Lower Bound: log p(x) � L(q(✓))KL is non-negative

p(✓ | x) = p(x | ✓)p(✓)
p(x)

=
p(x | ✓)p(✓)R
p(x | ✓)p(✓)d✓

=
Likelihood ⇥ Prior

Evidence



Variational inference
Optimization problem with intractable posterior distribution:

F (q) := KL(q(✓)k p(✓ | x)) ! min
q(✓)2Q



Variational inference
Optimization problem with intractable posterior distribution:

F (q) := KL(q(✓)k p(✓ | x)) ! min
q(✓)2Q

Let’s use our magic:

log p(x) = L(q(✓)) +KL(q(✓)k p(✓ | x))



Variational inference
Optimization problem with intractable posterior distribution:

F (q) := KL(q(✓)k p(✓ | x)) ! min
q(✓)2Q

Let’s use our magic:

log p(x) = L(q(✓)) +KL(q(✓)k p(✓ | x))

does not depend on q depend on q



Variational inference
Optimization problem with intractable posterior distribution:

F (q) := KL(q(✓)k p(✓ | x)) ! min
q(✓)2Q

Let’s use our magic:

log p(x) = L(q(✓)) +KL(q(✓)k p(✓ | x))

does not depend on q depend on q

KL(q(✓)k p(✓ | x)) ! min
q(✓)2Q

, L(q(✓)) ! max
q(✓)2Q



Variational inference
Final optimisation problem:

L(q(✓)) =
Z

q(✓) log
p(x, ✓)

q(✓)
d✓ =

Z
q(✓) log

p(x | ✓)p(✓)
q(✓)

d✓ =L(q(✓)) =
Z

q(✓) log
p(x, ✓)

q(✓)
d✓ ! max

q(✓)2Q



Final optimisation problem:

=

Z
q(✓) log p(x | ✓)d✓ +

Z
q(✓) log

p(✓)

q(✓)
d✓ =

L(q(✓)) =
Z

q(✓) log
p(x, ✓)

q(✓)
d✓ =

Z
q(✓) log

p(x | ✓)p(✓)
q(✓)

d✓ =

Variational inference: ELBO interpretation



Final optimisation problem:

=

Z
q(✓) log p(x | ✓)d✓ +

Z
q(✓) log

p(✓)

q(✓)
d✓ =

= Eq(✓) log p(x | ✓)�KL(q(✓)k p(✓))

L(q(✓)) =
Z

q(✓) log
p(x, ✓)

q(✓)
d✓ =

Z
q(✓) log

p(x | ✓)p(✓)
q(✓)

d✓ =

data term regularizer

Variational inference: ELBO interpretation



Variational inference
Final optimisation problem:

L(q(✓)) =
Z

q(✓) log
p(x, ✓)

q(✓)
d✓ =

Z
q(✓) log

p(x | ✓)p(✓)
q(✓)

d✓ =L(q(✓)) =
Z

q(✓) log
p(x, ✓)

q(✓)
d✓ ! max

q(✓)2Q

How to perform an 
optimization w.r.t. 

a distribution? 



Variational inference
Final optimisation problem:

L(q(✓)) =
Z

q(✓) log
p(x, ✓)

q(✓)
d✓ =

Z
q(✓) log

p(x | ✓)p(✓)
q(✓)

d✓ =L(q(✓)) =
Z

q(✓) log
p(x, ✓)

q(✓)
d✓ ! max

q(✓)2Q

How to perform an 
optimization w.r.t. 

a distribution? 

Parametric approximation

Parametric family

q(✓) = q(✓ | �)



Parametric family of variational distributions:

Parametric approximation

q(✓) = q(✓ | �), � —  some parameters

Why is it a restriction? We choose a family of some fixed form:

• It may be too simple and insufficient to model the data 
• If it is complex enough then there is no guaranty we can train it 

well to fit the data



Parametric family of variational distributions:

Parametric approximation

Variational inference transforms to parametric optimization problem:

q(✓) = q(✓ | �), � —  some parameters

L(q(✓ | �)) =
Z

q(✓ | �) log p(x, ✓)

q(✓ | �)d✓ ! max
�

If we're able to calculate derivatives of ELBO w.r.t.     then we can solve this 
problem using some numerical optimization solver.

�



Inference methods: summary

Probabilistic model: p(x, ✓) We want to compute:

Exact

Parametric

Delta function

Full Bayesian inference

 Parametric VI
 MAP inference

Inference

No prior  MLE

Approximation

p(✓ | x)

p(✓ | x) ⇡ q(✓) = q(✓ | �)
p(✓ | x)

p(✓ | x) ⇡ �(✓ � ✓MP )

✓ML


