Introduction to Bayesian methods

Dmitry P. Vetrov
Higher School of Economics, Samsung AI Center
Moscow, Russia

NATIONAL RESEARCH UNIVERSITY

SnMSUNG Research

Outline

- Bayesian framework
- Bayesian ML models
- Full Bayesian inference and conjugate distributions
- Approximate Bayesian inference

How to work with distributions?

$$
\text { Conditional }=\frac{\text { Joint }}{\text { Marginal }}, \quad p(x \mid y)=\frac{p(x, y)}{p(y)}
$$

Product rule

any joint distribution can be expressed as a product of one-dimensional conditional distributions

Sum rule

any marginal distribution can be obtained from the joint distribution by integrating out

$$
p(y)=\int p(x, y) d x
$$

Example

- We have a joint distribution over three groups of variables $p(x, y, z)$
- We observe x and are interested in predicting y
- Values of z are unknown and irrelevant to us
- How to estimate $p(y \mid x)$ from $p(x, y, z)$?

Example

- We have a joint distribution over three groups of variables $p(x, y, z)$
- We observe x and are interested in predicting y
- Values of z are unknown and irrelevant to us
- How to estimate $p(y \mid x)$ from $p(x, y, z)$?

$$
p(y \mid x)=\frac{p(x, y)}{p(x)}=\frac{\int p(x, y, z) d z}{\int p(x, y, z) d z d y}
$$

Sum rule and product rule allow to obtain arbitrary conditional distributions from the joint one

Bayes theorem

Bayes theorem (follows from product and sum rules):

$$
p(y \mid x)=\frac{p(x, y)}{p(x)}=\frac{p(x \mid y) p(y)}{p(x)}=\frac{p(x \mid y) p(y)}{\int p(x \mid y) p(y) d y}
$$

Bayes theorem defines the rule for uncertainty conversion when new information arrives:

$$
\text { Posterior }=\frac{\text { Likelihood } \times \text { Prior }}{\text { Evidence }}
$$

Statistical inference

Problem: given i.i.d. data $X=\left(x_{1}, \ldots, x_{n}\right)$ from distribution $p(x \mid \theta)$ one needs to estimate θ

Frequentist framework: use maximum likelihood estimation (MLE)

$$
\theta_{M L}=\arg \max p(X \mid \theta)=\arg \max \prod_{i=1}^{n} p\left(x_{i} \mid \theta\right)=\arg \max \sum_{i=1}^{n} \log p\left(x_{i} \mid \theta\right)
$$

Bayesian framework: encode uncertainty about θ in a prior $p(\theta)$ and apply Bayesian inference

$$
p(\theta \mid X)=\frac{\prod_{i=1}^{n} p\left(x_{i} \mid \theta\right) p(\theta)}{\int \prod_{i=1}^{n} p\left(x_{i} \mid \theta\right) p(\theta) d \theta}
$$

Example: coin tossing

- We have a coin which may be fair or not
- The task is to estimate a probability θ of landing heads up
- Data: 2 tosses with a result (H,H)

Head (H)

Tail (T)

Example: coin tossing

- We have a coin which may be fair or not
- The task is to estimate a probability θ of landing heads up
- Data: 2 tosses with a result (H, H)

Head (H)

Tail (T)

Frequentist framework:

In all experiments the coin landed heads up

$$
\theta_{M L}=1
$$

The coin is not fair and always lands heads up

Example: coin tossing

- We have a coin which may be fair or not
- The task is to estimate a probability θ of landing heads up
- Data: 2 tosses with a result (H, H)

Head (H) Tail (T)

Bayesian framework:

Prior

Posterior

Example: coin tossing

- We have a coin which may be fair or not
- The task is to estimate a probability θ of landing heads up
- Data: 1000 tosses with a result ($\mathrm{H}, \mathrm{H}, \mathrm{T}, \ldots$) 489 tails and 511 heads

Head (H)

Tail (T)

Example: coin tossing

- We have a coin which may be fair or not
- The task is to estimate a probability θ of landing heads up
- Data: 1000 tosses with a result (H, H, T, \ldots) 489 tails and 511 heads

Head (H) Tail (T)

Both frameworks:

Sufficient amount of data matches our expectations

Frequentist vs. Bayesian frameworks

	Frequentist	Bayesian
Variables	random and deterministic	everything is random
Applicability	$n \gg d$	$\forall n$

- The number of tunable parameters in modern ML models is comparable with the sizes of training data
- Frequentist framework is a limit case of Bayesian one:

$$
\lim _{n / d \rightarrow \infty} p\left(\theta \mid x_{1}, \ldots, x_{n}\right)=\delta\left(\theta-\theta_{M L}\right)
$$

Advantages of Bayesian framework

- We can encode our prior knowledge or desired properties of the final solution into a prior distribution
- Prior is a form of regularization
- Additionally to the point estimate of θ posterior contains information about the uncertainty of the estimate

> Bayesian framework just provides an alternative point of view, it DOES NOT contradict or deny frequentist framework

Probabilistic ML model

For each object in the data:

- x - set of observed variables (features)
- y - set of hidden / latent variables (class label / hidden representation, etc.)

Model:

- θ - model parameters (e.g. weights of the linear model)

Discriminative probabilistic ML model

Models $p(y, \theta \mid x)$
Cannot generate new objects needs x as an input

Usually assumes that prior over θ does not depend on x :

$$
p(y, \theta \mid x)=p(y \mid x, \theta) p(\theta)
$$

Examples:

- Classification or regression task (hidden space is much easier than the observed one)
- Machine translation (hidden and observed spaces have the same complexity)

Generative probabilistic ML model

> Models joint distribution
> $p(x, y, \theta)=p(x, y \mid \theta) p(\theta)$

Can generate new objects, i.e. pairs (x, y)

May be quite difficult to train since the observed space is usually much more complicated than the hidden one

Examples:

- Generation of text, speech, images, etc.

Training Bayesian ML models

We are given training data ($X_{t r}, Y_{t r}$) and a discriminative model $p(y, \theta \mid x)$
Training stage - Bayesian inference over θ :

$$
p\left(\theta \mid X_{t r}, Y_{t r}\right)=\frac{p\left(Y_{t r} \mid X_{t r}, \theta\right) p(\theta)}{\int p\left(Y_{t r} \mid X_{t r}, \theta\right) p(\theta) d \theta}
$$

Result: ensemble of algorithms rather than a single one $\theta_{M L}$

- Ensemble usually outperforms single best model
- Posterior capture all dependencies from the training data that the model could extract and may be used as a new prior later

Predictions of Bayesian ML models

Testing stage:

- From training we have a posterior distribution $p\left(\theta \mid X_{t r}, Y_{t r}\right)$
- New data point x arrives
- We need to compute the predictive distribution on its hidden value y

Ensembling w.r.t. posterior over the parameters θ :

$$
p\left(y \mid x, X_{t r}, Y_{t r}\right)=\int p(y \mid x, \theta) p\left(\theta \mid X_{t r}, Y_{t r}\right) d \theta
$$

Bayesian ML models

Training stage:

$$
p\left(\theta \mid X_{t r}, Y_{t r}\right)=\frac{p\left(Y_{t r} \mid X_{t r}, \theta\right) p(\theta)}{\int p\left(Y_{t r} \mid X_{t r}, \theta\right) p(\theta) d \theta}
$$

Testing stage:

$$
p\left(y \mid x, X_{t r}, Y_{t r}\right)=\int p(y \mid x, \theta) p\left(\theta \mid X_{t r}, Y_{t r}\right) d \theta
$$

Bayesian ML models

Training stage:

$$
p\left(\theta \mid X_{t r}, Y_{t r}\right)=\frac{p\left(Y_{t r} \mid X_{t r}, \theta\right) p(\theta)}{\int p\left(Y_{t r} \mid X_{t r}, \theta\right) p(\theta) d \theta}
$$

Testing stage:
May be intractable

$$
p\left(y \mid x, X_{t r}, Y_{t r}\right)=\int p(y \mid x, \theta) p\left(\theta \mid X_{t r}, Y_{t r}\right) d \theta
$$

When are the integrals tractable? What can we do if they are intractable?

Conjugate distributions

Distribution $p(\theta)$ and $p(x \mid \theta)$ are conjugate iff $p(\theta \mid x)$ belongs to the same parametric family as $p(\theta)$:

$$
p(\theta) \in \mathcal{A}(\alpha), \quad p(x \mid \theta) \in \mathcal{B}(\theta) \quad \rightarrow \quad p(\theta \mid x) \in \mathcal{A}\left(\alpha^{\prime}\right)
$$

Conjugate distributions

Distribution $p(\theta)$ and $p(x \mid \theta)$ are conjugate iff $p(\theta \mid x)$ belongs to the same parametric family as $p(\theta)$:

$$
p(\theta) \in \mathcal{A}(\alpha), \quad p(x \mid \theta) \in \mathcal{B}(\theta) \quad \rightarrow \quad p(\theta \mid x) \in \mathcal{A}\left(\alpha^{\prime}\right)
$$

Intuition:

$$
p(\theta \mid x)=\frac{p(x \mid \theta) p(\theta)}{\int p(x \mid \theta) p(\theta) d \theta}
$$

Conjugate distributions

Distribution $p(\theta)$ and $p(x \mid \theta)$ are conjugate iff $p(\theta \mid x)$ belongs to the same parametric family as $p(\theta)$:

$$
p(\theta) \in \mathcal{A}(\alpha), \quad p(x \mid \theta) \in \mathcal{B}(\theta) \quad \rightarrow \quad p(\theta \mid x) \in \mathcal{A}\left(\alpha^{\prime}\right)
$$

Intuition:

$$
p(\theta \mid x)=\frac{p(x \mid \theta) p(\theta)}{\int p(x \mid \theta) p(\theta) d \theta} \longleftarrow \text { conjugate }
$$

- Denominator is tractable since any distribution in \mathcal{A} is normalized

Conjugate distributions

Distribution $p(\theta)$ and $p(x \mid \theta)$ are conjugate iff $p(\theta \mid x)$ belongs to the same parametric family as $p(\theta)$:

$$
p(\theta) \in \mathcal{A}(\alpha), \quad p(x \mid \theta) \in \mathcal{B}(\theta) \quad \rightarrow \quad p(\theta \mid x) \in \mathcal{A}\left(\alpha^{\prime}\right)
$$

Intuition:

$$
p(\theta \mid x)=\frac{p(x \mid \theta) p(\theta)}{\int p(x \mid \theta) p(\theta) d \theta} \propto p(x \mid \theta) p(\theta)
$$

- Denominator is tractable since any distribution in \mathcal{A} is normalized
- All we need is to compute α^{\prime}

Full Bayesian inference

Training stage:

$$
p\left(\theta \mid X_{t r}, Y_{t r}\right)=\frac{p\left(Y_{t r} \mid X_{t r}, \theta\right) p(\theta)}{\int p\left(Y_{t r} \mid X_{t r}, \theta\right) p(\theta) d \theta}
$$

Testing stage:

$$
p\left(y \mid x, X_{t r}, Y_{t r}\right)=\int p(y \mid x, \theta) p\left(\theta \mid X_{t r}, Y_{t r}\right) d \theta
$$

Integrals are tractable if prior and likelihood are conjugate

Full Bayesian inference

- Easy to use - analytical formulas for training and testing stages
- Strong assumptions on the model - conjugacy of prior and likelihood
\rightarrow Choose conjugate prior
\rightarrow Only simple models (not flexible enough for most of the cases)

Example: coin tossing

- We have a coin which may be fair or not
- The task is to estimate a probability θ of landing heads up
- Data: $X=\left(x_{1}, \ldots, x_{n}\right), \quad x \in\{0,1\}$

Head (H) Tail (T)

Probabilistic model:

$$
p(x, \theta)=p(x \mid \theta) p(\theta)
$$

Example: coin tossing

- We have a coin which may be fair or not
- The task is to estimate a probability θ of landing heads up
- Data: $X=\left(x_{1}, \ldots, x_{n}\right), \quad x \in\{0,1\}$

Head (H)

Tail (T)

Probabilistic model:

$$
p(x, \theta)=p(x \mid \theta) p(\theta)
$$

$$
\text { Likelihood: } \operatorname{Bern}(x \mid \theta)=\theta^{x}(1-\theta)^{1-x}
$$

Example: coin tossing

- We have a coin which may be fair or not
- The task is to estimate a probability θ of landing heads up
- Data: $X=\left(x_{1}, \ldots, x_{n}\right), \quad x \in\{0,1\}$

Head (H)

Tail (T)

Probabilistic model:

Likelihood: $\operatorname{Bern}(x \mid \theta)=\theta^{x}(1-\theta)^{1-x}$

Example: coin tossing

How to choose a prior?

- Correct domain: $\theta \in[0,1]$
- Include prior knowledge: a coin is most likely fair
- Inference complexity: use conjugate prior

Example: coin tossing

How to choose a prior?

- Correct domain: $\theta \in[0,1]$
- Include prior knowledge: a coin is most likely fair
- Inference complexity: use conjugate prior

Beta distribution matches all requirements:

$$
\operatorname{Beta}(\theta \mid a, b)=\frac{1}{\mathrm{~B}(a, b)} \theta^{a-1}(1-\theta)^{b-1}
$$

Beta distribution

What to do if there is no conjugacy?

Simplest way - approximate posterior with delta function in $\theta_{M P}$:

$$
\theta_{M P}=\arg \max p\left(\theta \mid X_{t r}, Y_{t r}\right)=\arg \max p\left(Y_{t r} \mid X_{t r}, \theta\right) p(\theta)
$$

What to do if there is no conjugacy?

Simplest way - approximate posterior with delta function in $\theta_{M P}$:

$$
\theta_{M P}=\arg \max p\left(\theta \mid X_{t r}, Y_{t r}\right)=\arg \max p\left(Y_{t r} \mid X_{t r}, \theta\right) p(\theta)
$$

On the testing stage:

$$
p\left(y \mid x, X_{t r}, Y_{t r}\right)=\int p(y \mid x, \theta) p\left(\theta \mid X_{t r}, Y_{t r}\right) d \theta \approx p\left(y \mid x, \theta_{M P}\right)
$$

What to do if there is no conjugacy?

Simplest way - approximate posterior with delta function in $\theta_{M P}$:

$$
\theta_{M P}=\arg \max p\left(\theta \mid X_{t r}, Y_{t r}\right)=\arg \max p\left(Y_{t r} \mid X_{t r}, \theta\right) p(\theta)
$$

We do not need to calculate
On the testing stage: the normalisation constant

$$
p\left(y \mid x, X_{t r}, Y_{t r}\right)=\int p(y \mid x, \theta) p\left(\theta \mid X_{t r}, Y_{t r}\right) d \theta \approx p\left(y \mid x, \theta_{M P}\right)
$$

What to do if there is no conjugacy?

Simplest way - approximate posterior with delta function in $\theta_{M P}$:

$$
\theta_{M P}=\arg \max p\left(\theta \mid X_{t r}, Y_{t r}\right)=\arg \max p\left(Y_{t r} \mid X_{t r}, \theta\right) p(\theta)
$$

On the testing stage:

$$
p\left(y \mid x, X_{t r}, Y_{t r}\right)=\int p(y \mid x, \theta) p\left(\theta \mid X_{t r}, Y_{t r}\right) d \theta \approx p\left(y \mid x, \theta_{M P}\right)
$$

What to do if there is no conjugacy?

Simplest way - approximate posterior with delta function in $\theta_{M P}$:

$$
\theta_{M P}=\arg \max p\left(\theta \mid X_{t r}, Y_{t r}\right)=\arg \max p\left(Y_{t r} \mid X_{t r}, \theta\right) p(\theta)
$$

On the testing stage:

$$
p\left(y \mid x, X_{t r}, Y_{t r}\right)=\int p(y \mid x, \theta) p\left(\theta \mid X_{t r}, Y_{t r}\right) d \theta \approx p\left(y \mid x, \theta_{M P}\right)
$$

* Not the same as $\theta_{M L}$ - here we use prior

What to do if there is no conjugacy?

Simplest way - approximate posterior with delta function in $\theta_{M P}$:

$$
\theta_{M P}=\arg \max p\left(\theta \mid X_{t r}, Y_{t r}\right)=\arg \max p\left(Y_{t r} \mid X_{t r}, \theta\right) p(\theta)
$$

On the testing stage:

$$
p\left(y \mid x, X_{t r}, Y_{t r}\right)=\int p(y \mid x, \theta) p\left(\theta \mid X_{t r}, Y_{t r}\right) d \theta \approx p\left(y \mid x, \theta_{M P}\right)
$$

> More advanced techniques are needed!

Approximate inference

Probabilistic model: $p(x, \theta)=p(x \mid \theta) p(\theta)$

Variational Inference

Approximate $p(\theta \mid x) \approx q(\theta) \in \mathcal{Q}$

- Biased
- Faster and more scalable

MCMC

Samples from unnormalized $p(\theta \mid x)$

- Unbiased
- Need a lot of samples

Variational inference

Probabilistic model: $p(x, \theta)=p(x \mid \theta) p(\theta)$
Main idea: find posterior approximation $p(\theta \mid x) \approx q(\theta) \in \mathcal{Q}$, using the following criterion function:

$$
F(q):=K L(q(\theta) \| p(\theta \mid x)) \rightarrow \min _{q(\theta) \in \mathcal{Q}}
$$

Kullback-Leibler divergence a good mismatch measure between two distributions over the same domain

Kullback-Leibler divergence

A good mismatch measure between two distributions over the same domain

$$
K L(q(\theta) \| p(\theta \mid x))=\int q(\theta) \log \frac{q(\theta)}{p(\theta \mid x)} d \theta
$$

Properties:

- $K L(q \| p) \geq 0$
- $K L(q \| p)=0 \Leftrightarrow q=p$
- $K L(q \| p) \neq K L(p \| q)$

Variational inference

Probabilistic model: $p(x, \theta)=p(x \mid \theta) p(\theta)$
Main idea: find posterior approximation $p(\theta \mid x) \approx q(\theta) \in \mathcal{Q}$, using the following criterion function:

$$
F(q):=K L(q(\theta) \| p(\theta \mid x)) \rightarrow \min _{q(\theta) \in \mathcal{Q}}
$$

Variational inference

Probabilistic model: $p(x, \theta)=p(x \mid \theta) p(\theta)$
Main idea: find posterior approximation $p(\theta \mid x) \approx q(\theta) \in \mathcal{Q}$, using the following criterion function:

$$
F(q):=K L(q(\theta) \| p(\theta \mid x)) \rightarrow \min _{q(\theta) \in \mathcal{Q}}
$$

We could not compute the posterior in the first place

How to perform an optimization w.r.t. a distribution?

Mathematical magic

$$
\begin{aligned}
\log p(x) & =\int q(\theta) \log p(x) d \theta=\int q(\theta) \log \frac{p(x, \theta)}{p(\theta \mid x)} d \theta= \\
& =\int q(\theta) \log \frac{p(x, \theta) q(\theta)}{p(\theta \mid x) q(\theta)} d \theta= \\
& =\int q(\theta) \log \frac{p(x, \theta)}{q(\theta)} d \theta+\int q(\theta) \log \frac{q(\theta)}{p(\theta \mid x)} d \theta=
\end{aligned}
$$

Mathematical magic

$$
\begin{aligned}
\log p(x) & =\int q(\theta) \log p(x) d \theta=\int q(\theta) \log \frac{p(x, \theta)}{p(\theta \mid x)} d \theta= \\
& =\int q(\theta) \log \frac{p(x, \theta) q(\theta)}{p(\theta \mid x) q(\theta)} d \theta= \\
& =\int q(\theta) \log \frac{p(x, \theta)}{q(\theta)} d \theta+\int q(\theta) \log \frac{q(\theta)}{p(\theta \mid x)} d \theta= \\
& =\mathcal{L}(q(\theta))+K L(q(\theta) \| p(\theta \mid x))
\end{aligned}
$$

ELBO = Evidence Lower Bound

$$
\log p(x)=\mathcal{L}(q(\theta))+K L(q(\theta) \| p(\theta \mid x))
$$

Evidence:

$$
p(\theta \mid x)=\frac{p(x \mid \theta) p(\theta)}{p(x)}=\frac{p(x \mid \theta) p(\theta)}{\int p(x \mid \theta) p(\theta) d \theta}=\frac{\text { Likelihood } \times \text { Prior }}{\text { Evidence }}
$$

Evidence of the probabilistic model shows the total probability of observing the data.

Lower Bound: $\quad K L$ is non-negative $\quad \rightarrow \quad \log p(x) \geq \mathcal{L}(q(\theta))$

Variational inference

Optimization problem with intractable posterior distribution:

$$
F(q):=K L(q(\theta) \| p(\theta \mid x)) \rightarrow \min _{q(\theta) \in \mathcal{Q}}
$$

Variational inference

Optimization problem with intractable posterior distribution:

$$
F(q):=K L(q(\theta) \| p(\theta \mid x)) \rightarrow \min _{q(\theta) \in \mathcal{Q}}
$$

Let's use our magic:

$$
\log p(x)=\mathcal{L}(q(\theta))+K L(q(\theta) \| p(\theta \mid x))
$$

Variational inference

Optimization problem with intractable posterior distribution:

$$
F(q):=K L(q(\theta) \| p(\theta \mid x)) \rightarrow \min _{q(\theta) \in \mathcal{Q}}
$$

Let's use our magic:

Variational inference

Optimization problem with intractable posterior distribution:

$$
F(q):=K L(q(\theta) \| p(\theta \mid x)) \rightarrow \min _{q(\theta) \in \mathcal{Q}}
$$

Let's use our magic:

$$
K L(q(\theta) \| p(\theta \mid x)) \rightarrow \min _{q(\theta) \in \mathcal{Q}} \Leftrightarrow \mathcal{L}(q(\theta)) \rightarrow \max _{q(\theta) \in \mathcal{Q}}
$$

Variational inference

Final optimisation problem:

$$
\mathcal{L}(q(\theta))=\int q(\theta) \log \frac{p(x, \theta)}{q(\theta)} d \theta \rightarrow \max _{q(\theta) \in \mathcal{Q}}
$$

Variational inference: ELBO interpretation

Final optimisation problem:

$$
\begin{aligned}
\mathcal{L}(q(\theta)) & =\int q(\theta) \log \frac{p(x, \theta)}{q(\theta)} d \theta=\int q(\theta) \log \frac{p(x \mid \theta) p(\theta)}{q(\theta)} d \theta= \\
& =\int q(\theta) \log p(x \mid \theta) d \theta+\int q(\theta) \log \frac{p(\theta)}{q(\theta)} d \theta=
\end{aligned}
$$

Variational inference: ELBO interpretation

Final optimisation problem:

$$
\begin{aligned}
\mathcal{L}(q(\theta)) & =\int q(\theta) \log \frac{p(x, \theta)}{q(\theta)} d \theta=\int q(\theta) \log \frac{p(x \mid \theta) p(\theta)}{q(\theta)} d \theta= \\
& =\int q(\theta) \log p(x \mid \theta) d \theta+\int q(\theta) \log \frac{p(\theta)}{q(\theta)} d \theta= \\
& =\underbrace{\mathbb{E}_{q(\theta)} \log p(x \mid \theta)}_{\text {data term }}-\underbrace{K L(q(\theta) \| p(\theta))}_{\text {regularizer }}
\end{aligned}
$$

Variational inference

Final optimisation problem:

$$
\mathcal{L}(q(\theta))=\int q(\theta) \log \frac{p(x, \theta)}{q(\theta)} d \theta \rightarrow \max _{q(\theta) \in \mathcal{Q}}
$$

How to perform an optimization w.r.t. a distribution?

Variational inference

Final optimisation problem:

$$
\mathcal{L}(q(\theta))=\int q(\theta) \log \frac{p(x, \theta)}{q(\theta)} d \theta \rightarrow \max _{q(\theta) \in \mathcal{Q}}
$$

How to perform an optimization w.r.t. a distribution?

Parametric approximation

Parametric family

$$
q(\theta)=q(\theta \mid \lambda)
$$

Parametric approximation

Parametric family of variational distributions:

$$
q(\theta)=q(\theta \mid \lambda), \quad \lambda-\text { some parameters }
$$

Why is it a restriction? We choose a family of some fixed form:

- It may be too simple and insufficient to model the data
- If it is complex enough then there is no guaranty we can train it well to fit the data

Parametric approximation

Parametric family of variational distributions:

$$
q(\theta)=q(\theta \mid \lambda), \quad \lambda-\text { some parameters }
$$

Variational inference transforms to parametric optimization problem:

$$
\mathcal{L}(q(\theta \mid \lambda))=\int q(\theta \mid \lambda) \log \frac{p(x, \theta)}{q(\theta \mid \lambda)} d \theta \rightarrow \max _{\lambda}
$$

If we're able to calculate derivatives of ELBO w.r.t. λ then we can solve this problem using some numerical optimization solver.

Inference methods: summary

Probabilistic model: $p(x, \theta) \quad$ We want to compute: $p(\theta \mid x)$

Approximation		Inference
Exact	$p(\theta \mid x)$	Full Bayesian inference
Parametric	$p(\theta \mid x) \approx q(\theta)=q(\theta \mid \lambda)$	Parametric VI
Delta function	$p(\theta \mid x) \approx \delta\left(\theta-\theta_{M P}\right)$	MAP inference
No prior	$\theta_{M L}$	MLE

