Introduction to Bayesian methods

Ekaterina Lobacheva
Higher School of Economics, Samsung-HSE Laboratory
Moscow, Russia

Snmsung
 Research

Problem set

> The problem set is available here:
> tiny.cc/ASGM_bayes_problems

Problem 1: Bayesian reasoning

Setting

During medical checkup, one of the tests indicates a serious disease.
The test has high accuracy 99% (probability of true positive is 99%, probability of true negative is 99%). However, the disease is quite rare, and only one person in 10000 is affected.

Question

Calculate the probability that the examined person has the disease.

Problem 1: Bayesian reasoning

- $d \in\{0,1\}$ - disease (1 means that the person has a disease)
- $t \in\{0,1\}$ - test (1 means that test says that the person has a disease)

Setting: $\quad p(t=1 \mid d=1)=p(t=0 \mid d=0)=0.99, \quad p(d=1)=10^{-4}$ Question: $\quad p(d=1 \mid t=1)=$?

Problem 1: Bayesian reasoning

- $d \in\{0,1\}$ - disease (1 means that the person has a disease)
- $t \in\{0,1\}$ - test (1 means that test says that the person has a disease)

Setting: $\quad p(t=1 \mid d=1)=p(t=0 \mid d=0)=0.99, \quad p(d=1)=10^{-4}$ Question: $\quad p(d=1 \mid t=1)=$?

$$
\begin{aligned}
p(d=1 \mid t=1) & =\frac{p(t=1 \mid d=1) p(d=1)}{p(t=1 \mid d=1) p(d=1)+p(t=1 \mid d=0) p(d=0)}= \\
& =\frac{0.99 \cdot 10^{-4}}{0.99 \cdot 10^{-4}+0.01 \cdot\left(1-10^{-4}\right)} \approx 1 \%
\end{aligned}
$$

Example: coin tossing

- We have a coin which may be fair or not
- The task is to estimate a probability θ of landing heads up
- Data: $X=\left(x_{1}, \ldots, x_{n}\right), \quad x \in\{0,1\}$

Head (H)

Tail (T)

Probabilistic model:

$$
p(x, \theta)=p(x \mid \theta) p(\theta)
$$

Example: coin tossing

- We have a coin which may be fair or not
- The task is to estimate a probability θ of landing heads up
- Data: $X=\left(x_{1}, \ldots, x_{n}\right), \quad x \in\{0,1\}$

Head (H)

Tail (T)

Probabilistic model:

$$
p(x, \theta)=p(x \mid \theta) p(\theta)
$$

Likelihood: $\operatorname{Bern}(x \mid \theta)=\theta^{x}(1-\theta)^{1-x}$

Example: coin tossing

- We have a coin which may be fair or not
- The task is to estimate a probability θ of landing heads up
- Data: $X=\left(x_{1}, \ldots, x_{n}\right), \quad x \in\{0,1\}$

Head (H)

Tail (T)

Probabilistic model:

Likelihood: $\operatorname{Bern}(x \mid \theta)=\theta^{x}(1-\theta)^{1-x}$

Example: coin tossing

How to choose a prior?

- Correct domain: $\theta \in[0,1]$
- Include prior knowledge: a coin is most likely fair
- Inference complexity: use conjugate prior

Example: coin tossing

How to choose a prior?

- Correct domain: $\theta \in[0,1]$
- Include prior knowledge: a coin is most likely fair
- Inference complexity: use conjugate prior

Beta distribution matches all requirements:

$$
\operatorname{Beta}(\theta \mid a, b)=\frac{1}{\mathrm{~B}(a, b)} \theta^{a-1}(1-\theta)^{b-1}
$$

Beta distribution

Example: coin tossing

Let's check that our likelihood and prior are conjugate:

$$
p(x \mid \theta)=\theta^{x}(1-\theta)^{1-x} \quad p(\theta)=\frac{1}{\mathrm{~B}(a, b)} \theta^{a-1}(1-\theta)^{b-1}
$$

Idea - check that prior and posterior lay in the same parametric family:

Here different constants are denoted with
the same letter C for demonstration reasons.

Example: coin tossing

Let's check that our likelihood and prior are conjugate:

$$
p(x \mid \theta)=\theta^{x}(1-\theta)^{1-x} \quad p(\theta)=\frac{1}{\mathrm{~B}(a, b)} \theta^{a-1}(1-\theta)^{b-1}
$$

Idea - check that prior and posterior lay in the same parametric family:

$$
p(\theta)=C \theta^{C}(1-\theta)^{C}
$$

Here different constants are denoted with
the same letter C for demonstration reasons.

Example: coin tossing

Let's check that our likelihood and prior are conjugate:

$$
p(x \mid \theta)=\theta^{x}(1-\theta)^{1-x} \quad p(\theta)=\frac{1}{\mathrm{~B}(a, b)} \theta^{a-1}(1-\theta)^{b-1}
$$

Idea - check that prior and posterior lay in the same parametric family:

$$
\begin{aligned}
& p(\theta)=C \theta^{C}(1-\theta)^{C} \\
& p(\theta \mid x)=\frac{1}{C} p(x \mid \theta) p(\theta)=\frac{1}{C} \theta^{x}(1-\theta)^{1-x} \frac{1}{\mathrm{~B}(a, b)} \theta^{a-1}(1-\theta)^{b-1}= \\
&=C \theta^{C}(1-\theta)^{C}
\end{aligned}
$$

Here different constants are denoted with
the same letter C for demonstration reasons.

Example: coin tossing

Let's check that our likelihood and prior are conjugate:

$$
p(x \mid \theta)=\theta^{x}(1-\theta)^{1-x} \quad p(\theta)=\frac{1}{\mathrm{~B}(a, b)} \theta^{a-1}(1-\theta)^{b-1}
$$

Idea - check that prior and posterior lay in the same parametric family:

$$
\begin{aligned}
& p(\theta)=C \theta^{C}(1-\theta)^{C} \text { conjugacy } \\
& p(\theta \mid x)=\frac{1}{C} p(x \mid \theta) p(\theta)=\frac{1}{C} \theta^{x}(1-\theta)^{1-x} \frac{1}{\mathrm{~B}(a, b)} \theta^{a-1}(1-\theta)^{b-1}= \\
& =C \theta^{C}(1-\theta)^{C} \text { conjugacy }
\end{aligned}
$$

Here different constants are denoted with

Example: coin tossing

Bayesian inference after receiving data $X=\left(x_{1}, \ldots, x_{n}\right)$:

$$
p(\theta \mid X)=\frac{1}{Z} p(X \mid \theta) p(\theta)=\frac{1}{Z}\left[\prod_{i=1}^{n} p\left(x_{i} \mid \theta\right)\right] p(\theta)=
$$

Example: coin tossing

Bayesian inference after receiving data $X=\left(x_{1}, \ldots, x_{n}\right)$:

$$
\begin{aligned}
p(\theta \mid X) & =\frac{1}{Z} p(X \mid \theta) p(\theta)=\frac{1}{Z}\left[\prod_{i=1}^{n} p\left(x_{i} \mid \theta\right)\right] p(\theta)= \\
& =\frac{1}{Z}\left[\prod_{i=1}^{n} \theta^{x_{i}}(1-\theta)^{1-x_{i}}\right] \frac{1}{\mathrm{~B}(a, b)} \theta^{a-1}(1-\theta)^{b-1}=
\end{aligned}
$$

Example: coin tossing

Bayesian inference after receiving data $X=\left(x_{1}, \ldots, x_{n}\right)$:

$$
\begin{aligned}
p(\theta \mid X) & =\frac{1}{Z} p(X \mid \theta) p(\theta)=\frac{1}{Z}\left[\prod_{i=1}^{n} p\left(x_{i} \mid \theta\right)\right] p(\theta)= \\
& =\frac{1}{Z}\left[\prod_{i=1}^{n} \theta^{x_{i}}(1-\theta)^{1-x_{i}}\right] \frac{1}{\mathrm{~B}(a, b)} \theta^{a-1}(1-\theta)^{b-1}= \\
& =\frac{1}{Z^{\prime}} \theta^{a+\sum_{i=1}^{n} x_{i}-1}(1-\theta)^{b+n-\sum_{i=1}^{n} x_{i}-1}
\end{aligned}
$$

Example: coin tossing

Bayesian inference after receiving data $X=\left(x_{1}, \ldots, x_{n}\right)$:

$$
\begin{aligned}
p(\theta \mid X) & =\frac{1}{Z} p(X \mid \theta) p(\theta)=\frac{1}{Z}\left[\prod_{i=1}^{n} p\left(x_{i} \mid \theta\right)\right] p(\theta)= \\
& =\frac{1}{Z}\left[\prod_{i=1}^{n} \theta^{x_{i}}(1-\theta)^{1-x_{i}}\right] \frac{1}{\mathrm{~B}(a, b)} \theta^{a-1}(1-\theta)^{b-1}= \\
& =\frac{1}{Z^{\prime}} \theta^{a+\sum_{i=1}^{n} x_{i}-1}(1-\theta)^{b+n-\sum_{i=1}^{n} x_{i}-1}=\operatorname{Beta}\left(\theta \mid a^{\prime}, b^{\prime}\right)
\end{aligned}
$$

New parameters: $\quad a^{\prime}=a+\sum_{i=1}^{n} x_{i} \quad b^{\prime}=b+n-\sum_{i=1}^{n} x_{i}$

Problem 2: Bayesian framework

Setting

- $p(X \mid \theta)=\prod_{k=1}^{K} \theta_{k}^{N_{k}}$ - multinomial likelihood, $\theta \in S_{K}$
- Dirichlet prior:

$$
\operatorname{Dir}(\theta \mid \alpha)=\frac{1}{B\left(\alpha_{1}, \ldots, \alpha_{K}\right)} \prod_{k=1}^{K} \theta_{k}^{\alpha_{k}-1}
$$

Dirichlet distribution

Beta distribution is a special case of Dirichlet distribution:

$$
\begin{aligned}
\operatorname{Dir}(\theta \mid \alpha) & \propto \prod_{k=1}^{K} \theta_{k}^{\alpha_{k}-1} \\
\operatorname{Beta}(\theta \mid a, b) & \propto \theta^{a-1}(1-\theta)^{b-1}
\end{aligned}
$$

Problem 2: Bayesian framework

Setting

- $p(X \mid \theta)=\prod_{k=1}^{K} \theta_{k}^{N_{k}}$ - multinomial likelihood, $\theta \in S_{K}$
- Dirichlet prior: $\operatorname{Dir}(\theta \mid \alpha)=\frac{1}{B\left(\alpha_{1}, \ldots, \alpha_{K}\right)} \prod_{k=1}^{K} \theta_{k}^{\alpha_{k}-1}$

Questions

- Check that likelihood and prior are conjugate
- Compute the posterior $p(\theta \mid X, \alpha)$
* Compare $\mathbb{E}_{p(\theta \mid X, \alpha)} \theta$ and $\theta_{M L}$
* Compute the predictive posterior $p\left(x_{N+1}=j \mid X, \alpha\right)$

Problem 2: Bayesian framework

Setting

- $p(X \mid \theta)=\prod_{k=1}^{K} \theta_{k}^{N_{k}}$ - multinomial likelihood, $\theta \in S_{K}$
- Dirichlet prior: $\operatorname{Dir}(\theta \mid \alpha)=\frac{1}{B\left(\alpha_{1}, \ldots, \alpha_{K}\right)} \prod_{k=1}^{K} \theta_{k}^{\alpha_{k}-1}$

Questions

- Check that likelihood and prior are conjugate
- Compute the posterior $p(\theta \mid X, \alpha)$
* Compare $\mathbb{E}_{p(\theta \mid X, \alpha)} \theta$ and $\theta_{M L}$
* Compute the predictive posterior $p\left(x_{N+1}=j \mid X, \alpha\right)$

Problem 2: Bayesian framework

Probabilistic model: $\quad p(X, \theta)=p(X \mid \theta) p(\theta)=p(X \mid \theta) \operatorname{Dir}(\theta \mid \alpha)$

- $p(X \mid \theta)=\prod_{k=1}^{K} \theta_{k}^{N_{k}}$ - multinomial likelihood, $\theta \in S_{K}$
- Dirichlet prior:

$$
\operatorname{Dir}(\theta \mid \alpha)=\frac{1}{B\left(\alpha_{1}, \ldots, \alpha_{K}\right)} \prod_{k=1}^{K} \theta_{k}^{\alpha_{k}-1}
$$

Here different constants are denoted with
the same letter C for demonstration reasons.

Problem 2: Bayesian framework

Probabilistic model: $\quad p(X, \theta)=p(X \mid \theta) p(\theta)=p(X \mid \theta) \operatorname{Dir}(\theta \mid \alpha)$
Prior: $\quad p(\theta)=\frac{1}{B\left(\alpha_{1}, \ldots, \alpha_{K}\right)} \prod_{k=1}^{K} \theta_{k}^{\alpha_{k}-1}=C \prod_{k=1}^{K} \theta_{k}^{C}$

Here different constants are denoted with
the same letter C for demonstration reasons.

Problem 2: Bayesian framework

Probabilistic model: $\quad p(X, \theta)=p(X \mid \theta) p(\theta)=p(X \mid \theta) \operatorname{Dir}(\theta \mid \alpha)$
Prior: $\quad p(\theta)=\frac{1}{B\left(\alpha_{1}, \ldots, \alpha_{K}\right)} \prod_{k=1}^{K} \theta_{k}^{\alpha_{k}-1}=C \prod_{k=1}^{K} \theta_{k}^{C}$
Posterior: $\quad p(\theta \mid X) \propto p(X \mid \theta) p(\theta)=\prod_{k=1}^{K} \theta_{k}^{N_{k}} \cdot \frac{1}{B\left(\alpha_{1}, \ldots, \alpha_{K}\right)} \prod_{k=1}^{K} \theta_{k}^{\alpha_{k}-1}=$

$$
=C \prod_{k=1}^{K} \theta_{k}^{C}
$$

Here different constants are denoted with

Problem 2: Bayesian framework

Probabilistic model: $\quad p(X, \theta)=p(X \mid \theta) p(\theta)=p(X \mid \theta) \operatorname{Dir}(\theta \mid \alpha)$
Prior: $\quad p(\theta)=\frac{1}{B\left(\alpha_{1}, \ldots, \alpha_{K}\right)} \prod_{k=1}^{K} \theta_{k}^{\alpha_{k}-1}=C \prod_{k=1}^{K} \theta_{k}^{C}$
Posterior: $\quad p(\theta \mid X) \propto p(X \mid \theta) p(\theta)=\prod_{k=1}^{K} \theta_{k}^{N_{k}} \cdot \frac{1}{B\left(\alpha_{1}, \ldots, \alpha_{K}\right)} \prod_{k=1}^{K} \theta_{k}^{\alpha_{k}-1}=$

Here different constants are denoted with
$=C \prod_{k=1}^{K} \theta_{k}^{C} \quad$ conjugate the same letter C for demonstration reasons.

Problem 2: Bayesian framework

Setting

- $p(X \mid \theta)=\prod_{k=1}^{K} \theta_{k}^{N_{k}}$ - multinomial likelihood, $\theta \in S_{K}$
- Dirichlet prior: $\operatorname{Dir}(\theta \mid \alpha)=\frac{1}{B\left(\alpha_{1}, \ldots, \alpha_{K}\right)} \prod_{k=1}^{K} \theta_{k}^{\alpha_{k}-1}$

Questions

- Check that likelihood and prior are conjugate
- Compute the posterior $p(\theta \mid X, \alpha)$
* Compare $\mathbb{E}_{p(\theta \mid X, \alpha)} \theta$ and $\theta_{M L}$
* Compute the predictive posterior $p\left(x_{N+1}=j \mid X, \alpha\right)$

Problem 2: Bayesian framework

Likelihood and prior are conjugate \rightarrow posterior is Dirichlet

$$
\begin{aligned}
p(\theta \mid X) \propto p(X \mid \theta) p(\theta) & =\prod_{k=1}^{K} \theta_{k}^{N_{k}} \cdot \frac{1}{B\left(\alpha_{1}, \ldots, \alpha_{K}\right)} \prod_{k=1}^{K} \theta_{k}^{\alpha_{k}-1} \propto \\
& \propto \prod_{k=1}^{K} \theta_{k}^{N_{k}+\alpha_{k}-1}
\end{aligned}
$$

Problem 2: Bayesian framework

Likelihood and prior are conjugate \rightarrow posterior is Dirichlet

$$
\begin{aligned}
p(\theta \mid X) \propto p(X \mid \theta) p(\theta) & =\prod_{k=1}^{K} \theta_{k}^{N_{k}} \cdot \frac{1}{B\left(\alpha_{1}, \ldots, \alpha_{K}\right)} \prod_{k=1}^{K} \theta_{k}^{\alpha_{k}-1} \propto \\
& \propto \prod_{k=1}^{K} \theta_{k}^{N_{k}+\alpha_{k}-1} \\
p(\theta \mid X)=\operatorname{Dir}\left(\theta \mid \alpha^{\prime}\right), & \alpha^{\prime}=\left(\alpha_{1}+N_{1}, \ldots, \alpha_{K}+N_{K}\right)
\end{aligned}
$$

Problem 2: Bayesian framework

Setting

- $p(X \mid \theta)=\prod_{k=1}^{K} \theta_{k}^{N_{k}}$ - multinomial likelihood, $\theta \in S_{K}$
- Dirichlet prior: $\operatorname{Dir}(\theta \mid \alpha)=\frac{1}{B\left(\alpha_{1}, \ldots, \alpha_{K}\right)} \prod_{k=1}^{K} \theta_{k}^{\alpha_{k}-1}$

Questions

- Check that likelihood and prior are conjugate
- Compute the posterior $p(\theta \mid X, \alpha)$
* Compare $\mathbb{E}_{p(\theta \mid X, \alpha)} \theta$ and $\theta_{M L}$
* Compute the predictive posterior $p\left(x_{N+1}=j \mid X, \alpha\right)$

Problem 2: frequentist framework

θ is restricted to simplex. To omit the inequality restrictions change parameterization to $\mu_{k}=\log \theta_{k}, \quad \mu_{k} \in \mathbb{R}$

The Lagrangian has the form:

$$
\begin{aligned}
\mathcal{L}(\mu, \lambda) & =\log p(X \mid \exp \mu)-\lambda\left(\sum_{k=1}^{K} \exp \mu_{k}-1\right)= \\
& =\sum_{k=1}^{K}\left(N_{k} \mu_{k}-\lambda \exp \mu_{k}\right)+\lambda
\end{aligned}
$$

Differentiation:

$$
\begin{aligned}
& 0=\frac{\partial \mathcal{L}(\boldsymbol{\mu}, \lambda)}{\partial \mu_{k}}=N_{k}-\lambda \exp \mu_{k} \Rightarrow \theta_{k}=\exp \mu_{k}=\frac{N_{k}}{\lambda} \\
& 0=\frac{\partial \mathcal{L}(\boldsymbol{\mu}, \lambda)}{\partial \lambda}=-\sum_{k=1}^{K} \exp \mu_{k}+1 \Rightarrow \lambda=\sum_{k=1}^{K} N_{k}
\end{aligned} \Rightarrow \theta_{k}=\frac{N_{k}}{\sum_{l=1}^{K} N_{l}}
$$

Problem 2: Bayesian framework

Maximum likelihood estimate:

$$
\theta_{k}=\frac{N_{k}}{\sum_{l=1}^{K} N_{l}}
$$

Expectation of the posterior:

$$
\mathbb{E}_{p(\theta \mid X)} \theta_{k}=\frac{\alpha_{k}+N_{k}}{\sum_{l=1}^{K} \alpha_{l}+N_{l}}
$$

Small $K \rightarrow$ Bayesian estimate is mostly based on prior
Large $K \rightarrow$ Bayesian estimate is very similar to ML estimate

Problem 2: Bayesian framework

Setting

- $p(X \mid \theta)=\prod_{k=1}^{K} \theta_{k}^{N_{k}}$ - multinomial likelihood, $\theta \in S_{K}$
- Dirichlet prior: $\operatorname{Dir}(\theta \mid \alpha)=\frac{1}{B\left(\alpha_{1}, \ldots, \alpha_{K}\right)} \prod_{k=1}^{K} \theta_{k}^{\alpha_{k}-1}$

Questions

- Check that likelihood and prior are conjugate
- Compute the posterior $p(\theta \mid X, \alpha)$
* Compare $\mathbb{E}_{p(\theta \mid X, \alpha)} \theta$ and $\theta_{M L}$
* Compute the predictive posterior $p\left(x_{N+1}=j \mid X, \alpha\right)$

Problem 2: Bayesian framework

$$
p\left(x_{N+1}=j \mid X, \alpha\right)=\int_{S_{K}} p\left(x_{N+1}=j \mid \theta\right) p(\theta \mid X, \alpha) \mathrm{d} \theta=
$$

Problem 2: Bayesian framework

$$
\begin{aligned}
& p\left(x_{N+1}=j \mid X, \alpha\right)=\int_{S_{K}} p\left(x_{N+1}=j \mid \theta\right) p(\theta \mid X, \alpha) \mathrm{d} \theta= \\
& \quad=\frac{\int_{S_{K}} \theta_{j} \prod_{k=1}^{K} \theta_{k}^{N_{k}+\alpha_{k}-1} \mathrm{~d} \theta}{B\left(\alpha_{1}+N_{1}, \ldots, \alpha_{K}+N_{K}\right)}=\frac{B\left(\alpha_{1}+N_{1}, \ldots, \alpha_{j}+N_{j}+1, \ldots, \alpha_{K}+N_{K}\right)}{B\left(\alpha_{1}+N_{1}, \ldots, \alpha_{j}+N_{j}, \ldots, \alpha_{K}+N_{K}\right)}= \\
& \quad=\frac{\Gamma\left(\alpha_{1}+N_{1}\right) \ldots \Gamma\left(\alpha_{j}+N_{j}+1\right) \ldots \Gamma\left(\alpha_{K}+N_{K}\right)}{\Gamma\left(\alpha_{1}+N_{1}\right) \ldots \Gamma\left(\alpha_{j}+N_{j}\right) \ldots \Gamma\left(\alpha_{K}+N_{K}\right)} \cdot \frac{\Gamma\left(\sum_{l}\left(\alpha_{l}+N_{l}\right)\right)}{\Gamma\left(\sum_{l}\left(\alpha_{l}+N_{l}\right)+1\right)}= \\
& \quad=\frac{\alpha_{j}+N_{j}}{\sum_{k} \alpha_{k}+N}
\end{aligned}
$$

