Introduction to Bayesian methods

Ekaterina Lobacheva

Higher School of Economics, Samsung-HSE Laboratory Moscow, Russia

NATIONAL RESEARCH UNIVERSITY

SAMSUNG Research

Problem set

The problem set is available here:

tiny.cc/ASGM_bayes_problems

Problem 1: Bayesian reasoning

Setting

During medical checkup, one of the tests indicates a serious disease. The test has high accuracy 99% (probability of true positive is 99%, probability of true negative is 99%). However, the disease is quite rare, and only one person in 10000 is affected.

Question

Calculate the probability that the examined person has the disease.

Problem 1: Bayesian reasoning

- $d \in \{0, 1\}$ disease (1 means that the person has a disease)
- $t \in \{0, 1\}$ test (1 means that test says that the person has a disease)
- Setting: $p(t = 1 | d = 1) = p(t = 0 | d = 0) = 0.99, \quad p(d = 1) = 10^{-4}$ Question: p(d = 1 | t = 1) = ?

Problem 1: Bayesian reasoning

- $d \in \{0, 1\}$ disease (1 means that the person has a disease)
- $t \in \{0, 1\}$ test (1 means that test says that the person has a disease)
- Setting: $p(t = 1 | d = 1) = p(t = 0 | d = 0) = 0.99, \quad p(d = 1) = 10^{-4}$ Question: p(d = 1 | t = 1) = ?
- $p(d = 1 \mid t = 1) = \frac{p(t)}{p(t = 1 \mid d = 1)p}$
 - 0.99. $0.99 \cdot 10^{-4} + 0.01 \cdot (1 - 10^{-4})$

$$\frac{t = 1 \mid d = 1)p(d = 1)}{p(d = 1) + p(t = 1 \mid d = 0)p(d = 0)} = \frac{10^{-4}}{10^{-4}} \approx 1\%$$

- We have a coin which may be fair or not
- The task is to estimate a probability θ of landing heads up
- Data: $X = (x_1, \ldots, x_n), \quad x \in \{0, 1\}$

Probabilistic model:

Head (H)

Tail (T)

 $p(x,\theta) = p(x \mid \theta)p(\theta)$

- We have a coin which may be fair or not
- The task is to estimate a probability θ of landing heads up
- Data: $X = (x_1, \ldots, x_n), \quad x \in \{0, 1\}$
- **Probabilistic model:**

 $p(x,\theta) =$

Likelihood: $Bern(x \mid \theta) =$

Head (H)

Tail (T)

$$= p(x \mid \theta)p(\theta)$$
$$\theta^{x}(1-\theta)^{1-x}$$

- We have a coin which may be fair or not
- The task is to estimate a probability θ of landing heads up
- Data: $X = (x_1, \ldots, x_n), \quad x \in \{0, 1\}$
- **Probabilistic model:**

Likelihood: $Bern(x \mid \theta) = \theta^x (1 - \theta)^{1-x}$

Tail (T) Head (H)

How to choose a prior?

- Correct domain: $\theta \in [0, 1]$
- Include prior knowledge: a coin is most likely fair
- Inference complexity: use conjugate prior

How to choose a prior?

- Correct domain: $\theta \in [0, 1]$
- Include prior knowledge: a coin is most likely fair
- Inference complexity: use conjugate prior

Beta distribution matches all requirements:

$$Beta(\theta \mid a, b) = \frac{1}{B(a, b)}$$

$$\theta^{a-1}(1-\theta)^{b-1}$$

Beta distribution

Let's check that our likelihood and prior are conjugate:

$$p(x \mid \theta) = \theta^x (1 - \theta)^{1 - x}$$

Idea — check that prior and posterior lay in the same parametric family:

Here different constants are denoted with the same letter C for demonstration reasons.

ior are conjugate: $p(\theta) = \frac{1}{B(a,b)} \theta^{a-1} (1-\theta)^{b-1}$

Let's check that our likelihood and prior are conjugate:

$$p(x \mid \theta) = \theta^x (1 - \theta)^{1 - x}$$

Idea — check that prior and posterior lay in the same parametric family: $p(\theta) = C\theta^C (1 - \theta)^C$

Here different constants are denoted with the same letter C for demonstration reasons.

$p(\theta) = \frac{1}{B(a,b)} \theta^{a-1} (1-\theta)^{b-1}$

Let's check that our likelihood and prior are conjugate:

$$p(x \mid \theta) = \theta^x (1 - \theta)^{1 - x}$$

Idea — check that prior and posterior lay in the same parametric family: $p(\theta) = C\theta^C (1 - \theta)^C$ $p(\theta \mid x) = \frac{1}{C}p(x \mid \theta)p(\theta) = \frac{1}{C}\theta$

Here different constants are denoted with the same letter C for demonstration reasons.

$p(\theta) = \frac{1}{B(a,b)} \theta^{a-1} (1-\theta)^{b-1}$

$$\theta^{x}(1-\theta)^{1-x}\frac{1}{B(a,b)}\theta^{a-1}(1-\theta)^{b-1} = \theta^{C}(1-\theta)^{C}$$

Let's check that our likelihood and prior are conjugate:

$$p(x \mid \theta) = \theta^x (1 - \theta)^{1 - x}$$

Idea — check that prior and posterior lay in the same parametric family: $p(\theta) = C\theta^C (1 - \theta)^C \text{ conjugacy}$ $p(\theta \mid x) = \frac{1}{C}p(x \mid \theta)p(\theta) = \frac{1}{C}\theta$

Here different constants are denoted with the same letter C for demonstration reasons.

$p(\theta) = \frac{1}{B(a,b)} \theta^{a-1} (1-\theta)^{b-1}$

$$\theta^{x}(1-\theta)^{1-x}\frac{1}{B(a,b)}\theta^{a-1}(1-\theta)^{b-1} = \theta^{C}(1-\theta)^{C}$$
 conjugacy

$$p(\theta \mid X) = \frac{1}{Z}p(X \mid \theta)p(\theta) = \frac{1}{Z}$$

$$p(\theta \mid X) = \frac{1}{Z} p(X \mid \theta) p(\theta) = \frac{1}{Z}$$
$$= \frac{1}{Z} \left[\prod_{i=1}^{n} \theta^{x_i} (1-\theta)^{1-1} \right]$$

$$p(\theta \mid X) = \frac{1}{Z} p(X \mid \theta) p(\theta) = \frac{1}{Z}$$
$$= \frac{1}{Z} \left[\prod_{i=1}^{n} \theta^{x_i} (1-\theta)^{1-1} \right]$$
$$= \frac{1}{Z'} \theta^{a+\sum_{i=1}^{n} x_i - 1} (1-\theta)^{1-1}$$

$$p(\theta \mid X) = \frac{1}{Z}p(X \mid \theta)p(\theta) = \frac{1}{Z}$$
$$= \frac{1}{Z} \left[\prod_{i=1}^{n} \theta^{x_i} (1-\theta)^{1-1} \right]$$
$$= \frac{1}{Z'} \theta^{a+\sum_{i=1}^{n} x_i - 1} (1-\theta)^{1-1}$$
New parameters: $a' = a + \sum_{i=1}^{n} x_i$

Setting

- $p(X \mid \theta) = \prod_{k=1}^{K} \theta_k^{N_k}$ multinomial likelihood, $\theta \in S_K$

• Dirichlet prior: $\operatorname{Dir}(\theta \mid \alpha) = \frac{1}{B(\alpha_1, \dots, \alpha_K)} \prod_{k=1}^{\kappa} \theta_k^{\alpha_k - 1}$

Dirichlet distribution

https://en.wikipedia.org/wiki/Dirichlet distribution

Beta distribution is a special case of Dirichlet distribution:

$$\operatorname{Dir}(\theta \mid \alpha) \propto \prod_{k=1}^{K} \theta_k^{\alpha_k - 1}$$

 $Beta(\theta \mid a, b) \propto \theta^{a-1}(1-\theta)^{b-1}$

1

0.2

0.4

Problem 2: Bayesian

Setting

- $p(X \mid \theta) = \prod_{k=1}^{K} \theta_k^{N_k}$ multi
- Dirichlet prior: $Dir(\theta \mid \alpha) =$

Questions

- Check that likelihood and prior are conjugate
- Compute the posterior $p(\theta|X, \alpha)$
- * Compare $\mathbb{E}_{p(\theta|X,\alpha)}\theta$ and θ_{ML}
- * Compute the predictive posterior $p(x_{N+1} = j | X, \alpha)$

inomial likelihood,
$$\theta \in S_K$$

$$\frac{1}{B(\alpha_1, \dots, \alpha_K)} \prod_{k=1}^K \theta_k^{\alpha_k - 1}$$

Problem 2: Bayesian

Setting

- $p(X \mid \theta) = \prod_{k=1}^{K} \theta_k^{N_k}$ multi
- Dirichlet prior: $Dir(\theta \mid \alpha) =$

Questions

- Check that likelihood and prior are conjugate
- Compute the posterior $p(\theta|X, \alpha)$
- * Compare $\mathbb{E}_{p(\theta|X,\alpha)}\theta$ and θ_{ML}
- * Compute the predictive posterior $p(x_{N+1} = j | X, \alpha)$

framework
inomial likelihood,
$$\theta \in S_K$$

 $\frac{1}{B(\alpha_1, \dots, \alpha_K)} \prod_{k=1}^K \theta_k^{\alpha_k - 1}$

Probabilistic model: $p(X, \theta) = p(X \mid \theta)p(\theta) = p(X \mid \theta)Dir(\theta \mid \alpha)$

- $p(X \mid \theta) = \prod_{k=1}^{K} \theta_k^{N_k}$ multinomial likelihood, $\theta \in S_K$
- Dirichlet prior: $\operatorname{Dir}(\theta \mid \alpha) = \frac{1}{B(\alpha_1, \dots, \alpha_K)} \prod_{k=1}^K \theta_k^{\alpha_k 1}$

Probabilistic model: $p(X, \theta) = p(X \mid \theta)p(\theta) = p(X \mid \theta)Dir(\theta \mid \alpha)$

Prior: $p(\theta) = \frac{1}{B(\alpha_1, \dots, \alpha_K)} \prod_{k=1}^K \theta_k^{\alpha_k - 1} = C \prod_{k=1}^K \theta_k^C$

Probabilistic model: $p(X, \theta) = p(X \mid \theta)p(\theta) = p(X \mid \theta)Dir(\theta \mid \alpha)$

Prior:
$$p(\theta) = \frac{1}{B(\alpha_1, \dots, \alpha_K)} \prod_{k=1}^K$$

Posterior: $p(\theta \mid X) \propto p(X \mid \theta)p(\theta) = \prod_{k=1}^{\kappa} \theta_k^{N_k} \cdot \frac{1}{B(\alpha_1, \dots, \alpha_K)} \prod_{k=1}^{K} \theta_k^{\alpha_k - 1} =$ K θ_k^c = Ck=1

Probabilistic model: $p(X, \theta) = p(X \mid \theta)p(\theta) = p(X \mid \theta)Dir(\theta \mid \alpha)$

Prior:
$$p(\theta) = \frac{1}{B(\alpha_1, \dots, \alpha_K)} \prod_{k=1}^K$$

Problem 2: Bayesian

Setting

- $p(X \mid \theta) = \prod_{k=1}^{K} \theta_k^{N_k}$ multi
- Dirichlet prior: $Dir(\theta \mid \alpha) =$

Questions

- Check that likelihood and prior are conjugate
- Compute the posterior $p(\theta|X, \alpha)$
- * Compare $\mathbb{E}_{p(\theta|X,\alpha)}\theta$ and θ_{ML}
- * Compute the predictive posterior $p(x_{N+1} = j | X, \alpha)$

inomial likelihood,
$$\theta \in S_K$$

$$\frac{1}{B(\alpha_1, \dots, \alpha_K)} \prod_{k=1}^K \theta_k^{\alpha_k - 1}$$

Likelihood and prior are conjugate \rightarrow posterior is Dirichlet

K $p(\theta \mid X) \propto p(X \mid \theta)p(\theta) = \prod$ k=1Kk=1

$$\theta_k^{N_k} \cdot \frac{1}{B(\alpha_1, \dots, \alpha_K)} \prod_{k=1}^K \theta_k^{\alpha_k - 1} \propto$$

 $\propto \prod \theta_k^{N_k + \alpha_k - 1}$

Likelihood and prior are conjugate \rightarrow posterior is Dirichlet

$$\theta_k^{N_k} \cdot \frac{1}{B(\alpha_1, \dots, \alpha_K)} \prod_{k=1}^K \theta_k^{\alpha_k - 1} \propto$$

 $\propto \prod \theta_k^{N_k + \alpha_k - 1}$

Problem 2: Bayesian

Setting

- $p(X \mid \theta) = \prod_{k=1}^{K} \theta_k^{N_k}$ multi
- Dirichlet prior: $Dir(\theta \mid \alpha) =$

Questions

 Check that likelihood and prior are conjugate • Compute the posterior $p(\theta|X, \alpha)$ * Compare $\mathbb{E}_{p(\theta|X,\alpha)} \theta$ and θ_{ML} * Compute the predictive posterior $p(x_{N+1} = j | X, \alpha)$

inomial likelihood,
$$\theta \in S_K$$

$$\frac{1}{B(\alpha_1, \dots, \alpha_K)} \prod_{k=1}^K \theta_k^{\alpha_k - 1}$$

Problem 2: frequentist framework

 θ is restricted to simplex. To omit the inequality restrictions change parameterization to $\mu_k = \log \theta_k, \quad \mu_k \in \mathbb{R}$

The Lagrangian has the form:

$$\mathcal{L}(\mu, \lambda) = \log p(X \mid \exp \mu) - \lambda (\sum_{k=1}^{K} \exp \mu_k - 1) =$$
$$= \sum_{k=1}^{K} (N_k \mu_k - \lambda \exp \mu_k) + \lambda$$

Differentiation:

 $0 = \frac{\partial \mathcal{L}(\boldsymbol{\mu}, \lambda)}{\partial \boldsymbol{\mu}_{k}} = N_{k} - \lambda \exp \boldsymbol{\mu}_{k} \Rightarrow \boldsymbol{\theta}_{k}$ $0 = \frac{\partial \mathcal{L}(\boldsymbol{\mu}, \boldsymbol{\lambda})}{\partial \boldsymbol{\lambda}} = -\sum_{k=1}^{K} \exp \mu_k + 1 =$

Maximum likelihood estimate:

Expectation of the posterior:

Small
$$K \longrightarrow$$
 Bayesian estinution
Large $K \longrightarrow$ Bayesian estinution

$$\theta_k = \frac{N_k}{\sum_{l=1}^K N_l}$$

$$\mathbb{E}_{p(\theta|X)}\theta_k = \frac{\alpha_k + N_k}{\sum_{l=1}^K \alpha_l + N_l}$$

mate is mostly based on prior mate is very similar to ML estimate

Problem 2: Bayesian

Setting

- $p(X \mid \theta) = \prod_{k=1}^{K} \theta_k^{N_k}$ multi
- Dirichlet prior: $Dir(\theta \mid \alpha) =$

Questions

- Check that likelihood and prior are conjugate
- Compute the posterior $p(\theta|X, \alpha)$

* Compare $\mathbb{E}_{p(\theta|X,\alpha)} heta$ and $heta_M$

* Compute the predictive poster

inomial likelihood,
$$\theta \in S_K$$

$$\frac{1}{B(\alpha_1, \dots, \alpha_K)} \prod_{k=1}^K \theta_k^{\alpha_k - 1}$$

$$for \ p(x_{N+1} = j | X, \alpha)$$

 $p(x_{N+1} = j \mid X, \alpha) = \int_{S_{\kappa}} p(x_{N+1} = j \mid \theta) p(\theta \mid X, \alpha) d\theta =$

$$p(x_{N+1} = j \mid X, \alpha) = \int_{S_K} p(x_{N+1})$$

$$=\frac{\int_{S_K}\theta_j\prod_{k=1}^K\theta_k^{N_k+\alpha_k-1}\mathrm{d}\theta}{B(\alpha_1+N_1,\ldots,\alpha_K+N_K)}=\frac{B(\alpha_1)}{B}$$

$$= \frac{\Gamma(\alpha_1 + N_1) \dots \Gamma(\alpha_j + N_j + 1) \dots \Gamma(\alpha_j + N_j) \dots \Gamma(\alpha_j + N_j$$

$$= \frac{\alpha_j + N_j}{\sum_k \alpha_k + N}$$

$= j \mid \theta p(\theta \mid X, \alpha) d\theta =$

 $\frac{\alpha_1 + N_1, \dots, \alpha_j + N_j + 1, \dots, \alpha_K + N_K)}{B(\alpha_1 + N_1, \dots, \alpha_j + N_j, \dots, \alpha_K + N_K)} =$ $\frac{\Gamma(\alpha_K + N_K)}{(\alpha_K + N_K)} \cdot \frac{\Gamma(\sum_l (\alpha_l + N_l))}{\Gamma(\sum_l (\alpha_l + N_l) + 1)} =$

