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Problem set

2

The problem set is 
available here:

tiny.cc/ASGM_bayes_problems
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Problem 1: Bayesian reasoning

During medical checkup, one of the tests indicates a serious disease. 
The test has high accuracy 99% (probability of true positive is 99%, 
probability of true negative is 99%). However, the disease is quite rare, 
and only one person in 10000 is affected.

Setting

Question

Calculate the probability that the examined person has the disease.
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•                   — disease (1 means that the person has a disease) 
•                   — test (1 means that test says that the person has a disease )

4

Problem 1: Bayesian reasoning

d 2 {0, 1}
t 2 {0, 1}

Setting: p(t = 1 | d = 1) = p(t = 0 | d = 0) = 0.99, p(d = 1) = 10�4

p(d = 1 | t = 1) =?Question:
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•                   — disease (1 means that the person has a disease) 
•                   — test (1 means that test says that the person has a disease )

5

Problem 1: Bayesian reasoning

d 2 {0, 1}
t 2 {0, 1}

Setting: p(t = 1 | d = 1) = p(t = 0 | d = 0) = 0.99, p(d = 1) = 10�4

p(d = 1 | t = 1) =?Question:

p(d = 1 | t = 1) =
p(t = 1 | d = 1)p(d = 1)

p(t = 1 | d = 1)p(d = 1) + p(t = 1 | d = 0)p(d = 0)
=

=
0.99 · 10�4

0.99 · 10�4 + 0.01 · (1� 10�4)
⇡ 1%
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• We have a coin which may be fair or not 
• The task is to estimate a probability    of landing 

heads up 
• Data:

Head (H) Tail (T)

✓

X = (x1, . . . , xn) , x 2 {0, 1}

Probabilistic model: 
p(x, ✓) = p(x | ✓)p(✓)

Example: coin tossing
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• We have a coin which may be fair or not 
• The task is to estimate a probability    of landing 

heads up 
• Data:

Head (H) Tail (T)

✓

Example: coin tossing

X = (x1, . . . , xn) , x 2 {0, 1}

Probabilistic model: 
p(x, ✓) = p(x | ✓)p(✓)

Bern(x | ✓) = ✓

x(1� ✓)1�xLikelihood: 
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• We have a coin which may be fair or not 
• The task is to estimate a probability    of landing 

heads up 
• Data:

Head (H) Tail (T)

✓

Example: coin tossing

X = (x1, . . . , xn) , x 2 {0, 1}

Probabilistic model: 
p(x, ✓) = p(x | ✓)p(✓)

Bern(x | ✓) = ✓

x(1� ✓)1�xLikelihood: Prior: ???
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How to choose a prior?

Example: coin tossing

• Correct domain:  
• Include prior knowledge: a coin is most 

likely fair  
• Inference complexity: use conjugate prior

✓ 2 [0, 1]
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How to choose a prior?

Example: coin tossing

• Correct domain:  
• Include prior knowledge: a coin is most 

likely fair  
• Inference complexity: use conjugate prior

✓ 2 [0, 1]

Beta distribution matches all requirements:

Beta(✓ | a, b) = 1

B(a, b)
✓a�1(1� ✓)b�1

Beta distribution

✓

P
D
F
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Let’s check that our likelihood and prior are conjugate:

Example: coin tossing

Idea — check that prior and posterior lay in the same parametric family:

p(x | ✓) = ✓

x(1� ✓)1�x p(✓) =
1

B(a, b)
✓a�1(1� ✓)b�1

Here different constants are denoted with 
the same letter C for demonstration reasons.
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Let’s check that our likelihood and prior are conjugate:

Example: coin tossing

p(✓) = C✓C(1� ✓)C

Idea — check that prior and posterior lay in the same parametric family:

p(x | ✓) = ✓

x(1� ✓)1�x p(✓) =
1

B(a, b)
✓a�1(1� ✓)b�1

Here different constants are denoted with 
the same letter C for demonstration reasons.
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Let’s check that our likelihood and prior are conjugate:

Example: coin tossing

p(✓) = C✓C(1� ✓)C

p(✓ | x) = 1

C

p(x | ✓)p(✓) = 1

C

✓

x(1� ✓)1�x

1

B(a, b)
✓

a�1(1� ✓)b�1 =

= C✓C(1� ✓)C

Idea — check that prior and posterior lay in the same parametric family:

p(x | ✓) = ✓

x(1� ✓)1�x p(✓) =
1

B(a, b)
✓a�1(1� ✓)b�1

Here different constants are denoted with 
the same letter C for demonstration reasons.
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Let’s check that our likelihood and prior are conjugate:

Example: coin tossing

p(✓) = C✓C(1� ✓)C

p(✓ | x) = 1

C

p(x | ✓)p(✓) = 1

C

✓

x(1� ✓)1�x

1

B(a, b)
✓

a�1(1� ✓)b�1 =

= C✓C(1� ✓)C

Idea — check that prior and posterior lay in the same parametric family:

p(x | ✓) = ✓

x(1� ✓)1�x p(✓) =
1

B(a, b)
✓a�1(1� ✓)b�1

conjugacy

conjugacy

Here different constants are denoted with 
the same letter C for demonstration reasons.
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Bayesian inference after receiving data                               :

Example: coin tossing
X = (x1, . . . , xn)

p(✓ | X) =
1

Z

p(X | ✓)p(✓) = 1

Z

"
nY

i=1

p (xi | ✓)
#
p(✓) =
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Bayesian inference after receiving data                               :

Example: coin tossing
X = (x1, . . . , xn)

p(✓ | X) =
1

Z

p(X | ✓)p(✓) = 1

Z

"
nY

i=1

p (xi | ✓)
#
p(✓) =

=
1

Z

"
nY

i=1

✓xi(1� ✓)1�xi

#
1

B(a, b)
✓a�1(1� ✓)b�1 =
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Bayesian inference after receiving data                               :

Example: coin tossing
X = (x1, . . . , xn)

=
1

Z 0 ✓
a+

Pn
i=1 xi�1(1� ✓)b+n�

Pn
i=1 xi�1 = Beta (✓ | a0, b0)

p(✓ | X) =
1

Z

p(X | ✓)p(✓) = 1

Z

"
nY

i=1

p (xi | ✓)
#
p(✓) =

=
1

Z

"
nY

i=1

✓xi(1� ✓)1�xi

#
1

B(a, b)
✓a�1(1� ✓)b�1 =
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Bayesian inference after receiving data                               :

Example: coin tossing

a

0 = a+
nX

i=1

xi b

0 = b+ n�
nX

i=1

xi

X = (x1, . . . , xn)

=
1

Z 0 ✓
a+

Pn
i=1 xi�1(1� ✓)b+n�

Pn
i=1 xi�1 = Beta (✓ | a0, b0)

New parameters: 

p(✓ | X) =
1

Z

p(X | ✓)p(✓) = 1

Z

"
nY

i=1

p (xi | ✓)
#
p(✓) =

=
1

Z

"
nY

i=1

✓xi(1� ✓)1�xi

#
1

B(a, b)
✓a�1(1� ✓)b�1 =
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Problem 2: Bayesian framework
Setting

•                                      — multinomial likelihood, 
• Dirichlet prior:

p(X | ✓) =
QK

k=1 ✓
Nk
k ✓ 2 SK

Dir(✓ | ↵) = 1

B(↵1, . . . ,↵K)

KY

k=1

✓↵k�1
k
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Dirichlet distribution

https://en.wikipedia.org/wiki/Dirichlet distribution

Beta distribution is a 
special case of 

Dirichlet distribution:

Dir(✓ | ↵) /
KY

k=1

✓↵k�1
k

Beta(✓ | a, b) / ✓a�1(1� ✓)b�1
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Problem 2: Bayesian framework
Setting

Questions

•                                      — multinomial likelihood, 
• Dirichlet prior:

p(X | ✓) =
QK

k=1 ✓
Nk
k ✓ 2 SK

p(✓|X,↵)

Dir(✓ | ↵) = 1

B(↵1, . . . ,↵K)

KY

k=1

✓↵k�1
k

✓MLEp(✓|X,↵)✓

• Check that likelihood and prior are conjugate   
• Compute the posterior 
✴ Сompare                    and  
✴ Compute the predictive posterior p(xN+1 = j|X,↵)
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Dir(✓ | ↵) = 1

B(↵1, . . . ,↵K)

KY

k=1

✓↵k�1
k

✓MLEp(✓|X,↵)✓

• Check that likelihood and prior are conjugate   
• Compute the posterior 
✴ Сompare                    and  
✴ Compute the predictive posterior p(xN+1 = j|X,↵)



/ 3523

Problem 2: Bayesian framework

Probabilistic model:

Here different constants are denoted with 
the same letter C for demonstration reasons.

•                                      — multinomial likelihood, 
• Dirichlet prior:
p(X | ✓) =

QK
k=1 ✓

Nk
k ✓ 2 SK

Dir(✓ | ↵) = 1

B(↵1, . . . ,↵K)

KY

k=1

✓↵k�1
k

p(X, ✓) = p(X | ✓)p(✓) = p(X | ✓)Dir(✓ | ↵)
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Problem 2: Bayesian framework

Prior:

Here different constants are denoted with 
the same letter C for demonstration reasons.

p(✓) =
1

B(↵1, . . . ,↵K)

KY

k=1

✓↵k�1
k = C

KY

k=1

✓Ck

Probabilistic model: p(X, ✓) = p(X | ✓)p(✓) = p(X | ✓)Dir(✓ | ↵)
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Problem 2: Bayesian framework

Prior:

Posterior: p(✓ | X) / p(X | ✓)p(✓) =
KY

k=1

✓Nk
k · 1

B(↵1, . . . ,↵K)

KY

k=1

✓↵k�1
k =

Here different constants are denoted with 
the same letter C for demonstration reasons.

= C
KY

k=1

✓Ck

p(✓) =
1

B(↵1, . . . ,↵K)

KY

k=1

✓↵k�1
k = C

KY

k=1

✓Ck

Probabilistic model: p(X, ✓) = p(X | ✓)p(✓) = p(X | ✓)Dir(✓ | ↵)
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Problem 2: Bayesian framework

Prior:

Posterior:

conjugate  

p(✓ | X) / p(X | ✓)p(✓) =
KY

k=1

✓Nk
k · 1

B(↵1, . . . ,↵K)

KY

k=1

✓↵k�1
k =

= C
KY

k=1

✓Ck

p(✓) =
1

B(↵1, . . . ,↵K)

KY

k=1

✓↵k�1
k = C

KY

k=1

✓Ck

Here different constants are denoted with 
the same letter C for demonstration reasons.

Probabilistic model: p(X, ✓) = p(X | ✓)p(✓) = p(X | ✓)Dir(✓ | ↵)
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Problem 2: Bayesian framework
Setting

Questions

•                                      — multinomial likelihood, 
• Dirichlet prior:

p(X | ✓) =
QK

k=1 ✓
Nk
k ✓ 2 SK

p(✓|X,↵)

Dir(✓ | ↵) = 1

B(↵1, . . . ,↵K)

KY

k=1

✓↵k�1
k

✓MLEp(✓|X,↵)✓

• Check that likelihood and prior are conjugate   
• Compute the posterior 
✴ Сompare                    and  
✴ Compute the predictive posterior p(xN+1 = j|X,↵)
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Problem 2: Bayesian framework
Likelihood and prior are conjugate             posterior is Dirichlet

p(✓ | X) / p(X | ✓)p(✓) =
KY

k=1

✓Nk
k · 1

B(↵1, . . . ,↵K)

KY

k=1

✓↵k�1
k /

/
KY

k=1

✓Nk+↵k�1
k
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Problem 2: Bayesian framework
Likelihood and prior are conjugate             posterior is Dirichlet

p(✓ | X) / p(X | ✓)p(✓) =
KY

k=1

✓Nk
k · 1

B(↵1, . . . ,↵K)

KY

k=1

✓↵k�1
k /

/
KY

k=1

✓Nk+↵k�1
k

p(✓ | X) = Dir(✓ | ↵0), ↵0 = (↵1 +N1, . . . ,↵K +NK)
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Problem 2: Bayesian framework
Setting

Questions

•                                      — multinomial likelihood, 
• Dirichlet prior:

p(X | ✓) =
QK

k=1 ✓
Nk
k ✓ 2 SK

p(✓|X,↵)

Dir(✓ | ↵) = 1

B(↵1, . . . ,↵K)

KY

k=1

✓↵k�1
k

✓MLEp(✓|X,↵)✓

• Check that likelihood and prior are conjugate   
• Compute the posterior 
✴ Сompare                    and  
✴ Compute the predictive posterior p(xN+1 = j|X,↵)
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✓   is restricted to simplex. To omit the inequality restrictions change 
parameterization to

31

Problem 2: frequentist framework

µk = log ✓k, µk 2 R

The Lagrangian has the form:

Differentiation:

✓k =
NkPK
l=1 Nl

=

PK
k=1 (Nkµk � � expµk) + �

L(µ,�) = log p(X | expµ)� �(
PK

k=1 expµk � 1) =

0 =

@L(µ,�)
@µk

= Nk � � expµk ) ✓k = expµk =

Nk
�

0 =

@L(µ,�)
@� = �

PK
k=1 expµk + 1 ) � =

PK
k=1 Nk
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Problem 2: Bayesian framework

Maximum likelihood estimate:    

Expectation of the posterior:

✓k =
NkPK
l=1 Nl

Ep(✓|X)✓k =
↵k +NkPK
l=1 ↵l +Nl

Small K
Large K

Bayesian estimate is mostly based on prior
Bayesian estimate is very similar to ML estimate
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Problem 2: Bayesian framework
Setting

Questions

•                                      — multinomial likelihood, 
• Dirichlet prior:

p(X | ✓) =
QK

k=1 ✓
Nk
k ✓ 2 SK

p(✓|X,↵)

Dir(✓ | ↵) = 1

B(↵1, . . . ,↵K)

KY

k=1

✓↵k�1
k

✓MLEp(✓|X,↵)✓

• Check that likelihood and prior are conjugate   
• Compute the posterior 
✴ Сompare                    and  
✴ Compute the predictive posterior p(xN+1 = j|X,↵)
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Problem 2: Bayesian framework

p(xN+1 = j | X,↵) =

Z

SK

p(xN+1 = j | ✓)p(✓ | X,↵)d✓ =
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p(xN+1 = j | X,↵) =

Z

SK

p(xN+1 = j | ✓)p(✓ | X,↵)d✓ =

35

Problem 2: Bayesian framework

=

R
SK

✓j
QK

k=1 ✓
Nk+↵k�1
k d✓

B(↵1 +N1, . . . ,↵K +NK)
=

B(↵1 +N1, . . . ,↵j +Nj + 1, . . . ,↵K +NK)

B(↵1 +N1, . . . ,↵j +Nj , . . . ,↵K +NK)
=

=
�(↵1 +N1) . . .�(↵j +Nj + 1) . . .�(↵K +NK)

�(↵1 +N1) . . .�(↵j +Nj) . . .�(↵K +NK)
·

�(
P

l(↵l +Nl))

�(
P

l(↵l +Nl) + 1)
=

=
↵j +NjP
k ↵k +N


