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Deep Learning / Probabilistic Reasoning

”classical” Deep Learning

+ Rich non-linear models for
classification and sequence
prediction.

+ Scalable learning using stochastic
approximation and conceptually
simple.

+ Easily composable and scalable.

- Only point estimates

- Hard to score models, implement
model selection and complexity
penalisation.

Probabilistic reasoning

+ Unified framework for model
building, inference, prediction and
decision making.

+ Explicit accounting for uncertainty
and variability of outcomes.

+ Robust to overfitting; tools for
model selection and composition.

- Potentially intractable inference,
computationally expensive or long
simulation time.

- Probabilistic models are often ’too
simple’ and do not have the
discriminative power of DL
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Move beyond associating inputs to outputs

Improve supervised learning from few samples
Unlabeled data often abundant
Learn representations / concepts / features from unlabeled data

A lot of applications: generate new patterns, learn from few examples,
detect unusual behaviors, ...

Joint work with A. Doucet (Oxford), G. Fort (U. Toulouse), Hoi To Wai (CHUHK), M. Panov
(NRU-HSE Moscow), with N. Kotolevski (Skoltech), A. Thin (Ecole Polytechnique and Oxford)
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(Un)supervised learning and (un)conditional models

Supervised learning: model conditional distribution pθ(y|x)
- for example x is an image, y is a class label

max
θ

∑
DN

log pθ(Yi|Xi)

- DN = {(Xi, Yi)}Ni=1 is the training sequence (sample from the unknown
data generating distribution)

- θ is the model parameter

Unsupervised learning: model unconditional distribution pθ(x)
- For example x is an image and the parameters can be estimated by

maximizing the likelihood

max
θ

∑
DN

log pθ(Xi)

- Possible to draw from pθ [generate new samples]
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Deep Latent Models

Generative model: unconditional density model pθ(x)

Deep Latent Gaussian Models (DLGM) are powerful generative models
that can be effectively fit to very large datasets of complicated
high-dimensional data Kingma and Welling, 2014; Rezende et al, 2014

Assumptions: the observations are generated by
sampling some latent variables
feeding them into a deep neural network
adding some structured noise to the network output

Non-linear extensions of Probabilistic Principal Component Analysis,
Gaussian Linear State-Space models, Hidden Markov Models, etc...
Roweis, 1997; Bishop, Tipping, 1999
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Deep Latent Gaussian Models - DLGM

Sample the latent variables Z ∈ Rp from a normal
distribution

Compute a vector-valued non-linear function gθ,
the decoder, typically a deep neural network with
some parameters θ. The decoder maps latent
code to the observations.

Sample the observation X ∈ X ⊂ Rd
independently conditionally to Z ∈ Rp from a
distribution parameterized by gθ(Z)
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DLGM for MNIST

Observations: binarized MNIST handwritten digit data set : X = {0, 1}d
with d = 282 = 784

Generative model:

Z ∼ N (0, Idp)

X|Z ∼
d∏
j=1

Ber(X(j), [gθ(Z)](j)) X = (X(1), . . . , X(d))

- The pixels in the binarized image X(j) are conditionally independent.
- Each pixel X(j) is a Bernoulli random variable with a success probability

given by the the j-th component of the decoder output.
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Inference problem

The DLGM model specifies the likelihood the observation x

pθ(x) =

∫
Rp
pθ(x, z)dz where pθ(x, z) = pθ(x|z)φ(z)

Given a training data set X1, . . . , XN , a natural idea is to fit the
parameter θ using a maximum likelihood

θ̂ = arg max
θ∈θ

N−1
N∑
n=1

log pθ(Xn)

Problems:
1 The integral is intractable (no closed-form expression)
2 The dimension of the parameters p is large
3 The number of data point N is also large
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The Fisher identity

∇θ log pθ(x) =

∫
Rp

∇θpθ(x, z)
pθ(x)

dz

=

∫
Rp
∇ log pθ(x, z)

pθ(x, z)

pθ(x)
dz

=

∫
Rp
∇ log pθ(x, z)pθ(z|x)dz

In words, the gradient of the incomplete likelihood is the
conditional expectation of the gradient of the complete
data likelihood (the joint likelihood of the observations
and the latent data).

The key behind many successful algorithms: EM
algorithm, variational EM, etc...

Figure: Fisher,
1946
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A direct implementation

minibatch gradient descent: intractable

θk+1 = θk + γk+1
N

M

∑
j∈Ik+1

∇ log pθk (Xj)

here M is the batch size, Ik+1 is a minibatch and γk+1 is the stepsize.

Idea: Using the Fisher Identity, replace the gradient by a Monte-Carlo
approximation

θk+1 = θk + γk+1
N

M

∑
j∈Ik+1

L−1
L∑
`=1

∇ log pθk (Xj , Zj,i)

where Zj,1, . . . , Zj,L is a sample from the pθk (z|Xj).

Problem: direct sampling from pθ(z|Xj) is not feasible.

this is a special case of incremental optimization. Better algorithm are available -but

the memory imprint can be huge-: (Karimi and Wai, 2019).
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Markov Chain Monte Carlo I

Markov Chain Monte Carlo (MCMC) defines a class of
methods to draw sample from an arbitrary target
distribution

- in this application, the posterior distribution of the
latent state π(z) = pθk (z|Xj).

Idea: Construct an ergodic Markov chain whose
invariant distribution is the target distribution π.

- Take its roots in statistical physics.

In most implementations, π need to be known up to a
normalizing constant.

- Since pθ(z|x) ∝ pθ(x, z) the knowledge of the
complete data likelihood is all what we need !
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Markov Chain Monte Carlo II

Many recent progresses have been achieved: Langevin Dynamics,
Hamiltonian Monte Carlo,...

- Complexity results are now available (Durmus and Moulines, 2017b),
(Durmus and Moulines, 2017a)... [end of this talk]

Advantage: estimate any expectation w.r.t. the posterior arbitrarily
precisely

Drawbacks:
MCMC may require many ”burn-in” iterations to forget their initial state,
Successive samples from the chain may be highly correlated
Diagnosing when the chain has reached its stationary regime is challenging.
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Variational Expectation-Maximization

The Variational Expectation-Maximization (VEM) approximates the
intractable log pθ(x) with the evidence lower bound (ELBO)

Idea: Choose qφ(z|x) a family of distributions indexed by parameters φ.

ELBO

ELBO(θ, φ, x)
def
=

∫
log

(
pθ(x, z)

qφ(z|x)

)
qφ(z|x)dz

= log pθ(x)−
∫

log

(
qφ(z|x)

pθ(z|x)

)
pθ(z|x)dz

= log pθ(x)−KL(qφ(·|x)‖pθ(·|x)) ≤ log pθ(x) .

- Use the ELBO as a proxy to the incomplete data log-likelihood ! Bound
tight if variational autoencoder matches real posterior.

- Of course ELBO(θ, φ, x) is intractable but sampling from qφ(z|x) is easy,
cheap MC implementation can be obtained.
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VEM in DGLM

Standard choice: qφ(z|x) = h(z; rφ(x)) where rφ(x), the encoder is the a
output an neural network and h(z; r) is a tractable distribution with
parameters r.

ELBO becomes a function of the encoder (inference net) and decoder
(generative net)

ELBO(θ, φ, x) =

∫
log pθ(x|z)qφ(·|x)dz −KL(qφ(·|x)|φ(z))

2019 HSE-Yandex Autumn School



Probabilistic Reasoning with DL: three examples
High-Dimensional Sampling

Variance reduction for Makov Chains
Bibliography

Deep Variational Autoencoders
Uncertainty quantification
Macrocanonical sampling

VAE vs. GAN
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Making Progresses and Open problems

Many works in progress (and the competition is fierce !)

More accurate bound for a given posterior
- using importance sampling (Burda et al., 2016)

Enlarge the family of variational posteriors
- Improves posterior with a series of invertible transformations (VAE with

normalizing flows)
- Combines VAE with MCMC [Hamiltonian Variational Inference]

Avoid (whenever possible) approximate inference
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Uncertainty quantification

ML is incorporated into many systems affecting the quality of human life,
it is crucial to know how confident the model is when making decisions.

Most ML methods are focused on point estimates and are poor at
representing uncertainty...

– Model uncertainty about the predicted class for data not trained to be
recognized

– Determine which examples are hard to recognize and require further
inspection,

– Sort out unusable data.

In addition, most ML techniques are very sensitive to adversarial attacks.

Making informed decisions needs risk measures

A. Durmus (ENS Paris-Saclay), D. Belomestny (HSE, Moscow), A. Naumov (HSE,

Moscow); PhD N. Brosse (Ecole Polytechnique), S. Samsonov (HSE, Moscow),

L. Iosipoi (HSE, Moscow)
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What should we care I ?

Figure: From Goodfellow et al, Explaining and Harnessing adversarial examples (2014)
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What should we care II ?
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What should we care III ?

Figure: From Metzen et al., 2017
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Sources of uncertainty in ML

Random errors
- Noisy observations, missing data, wrong labels, latent data

Epistemic errors
- Uncertainty in the parameters (weights in a deep net may be poorly

specified),
- Uncertainty in the model (it is common practice to use a very large NN to

flexibly fit data, and then reign in overfitting using regularization terms
etc...)
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Why being bayesian ?

To address the issue of overconfident prediction, recent works have
proposed approaches like

calibration methods,
ensemble methods,
sampling techniques (DropOut, Dropconnect, bootstrap)

Bayesian inference offers a simple and principled approach to enable
uncertainty estimates as it aims to marginalize the model parameters.
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The holy grail
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First results

Figure: Deterministic NN: a point estimate of the output overconfident. Bayesian
framework allows us to obtain a distribution over the outputs
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Bayesian approach in a nutshell

Learning: Compute the posterior distribution over the model parameter

p(θ | DN ) ∝ π(θ)

N∏
i=1

p(yi | xi, θ) DN = {(xi, yi)}Ni=1

where
- π(θ|) is the prior distribution of the parameter given the model,
- L(y | x, θ) is the conditional distribution of the label y given the features x

and the parameters θ.

Prediction Compute the posterior predictive distribution

p(y | x,DN ) =

∫
p(y|x, θ)p(θ | DN )dθ

Bayesian methods outputs a distribution on the labels : it is a
probabilistic classifier
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Challenges in Bayesian machine learning

One of the core problems of Bayesian machine learning is to sample /
represent the posterior distribution

- Fundamental for Bayesian inference which frames all inference about
unknown quantities as a calculation about the posterior.

Most of the Bayesian computational methods developed so far do not
adapt when new needs arose such as

- scalability to massive data collections,
- number of free parameters.

Objective: Develop new Bayesian computation paradigms ! Here again
two options

- Develop a new generation of sampling methods which scale (in the
dimension, number of parameters)

- Use variational inference (here again, use deep net to encode the
distributions, combine with invertible flows, etc..)
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Models for texture synthesis

Figure: Exemplar-based texture synthesis

A. Desolneux (ENS Paris-Saclay), B. Galerne, (U. Orleans) and V. De Bortoli (PhD,

ENS Paris-Saclay)

Work in Progress... A. Durmus (ENS Paris-Saclay), A. Doucet (U. Oxford), S. Mallat

(ENS Ulm), A. Thin (PhD, Polytechnique)
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Models for texture synthesis

Goal: sample textures X ∼ Π? which look like an original texture x0

but are not verbatim copies of x0.

Challenge: How to combine randomness and geometric structure in an
image model?

A possible answer: Maximize the entropy Ent under geometrical
constraints specified by a vector-valued non-linear functions f .
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Microcanonical and Macrocanonical models

Links with statistical physics (Bruna & Mallat, 2018)...

Microcanonical model

The probability distribution function Π? ∈P is a microcanonical model
associated with the exemplar texture x0 ∈ Rd, statistics f : Rd → Rp if

Ent(Π?) = max
{

Ent(Π), Π ∈P, Π({x ∈ Rd : ‖f(x)− f(x0)‖ ≤ ε}) = 1
}
.

Macrocanonical model

The probability distribution function Π? ∈P is a macrocanonical model
associated with the exemplar texture x0 ∈ Rd, statistics f : Rd → Rp if

Ent(Π?) = max {Ent(Π), Π ∈P, Π(f) = f(x0)} .

Notations: EΠ [f(X)] := Π(f).
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Microcanonical and Macrocanonical models

Links with statistical physics (Bruna & Mallat, 2018)...

Microcanonical model

The probability distribution function Π? ∈P is a microcanonical model
associated with the exemplar texture x0 ∈ Rd, statistics f : Rd → Rp if

Ent(Π?) = max
{

Ent(Π), Π ∈P, Π({x ∈ Rd : ‖f(x)− f(x0)‖ ≤ ε}) = 1
}
.

Macrocanonical model

The probability distribution function Π? ∈P is a macrocanonical model
associated with the exemplar texture x0 ∈ Rd, statistics f : Rd → Rp if

Entµ(Π?) = min {KL(Π, µ), Π ∈P, Π(f) = f(x0)} .

Notations: EΠ [f(X)] := Π(f), µ = reference probability measure
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Fix x0 ∈ Rd (exemplar texture), f : Rd → Rp (constraints) with p� d and

Rd - image space,

Rp - parameter space.

Macrocanonical models are Gibbs measures

Under mild technical conditions, there exists θ? ∈ Rp such that

dΠθ?

dµ
(x) ∝ exp(−〈θ?, f(x)− f(x0)〉)

is a macrocanonical model associated with x0 and f .
The optimal parameter θ? solves the following optimization problem:

θ? ∈ arg min

{
log

[∫
Rd

exp(−〈θ, f(x)− f(x0)〉)dµ(x)

]
, θ ∈ Rp

}
.

1 How to find the optimal parameters θ??

2 How to sample from the model dΠθ
dµ

(x) ∝ exp(−〈θ, f(x)− f(x0)〉), i.e. how to

sample from a Gibbs measure?
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Finding the optimal parameters

The optimal parameters θ? minimize the log-partition function

L(θ) = log

[∫
Rd

exp(−〈θ, f(x)− f(x0)〉)dµ(x)

]
.

Properties of the log-partition function

∇θL(θ) = −(Πθ(f)− f(x0)) ,

∇2
θL(θ) = CovΠθ (f) ⇒ convexity

θn+1 = θn + δn+1Πθn(f − f(x0)) ,

Compute Πθ(f) ⇒ Compute ∇L(θ) ⇒ Gradient descent ⇒ Find θ?.
Monte Carlo approximation of Πθ(f) ⇒ how to sample from Πθ?
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Sampling from Πθ

Usually it is not possible to sample from Π(dx) ∝ exp[−U(x)]dx, but,

Approximate sampling is available using Markov Chain Monte Carlo, for
example (overdamped) Langevin Dynamic (Durmus and Moulines,
2017b), (Durmus and Moulines, 2019)

Xn+1 = Xn − γn+1∇U(Xn) +
√

2γn+1Zn+1 ,

where Zn+1 ∼ N (0, Id), i.i.d., γn > 0. → sample ≈ Π(dx) ∝ exp[−U(x)]dx.
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Combining Optimization and Sampling

θ0

θ1

θ2

X0
1 , . . . , X

0
m0

X1
1 , . . . , X

1
m1

X2
1 , . . . , X

2
m2

perturbed

gradient

descent

Langevin algorithm

Monte Carlo
estim

ation

– parameter sequence ∈ Rp (optimization)

– image sequence ∈ Rd (sampling)
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Let Uθ(x) = 〈θ, f(x)− f(x0)〉+ r(x) (assuming that dµ
dLeb

(x) ∝ exp(−r(x))).

Finding optimal parameters
θ? is the minimum of the log-partition
function which is a convex problem.
Gradient descent dynamics

θn+1 = θn + δn+1Πθn (f − f(x0))

Sampling from a Gibbs measure
The potential x 7→ Uθ(x) is usually
non-convex but has curvature at infinity.
Langevin dynamics

Xn+1 = Xn−γn+1∇Uθ(Xn)+
√

2γn+1Zn+1

Xn
k+1 = Xn

k − γn∇Uθn(Xn
k ) +

√
2γnZ

n
k+1 , with Xn

0 = Xn−1
mn−1

,

θn+1 = θn + δn+1m
−1
n

mn∑
k=1

{f(Xn
k )− f(x0)} ,

where Znk ∼ N (0, Id), i.i.d.
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Max entropy with Deep features

j = family of layers
c` = channels of layer `

G`,c = CNN feature at layer ` and channel c
n`,c = number of pixels at layer ` and channel c

Figure: Structure of the neural network VGG-19

Choice of features: mean of each channel for selected layers, p ≈ 103, i.e.
f(x) = (

∑n`,c
i=1 G`,c(x)i/n`,c)`∈j,c∈c` .
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Input (x0) Initialization (Gaussian) After 10000 iterations
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(Some) open questions

Interpretation of the macrocanonical parameters θ?? Tight bounds?
Concentration of the (non-convex) measure in high dimensional settings?

(Markov chain) the mixing of the Langevin dynamic might be slow for
some value of the macrocanonical parameters → replace MCMC by
generative networks or transform the distribution with invertible flows ?

(model) VGG features are arbitrary → which features for which problem?
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Strongly log-concave distribution

Framework

Denote by π a target density w.r.t. the Lebesgue measure on Rd, known
up to a normalisation factor

x 7→ π(x)
def
= e−U(x)/

∫
Rd

e−U(y)dy ,

Implicitly, d� 1.

Assumption: U is L-smooth : twice continuously differentiable and there
exists a constant L such that for all x, y ∈ Rd,

‖∇U(x)−∇U(y)‖ ≤ L‖x− y‖ .
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(Overdamped) Langevin diffusion

Langevin SDE:
dYt = −∇U(Yt)dt+

√
2dBt ,

where (Bt)t≥0 is a d-dimensional Brownian Motion.

Notation: (Pt)t≥0 the Markov semigroup associated to the Langevin
diffusion:

Pt(x,A) = P(Xt ∈ A|X0 = x) , x ∈ Rd, A ∈ B(Rd) .

π(x) ∝ exp(−U(x)) is the unique invariant probability measure.
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Langevin diffusion

2019 HSE-Yandex Autumn School



Probabilistic Reasoning with DL: three examples
High-Dimensional Sampling

Variance reduction for Makov Chains
Bibliography

Langevin Diffusion and Unadjusted Langevin Algorithm
Strongly log-concave distribution

Ergodicity

Key property 1: For all x ∈ Rd,

lim
t→+∞

‖δxPt − π‖TV = 0 .

Key property 2: for ”nice” functions

1

T

∫ T

0

f(Xt)dt
Px−a.s.−→ π(f) =

∫
π(dx)f(x)

1√
T

∫ T

0

{f(Xt)− π(f)}dt Px=⇒ N (0, σ2(π, f)) .

The Langevin diffusion provides a mean to sample any smooth
distribution... Of course, this is a highly theoretical solution...

2019 HSE-Yandex Autumn School



Probabilistic Reasoning with DL: three examples
High-Dimensional Sampling

Variance reduction for Makov Chains
Bibliography

Langevin Diffusion and Unadjusted Langevin Algorithm
Strongly log-concave distribution

Discretized Langevin diffusion

Idea: Sample the diffusion paths, using the Euler-Maruyama (EM)
scheme:

Xk+1 = Xk − γk+1∇U(Xk) +
√

2γk+1Zk+1

where
- (Zk)k≥1 is i.i.d. N (0, Id)
- (γk)k≥1 is a sequence of stepsizes, which can either be held constant or be

chosen to decrease to 0 at a certain rate.

Closely related to the (stochastic) gradient descent algorithm.
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Discretized Langevin diffusion: constant stepsize

When the stepsize is held constant, i.e. γk = γ, then (Xk)k≥1 is an
homogeneous Markov chain with Markov kernel Rγ

Under some appropriate conditions, this Markov chain is irreducible,
positive recurrent ; unique invariant distribution πγ which does not
coincide with the target distribution π.

Questions:
For a given precision ε > 0, how should I choose the stepsize γ > 0 and the
number of iterations n so that : ‖δxRnγ − π‖TV ≤ ε
Is there a way to choose the starting point x cleverly ?
Auxiliary question: quantify the distance between πγ and π.
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Discretized Langevin diffusion: decreasing stepsize

When (γk)k≥1 is nonincreasing and non constant, (Xk)k≥1 is an
inhomogeneous Markov chain associated with the kernels (Rγk )k≥1.

Notation: Qpγ is the composition of Markov kernels

Qpγ = Rγ1Rγ2 . . . Rγp

With this notation, Ex[f(Xp)] = δxQ
p
γf .

Questions:
- Convergence : is there a way to choose the step sizes so that
‖δxQpγ − π‖TV → 0 and if yes, what is the optimal way of choosing the
stepsizes ?...

- Optimal choice of simulation parameters : What is the number of
iterations required to reach a neighborhood of the target:
‖δxQpγ − π‖TV ≤ ε starting from a given point x

- Should we use fixed or decreasing step sizes ?
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Strongly convex potential

Assumption: U is L-smooth and m-strongly convex

‖∇U(x)−∇U(y)‖2 ≤ L ‖x− y‖2

〈∇U(x)−∇U(y), x− y〉 ≥ m ‖x− y‖2 .

Outline of the proof
1 Control in W2 the distance of the laws of the Langevin diffusion and its

discretized version.
2 Relate W2 control to total variation.

Key technique: (Synchronous and Reflection) coupling !; see (Durmus
and Moulines, 2019)
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Coupling of probability measures

Definition

A coupling of two probability measures (ξ, ξ′) ∈ M1(X )×M1(X ) is a
probability measure γ on the product space (X× X,X ⊗ X ) whose
marginals are ξ and ξ′, i.e. γ(A× X) = ξ(A) and γ(X×A) = ξ′(A) for all
A ∈ X .

The set of all couplings of ξ and ξ′ is denoted by C(ξ, ξ′).

A coupling γ ∈ C(ξ, ξ′) is said to be optimal for the Hamming distance if
γ(∆c) = dTV(ξ, ξ′) where ∆ =

{
(x, x′) ∈ X2 : x = x′

}
is the diagonal

of X× X
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Wasserstein distance

Definition

For p ≥ 1 and ξ, ξ′ ∈ M1(X ), the Wasserstein distance of order p between ξ
and ξ′ denoted by Wd,p(ξ, ξ

′), is defined by

Wp
d,p

(
ξ, ξ′

)
= inf
γ∈C(ξ,ξ′)

∫
X×X

dp(x, x′)γ(dxdx′) ,

where C(ξ, ξ′) is the set of coupling of ξ and ξ′. For p = 1, we simply write
Wd.
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Properties of the Wasserstein distance

The Wasserstein distance can be expressed in terms of random variables
as:

Wd,p

(
ξ, ξ′

)
= inf

(X,X′)∈C(ξ,ξ′)

{
E[dp(X,X ′)]

}1/p
,

where (X,X ′) ∈ C(ξ, ξ′) that the distribution of the pair of random
elements (X,X ′) is a coupling of ξ and ξ′.

Any particular coupling therefore provides an upper bound of the
Wasserstein distance.

By Hölder’s inequality, it obviously holds that if p ≤ q, then for all
ξ, ξ′ ∈ M1(X ),

Wd,p

(
ξ, ξ′

)
≤Wd,q

(
ξ, ξ′

)
.
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Wasserstein distance convergence

Theorem

Assume that U is L-smooth and m-strongly convex. Then, for all x, y ∈ Rd
and t ≥ 0,

W2 (δxPt, δyPt) ≤ e−mt ‖x− y‖

The contraction depends only on the strong convexity constant.
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Synchronous Coupling

{
dYt = −∇U(Yt)dt+

√
2dBt ,

dỸt = −∇U(Ỹt)dt+
√

2dBt ,
where (Y0, Ỹ0) = (x, y).

This SDE has a unique strong solution (Yt, Ỹt)t≥0. Since

d{Yt − Ỹt} = −
{
∇U(Yt)−∇U(Ỹt)

}
dt

The product rule for semimartingales imply

d
∥∥∥Yt − Ỹt∥∥∥2

= −2
〈
∇U(Yt)−∇U(Ỹt), Yt − Ỹt

〉
dt .
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Synchronous Coupling

∥∥∥Yt − Ỹt∥∥∥2
=
∥∥∥Y0 − Ỹ0

∥∥∥2
− 2

∫ t

0

〈
(∇U(Ys)−∇U(Ỹs)), Ys − Ỹs

〉
ds ,

Since U is strongly convex 〈∇U(y)−∇U(y′), y − y′〉 ≥ m ‖y − y′‖2 which implies∥∥∥Yt − Ỹt∥∥∥2
≤
∥∥∥Y0 − Ỹ0

∥∥∥2
− 2m

∫ t

0

∥∥∥Ys − Ỹs∥∥∥2
ds .

Grömwall inequality: ∥∥∥Yt − Ỹt∥∥∥2
≤
∥∥∥Y0 − Ỹ0

∥∥∥2
e−2mt
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Theorem

Assume that U is L-smooth and m-strongly convex. Then, for any x ∈ Rd
and t ≥ 0

Ex
[
‖Yt − x?‖

2
]
≤ ‖x− x?‖2 e−2mt +

d

m
(1− e−2mt) .

where
x? = arg min

x∈Rd
U(x) .

The stationary distribution π satisfies∫
Rd
‖x− x?‖2 π(dx) ≤ d/m.

The constant depends only linearly in the dimension d.
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Contraction property of the discretization

Theorem

Assume that U is L-smooth and m-strongly convex. Then,

(i) Let (γk)k≥1 be a nonincreasing sequence with γ1 ≤ 2/(m+ L). For all
x, y ∈ Rd and ` ≥ n ≥ 1,

W2(δxQ
n,`
γ , δyQ

n,`
γ ) ≤

{∏̀
k=n

(1− κγk) ‖x− y‖2
}1/2

.

where κ = 2mL/(m+ L).

(ii) For any γ ∈ (0, 2/(m+ L)), for all x ∈ Rd and n ≥ 1,

W2(δxR
n
γ , πγ) ≤ (1− κγ)n/2

{
‖x− x?‖2 + 2κ−1d

}1/2

.
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A coupling proof (I)

Objective compute bound for W2(δxQ
n
γ , π)

Since πPt = π for all t ≥ 0, it suffices to get bounds of the Wasserstein
distance

W2

(
δxQ

n
γ , πPΓn

)
where

Γn =
n∑
k=1

γk .

- δxQnγ : law of the discretized diffusion

- πPγn = π, where (Pt)t≥0 is the semi group of the diffusion

Idea ! synchronous coupling between the diffusion and the interpolation
of the Euler discretization.
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Explicit bound in Wasserstein distance

Theorem

Assume that U is m-strongly convex and L-smooth. Let (γk)k≥1 be a nonincreasing
sequence with γ1 ≤ 1/(m+ L). Then

W 2
2 (δxQ

n
γ , π) ≤ u(1)

n (γ)
{
‖x− x?‖2 + d/m

}
+ u

(2)
n (γ) ,

where u
(1)
n (γ) = 2

n∏
k=1

(1− κγk) with κ = mL/(m+ L) and

u
(2)
n (γ) = 2

dL2

m

n∑
i=1

γ2
i c(m,L, γi)

n∏
k=i+1

(1− κγk)

 .

Can be sharpened if U is three times continuously differentiable and there exists L̃
such that for all x, y ∈ Rd,

∥∥∇2U(x)−∇2U(y)
∥∥ ≤ L̃ ‖x− y‖.
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Results

Fixed step size For any ε > 0, one may choose γ so that

W2

(
δx∗R

p
γ , π
)
≤ ε in p = O(

√
dε−1) iterations

where x∗ is the unique maximum of π

Decreasing step size with γk = γ1k
−α, α ∈ (0, 1),

W2

(
δx∗Q

n
γ , π

)
=
√
dO(n−α) .

These results are tight (check with U(x) = 1/2‖x‖2).
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Total Variation

Definition

For µ, ν two probabilities measure on Rd, define

dTV(µ, ν) =
1

2
sup

‖f‖∞≤1

|µ(f)− ν(f)| = inf
(X,Y )∈C(µ,ν)

P(X 6= Y ),

where (X,Y ) ∈ C(µ, ν) if X ∼ µ and Y ∼ ν.

|µ(f)− ν(f)| = E[f(X)− f(Y )]

= E[{f(X)− f(Y )}1{X 6=Y }] ≤ osc(f)P(X 6= Y ) .
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From the Wasserstein distance to the TV

Theorem

If U is strongly convex, then for all x, y ∈ Rd,

‖Pt(x, ·)− Pt(y, ·)‖TV ≤ 1− 2Φ

{
− ‖x− y‖√

(4/m)(e2mt − 1)

}

Use reflection coupling (Lindvall and Rogers, 1986)
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Explicit bound in total variation

Theorem

Assume U is L-smooth and strongly convex. Let (γk)k≥1 be a
nonincreasing sequence with γ1 ≤ 1/(m+ L).

(Optional assumption) U ∈ C3(Rd) and there exists L̃ such that for all
x, y ∈ Rd:

∥∥∇2U(x)−∇2U(y)
∥∥ ≤ L̃ ‖x− y‖.

Then there exist sequences {ũ(1)
n (γ), n ∈ N} and {ũ(1)

n (γ), n ∈ N} such that
for all x ∈ Rd and n ≥ 1,

‖δxQnγ − π‖TV ≤ ũ(1)
n (γ)

{
‖x− x?‖2 + d/m

}
+ ũ(2)

n (γ) .
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Constant step sizes

For any ε > 0, the minimal number of iterations to achieve
‖δxQpγ − π‖TV ≤ ε is

p = O(
√
d log(d)ε−1 |log(ε)|) .

For a given stepsize γ, letting p→ +∞, we get:

‖πγ − π‖TV ≤ Cγ |log(γ)| .
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Control variates methodology

A “naive” Monte Carlo estimator of π(f) is

π̂n(f) =
1

n

n−1∑
k=0

f(Xk)

where (Xk)k∈N is a MC of kernel R with invariant distribution π.

Denote by f̂d a solution of the Poisson equation

f̂d −Rf̂d = f̃ , f̃ = f − π(f) ,

Using f̃(Xk) = f̂d(Xk)−Rf̂d(Xk) we get

n−1/2
n−1∑
k=0

f̃(Xk) = n−1/2
n−1∑
k=0

{f̂d(Xk)−Rf̂d(Xk)}

= n−1/2
n∑
k=1

{
f̂d(Xk)−Rf̂d(Xk−1)

}
+ f̂d(X0)− f̂d(Xn) .

2019 HSE-Yandex Autumn School



Probabilistic Reasoning with DL: three examples
High-Dimensional Sampling

Variance reduction for Makov Chains
Bibliography

Control variates for Markov Chains
Control variates for Langevin diffusion

CLT for Markov Chains

Theorem

Let P be a Markov kernel with a unique invariant probability measure π. Let
f ∈ L2(π). Assume that there exists a solution f̂d ∈ L2(π) to the Poisson
equation f̂d −Rf̂d = f̃ where f̃ = f − π(f). Then

n−1/2
n−1∑
k=0

f̃(Xk)
Pπ=⇒ N (0, σ2

π(f̃)) ,

where

σ2
π(f̃) = Eπ[{f̂d(X1)−Rf̂d(X0)}2] = π(f̂2

d )− π((Rf̂d)2)

= 2π(f̃ f̂d)− π(f̃2)
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Control variate

Control variates i.e. π-integrable functions
H ⊂

{
h : Rd → R : π(h) = 0

}
and then choose h ∈ H such that

σ2
∞,d(f + h) ≤ σ2

∞,d(f).

Idea: Consider control variates of the form h = (R− Id)g

Key remark:
(R− Id)(f̂d − g) = −{f̃ + (R− Id)g}

Optimization problem

σ2
∞,d(f + (R− Id)g)

= min
g

2π({f̃ + (R− Id)g}{f̂d − g})− π({f̃ + (R− Id)g}2) .
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Control variates

Computational bottleneck: f̂d is intractable !

Idea: This computation can be bypassed if R is reversible with respect to
π !

π({f̃ + (R− Id)g}{f̂d − g})

= π(f̃ f̂d) + π((R− Id)gf̂d)− π(g(R− Id)g)− π(f̃g)

Since R− Id is reversible and (R− Id)f̂d = −f̃ ,

π((R− Id)gf̂d) = −π(gf̃)

Good news we can minimize the asymptotic variance without
computing f̂d.

Bad news It is still required to compute Rg, which is in many
instances overwhelming !

2019 HSE-Yandex Autumn School



Probabilistic Reasoning with DL: three examples
High-Dimensional Sampling

Variance reduction for Makov Chains
Bibliography

Control variates for Markov Chains
Control variates for Langevin diffusion

Langevin diffusion

Langevin SDE:
dYt = −∇U(Yt)dt+

√
2dBt .

Generator of the Langevin semigroup: for any smooth function ϕ by

A ϕ = lim
t↓0

(Ptϕ− ϕ)/t = −〈∇U,∇ϕ〉+ ∆ϕ .

Central Limit Theorem:

t−1/2

∫ t

0
f̃(Ys)ds

weakly
=⇒
t→+∞

N (0, σ2
∞(f)) , σ2

∞(f) = 2π
(
f̂ f̃
)
.

where f̂ is a solution of the (continuous-time) Poisson equation

A f̂ = −f̃ with f̃ = f − π(f) .
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”Carré du champ”

”Carré du champ” for all g, h ∈ C2
poly(Rd,R),

π (gA h) = π (hA g) = −π (〈∇g,∇h〉) ,

Hence A is a self-adjoint operator on a dense subspace of L2(π).

A straightforward consequence of the ”carré du champ” property (setting
h = 1) is that

π(A g) = 0 for any function g ∈ C2
poly(Rd,R).

This observation implies that f and f + A g have the same expectation
with respect to π for any f ∈ C2

poly(Rd,R) and g ∈ C2
poly(Rd,R).
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Control variate for Langevin diffusion

f and f + A g have the same expectation with respect to π for any
f ∈ C2

poly(Rd,R) and g ∈ C2
poly(Rd,R).

Idea: minimize the asymptotic variance

g 7→ σ2
∞(f + A g) .

Good news ! This minimization problem can be solve without knowing
the Poisson solution f̂ !
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Another expression for the variance

The asymptotic variance of t−1/2
∫ t

0
f̃(Ys)ds is given by

σ2
∞(f) = 2π(f̂ f̃) ,

where f̂ ∈ C2
poly(Rd,R) satisfies Poisson’s equation: A f̂ = −f̃

Using the ”carré du champ” property, the asymptotic variance may also be
expressed as

σ2
∞(f) = 2π

(
f̂ f̃
)

= −2π(f̂A f̂) = 2π(‖∇f̂‖2) .
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Control variates for the Langevin diffusion

Control variate: h? = A g?, where g? is a minimizer of

g 7→ σ2
∞(f + A g) = 2π({ ̂f + A g}{f̃ + A g}) .

Key remark:
A (f̂ − g) = −(f̃ + A g) .

Consequence:

σ2
∞(f + A g) = 2π

(
(f̂ − g)

{
f̃ + A g

})
.
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Control variates for the Langevin diffusion

A self-adjoint in L2(π) implies

π(f̂A g) = π(gA f̂) = −π(f̃g)

An equivalent expression of the variance:

σ2
∞(f + A g) = 2π(f̂ f̃)− 2π(gf̃) + 2π(f̂A g)− 2π(gA g)

= 2π(f̂ f̃)− 4π(gf̃) + 2π(‖∇g‖2) .

We can solve the minimization problem without computing f̂ !

min
g
σ2
∞(f + A g) ⇔ min

g
−4π(gf̃) + 2π(‖∇g‖2)

2019 HSE-Yandex Autumn School



Probabilistic Reasoning with DL: three examples
High-Dimensional Sampling

Variance reduction for Makov Chains
Bibliography

Control variates for Markov Chains
Control variates for Langevin diffusion

Linear parameterized family

Linear parameterized family of smooth functions

gθ = 〈θ, ψ〉 , where θ ∈ Rp , ψ = {ψi}pi=1 .

Minimization of the asymptotic variance:

σ2
∞(f + A gθ) = 2θTrHθ − 4 〈θ, b〉+ σ2

∞(f) ,

Hij = π(〈∇ψi,∇ψj〉) and bi = π(ψif̃) .

which is a quadratic minimization problem, which admits a closed form
solution θ∗ = H−1b (beware that in practice H can be badly conditioned).

Good news ! A g is generally easy to compute contrary to Rg.
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Control variates for Markov Chains
Control variates for Langevin diffusion

Problem

Minimizing the asymptotic variance of the Langevin diffusion of control
variates is easy (e.g. for ”linear” control variates).

Question: is this useful to compute control variates for discrete-time MC
?

Yes ! provided that the asymptotic variance of the Markov chain is in some
sense well approximated by the asymptotic variance of the Langevin
diffusion !
Of course, this is not always true !... but at least, this holds for several
algorithms of interest ...

2019 HSE-Yandex Autumn School



Probabilistic Reasoning with DL: three examples
High-Dimensional Sampling

Variance reduction for Makov Chains
Bibliography

1 Probabilistic Reasoning with DL: three examples

2 High-Dimensional Sampling

3 Variance reduction for Makov Chains

4 Bibliography

2019 HSE-Yandex Autumn School



Probabilistic Reasoning with DL: three examples
High-Dimensional Sampling

Variance reduction for Makov Chains
Bibliography

Karimi, Belhal and Hoi-To and Moulines Wai Éric and Lavielle. 2019. On the global convergence
of (fast) incremental expectation maximization methods.

Durmus, Alain and Eric and Saksman Moulines Eero. 2017a. On the convergence of Hamiltonian
Monte Carlo, arXiv preprint arXiv:1705.00166.

Durmus, Alain and Eric Moulines. 2017b. Nonasymptotic convergence analysis for the unadjusted
Langevin algorithm, The Annals of Applied Probability 27, no. 3, 1551–1587.

. 2019. High-dimensional Bayesian inference via the unadjusted Langevin algorithm,
Bernoulli 25, no. 4A, 2854–2882.

U. Simsekli and A. Durmus and R. Badeau and G. Richard and É. Moulines and A. T. Cemgil.
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Markov Chains

This book covers the classical theory of Markov chains on general state-spaces as well 
as many recent developments. The theoretical results are illustrated by simple examples, 
many of which are taken from Markov Chain Monte Carlo methods. The book is self-
contained, while all the results are carefully and concisely proven. Bibliographical notes 
are added at the end of each chapter to provide an overview of the literature.

Part I lays the foundations of the theory of Markov chain on general states-space. Part 
II covers the basic theory of irreducible Markov chains on general states-space, relying 
heavily on regeneration techniques. These two parts can serve as a text on general state-
space applied Markov chain theory. Although the choice of topics is quite different from 
what is usually covered, where most of the emphasis is put on countable state space, 
a graduate student should be able to read almost all these developments without any 
mathematical background deeper than that needed to study countable state space (very 
little measure theory is required).

Part III  covers advanced topics on the theory of irreducible Markov chains. The 
emphasis is on geometric and subgeometric convergence rates and also on computable 
bounds. Some results appeared for a first time in a book and others are original. Part 
IV are selected topics on Markov chains, covering mostly hot recent developments.

Mathematics

9 783319 977034

Figure: A beach reading or a nice Christmas present for a loved one... This new book
covers the classical theory of Markov chains on general state-spaces as well as many
recent developments. The theoretical results are illustrated by simple examples, many
of which are taken from Markov Chain Monte Carlo methods.
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